SOLAR MAGNETIC FIELDS AND DYNAMO PROCESS

A. BRANDENBURG, I. TUOMINEN
Obserwatory and Astrophysics Laboratory, University of Ilelsinki
'Tätitorninmaki, SF-00130 llelsinki, Fintand

ABSTR.IC"T: WC have computed kineantic dynamo models for the Sum making realistic assumptions about the different induction effects. Recent results of helioseismology are used to infer the differential rotation. By changing the value of the angular velocily at the bottom of the convection qone in the modds we find more or less agreement with the observations.

1. NTRODUCTION

The spatial distribution of flares on the Sun is presumably closely related to the structure of the man magnetic fied (Bai, 198S). Their field geometry can be understood in terms of dyamo theory (Steenbeck and Krause, 1969). During the last 20 yeirs many dynamo models have been investigated and applied to the Sun (sce e.g. Roberts and Stix, 1972). The differential rotation, cmtering into such models as a 'free parameter', hats beem often treated guite crudely, by assmming certanin amalytic functions for the rotation profile. More realistic models using results of helioseismology for the internal angular velocity in the Sun have been considered ly Makarove et al. (1988). They used a Whis method for solving the dynamo equations. Recenty Brandenlurg and 'Tuominen (198s) reported on similar results obtained by solving the full eigenvalue problem for the sphere numerically. Detailed agreenent with the observations is found. In this poster paper we reconsider these models and extend the investigations also to models with artif: " molified rotational profiles.

2. TILE SOLAR INJERNAL ANGULAR VEJOCITY

The differential rotation $\Omega(r, 0)$ is important for generating torodal field from poloidal. The function $\Omega(r, 0)$ is observed to some extent by means of helioseismology. In Table I we have combined data for $\Omega(r, \theta)$ obtained by means of helioseismology which have been published by a mumber of anthors. We have also included angular velocities measured with various tracers such as smensots and magnetic fied patterns.
Table 1 shows that the variation of Ω_{c} in the radial direction is about 7%. Furthermore Ω_{c} is decrasing inwards for $0.55 R<r<R$ (llill, 1987) and for $0.65 R<r<0.75 R$ (Brown of al, 1988). These results do not seem to fit together at $r=0.8 R$. If the absolute scale measured in both regions is correct, we must conclude that Ω_{c} is incrasing invards somewhere aromed $r=0.8 R$. This is supported by the fact that youngest sumpots used as tracers rotate will an angular velocity exceeding the surface value by $4-5 \%$ (Thominen and Virtanen, 1988). Also long-lived magnetic leatures rotate $2-3 \%$ times faster than the surface (Stenfo, 19SS). The general interpetation is dhat young sunspots and magnetic features carry information fram sonewhere deep in the convection zone. Or course this is not the ouly possibility. For example the magnetic fentures observed at the surface and also the active longitudes (e.g. Tuominem, 1962), where sumpots are preferentially born, may be a 'non-axisymmetric dynamo mode', which can propagate aromd the Sun with an angular velocity slightly larger than the angular velocity at some depth (see e.g. Brandenburg of al., I985c).

3. A RINEMATIC DYAMO MOIDEL FOR THE SUN

We have computed dyamo models using for $S \Omega_{c / p}$ the data given in the previous section. The profile for the α-effect is derived from a mixing lengtla motel using first order smoothing apprath (Steenbeck ot al., 1966). However, we have scaled the (r-profite by a factor $1 / 200$ in order to achieve a marginal solution. This scaling problem is discussed in more detail by Brandenturg et al.(1988e). In Figure 1 we have ploted generalized butterfly diagrans for the magnetic fiedd showing contours

116: 1 lun	1/R	(l, (1)/2,	$\iint_{2}(1 \cdot) / 2 \pi$
hirliserisme (a)	(1).65)	410	355
hirlasamat (a)	0.72	155	350
Wh.lismbisula. (b)	0.75	150	
	().85)	4	
hatimstisme (1)	0.91	130	
Ardicmerism. (d)	0.96	4. 40	
yommgest sputs (e)		175	169
whest speots (c)		16%	393
magnelic (f)		162	3336
Matuctic ($\mathrm{s}^{\text {a }}$)		166	13.1
1)0ppler (h)		45\%	$32 \cdot 1$

