
The Future Utilisation of Schmidt Telescopes 
ASP Conference Series, Vol. 84, 1995 
J. M. Chapman, R. D. Cannon, S. J. Harrison and B. Hidayat (edsj 

Observational Constraints on Cosmological Models 

T. Padmanabhan 
Inter- University Centre for Astronomy and Astrophysics, Post Bag 4, 
Ganeshkhind, Pune - 411 007, India 
email: paddy@iucaa.ernet.in 

Abstract. Cosmological models for structure formation are severely 
constrained by several of the recent observational results. We now have 
observations which probe the power spectrum of fluctuations from about 
0.5 h~l Mpc to 3000 hr1 Mpc. These probes and the constraints they 
imply on models for structure formation are reviewed. 

1. Recipe for the Universe 

Models for cosmological structure formation assume that small perturbations 
in the energy density, which originated at very early epochs, have grown via 
gravitational instability, leading to the structures we see today. In most of the 
models, these perturbations are generated by processes which are supposed to 
have taken place in the very early universe (say, at z ^ 1018) and has an initial 
power spectrum Pm{k) ~ Ak. Since each logarithmic interval in k space will con­
tribute to the energy density an amount A2

p(k) = da2/d(lnk) = (k3P(k)/2ir2) 
we find that A2 oc k4 if P oc k. The contribution to the gravitational potential 
from the same range will be A^, oc A2/k4 which is independent of k if A2 ex fc4. 
Such a "scale-invariant" spectrum is theoretically quite attractive and arises in 
several models including seeded models and inflationary models. 

Given a slightly perturbed Friedmann model, with small inhomogeneities 
described by a power spectrum P(k,z-m) at a high redshift z — z-m, we can 
predict unambigiously the power spectrum P(k,zp) at the epoch of decoupling, 
z = zr> « 103. This is possible because we can use linear perturbation theory 
during this epoch. The shape of the spectrum at z = zry will not be a pure power 
law since the gravitational amplification is wavelength-dependent. In general, 
the power at small scales is suppressed due to various physical processes. The 
exact shape at z = zv depends on the kind of dark matter present in the universe. 
In a universe dominated by "hot dark matter" (HDM) particles of mass m ~ 
30eV, the power per logarithmic interval, Ap(k) is peaked at fc = fcmax = 0.11 
Mpc_1(m/30eV) and falls exponentially for k > fcmax- Hence, in these models, 
the scale k = fcmax will go nonlinear first and smaller structures have to form 
by fragmentation. If the universe is dominated by "cold dark matter" (CDM) 
particles with mass m ^ 35 GeV, then A(fc) is a gently increasing function 
of fc for small fc. If we set -P(fc) oc fc" locally, the index n changes from 1 at 
fc-1 £ 200/T1 Mpc to 0 at fc-1 ~ 10ft-1 Mpc and to about (-2) at fc-1 ~ 1ft-1 

470 

https://doi.org/10.1017/S0252921100022387 Published online by Cambridge University Press

mailto:paddy@iucaa.ernet.in
https://doi.org/10.1017/S0252921100022387


CONSTRAINTS ON COSMOLOGICAL MODELS 471 

Mpc. In such models small scales will go nonlinear first and the structure will 
develop hierarchically. 

The situation is more complicated if two kinds of dark matter are present 
or if the cosmological constant is non-zero. The presence of the cosmological 
constant adds to the power at large scales but suppresses the growth of pertur­
bations at small scales. A similar effect takes place if a small fraction of the 
dark matter is hot and the bulk of it is cold (e.g. AHDM — 0.3, QCDM — 0.7). 
In both cases there will be more power at large scales and less power at small 
scales, compared to standard CDM model. The spectrum A(k) is still a gently 
increasing function of k and small scales go nonlinear first. 

The fact, that one can compute the power spectrum at z ~ zo analyt­
ically, allows one to predict large scale anisotropies in the cosmic microwave 
background (CMBR) unambiguously in any given model. Comparing this pre­
diction with the anisotropy observed by COBE one can fix the amplitude A of 
the power spectrum. For a wide class (e.g. Padmanabhan & Narasimha 1992) of 
the models, A(k) £* 10~3(kL)2 with L ~ (24±4)ft~1 Mpc for fc"1 £ 80ft"1 Mpc. 
For CDM-like models the function A(k) flattens out at larger k and is about 
unity around fc-1 ~ 8/i-1 Mpc. In pure HDM models, A(k) has a maximum 
value of A m ~ 0.42/i_2(m/30eV)2 at km ~ 0.11 Mpc-1(m/30eV) and decreases 