1. HOW BIG IS $\Omega_{七}$ AT TILE BOTNON OFTHE CK?

The value of Ω_{0} at the bottom of the convertion zone $(C Z)$ is still not well determined. It is ponsizle that the value bia Ω_{c} at $r=0.75 R$ (b, in Thable 1) is stighty lower than the real watue, althongh the observations of youngest sunspots indicate that the angular velocity at some decper layer must still exced the surface value. The following two pictures show butterlly diagrans obtainced from in dynamo modnl with two different values for Ω_{2} at the botton of the $\mathrm{C} Z$.

 resulting butterfy diagran looks quite maralistic: the torodal fux is concemanted at high batitudes and an equatorward migration appears. (b) $\Omega_{c}=180 n \mathrm{~Hz}$ (at $r=0.75$). An equatorward migration of flux is presem,
 been used for the model in Figure 1 , seents to be consistent with observations.

5. CONCLUSIONS

We conclude that, taking the results of hidimemmolegy and mixing length concep fully into accomet, it is possible to construct more realistic dynamo models which show good agremont with the wiserved mean solar magnetic fiedd. Models with larger or smaller Ω_{0} at the bentom of the (" $\%$ seem whe incompatible with the observations. For farther investigations, it would be of interest to see whether this agrement persists when the nonlinear feed-back is taken inte accome and when the ergation for the mean motion and the indaction equation are solved stit-consistently. Ason the stability of these solntions and the existence of 'mixed parities' (Bramdenturg ot al., 1988a, l, d) remaints to be imsentigated for solar type models.

REEERPNCES

Bai, 'T': 1985, Astrophys. J. 328, 860.
Brandenburg A., Tuominen $1 .: 19 x 8$, Ido. Spacer Res, in press.
Bmadenburg, A., Krause, F., Meincl, R., Moss, D., and 'Tuominen, 1.: 19s8:a, distron. Astrophys., in press.
Brandemburg, A., Moss, D., Tuominco, I., I9SSb, Gcophys. Aetrophys. Pluid Dyn., submitted.

Bramdenturg, A., Rädler, K.-H., Tuominen, I., 1988c, Gicophys. Astrophys. Fluid Dyn., submitted.
 cols. A. Pouquel, M. Meneguzai and P'. L. Sulem, Elsevier Science Publ. B.V., in press.
Brandenburg, A., Pulkkinen, P'., 'Tuominen, I., Nordhnd, A, Stein, R. F.: 198se, in Nonlinear Phenomena in MIID Turbatence, eds. A. Pouquet, M. Aeneguzzi and P. L. Sulem, Elsevier Science Pabl. B.V., in press.

Brown, 'I'. M., Christensen-Dalsgaard, J., Dziembowski, W. A., Coode, P', Congh, D. O., Morrow, (\therefore A.: 1958, Astropheys. J. submitted.
Dmall Jr, 'T. L., Harvey, J.W': 19s.I, Nalure 310, 19.
Hill, 1': 1957 in: The Internal Solar Angular Velocily, eds. B.R. Durney and S. Sofia, D. Rejdel, Dordrecht, p. 45.

Hill, r., Rust, 1).M., Appourchaux, T': 1988, in: Advances in Helio- and Asteroseismology, eds. J. (Shristensen-D)alsgatard and S. Frandsen, D. Reidel Dordrecht, p. 49.
Makarov, V.I., latianov, M.P., Sivaraman, K.R.: 1983, Solar Phys. 85, 215.

Robortis, P.JI and SLix, M.: 1972, Astron. Astrophys. 18, 153.
Suoderass, II. 13: 1953, Astrophys. J. 270, 2888.
Sternberk, M., Krause, L’., Rädler, K.-H.: 1966, Z. Naturforsch. 21a, 369.
Stembeck, M. and Krause, Fi.: 19\%9, Astron. Nuchr. 291, 49.
Stonflo, J.O.: 1988, Astron. Astrophys. submitted.
Tumminen, 1., and Virtamen, 11.: 1988, Adv. Space Res., in press.
Thuminen, J.: 1962, Z. Astrophys., 55, 110.

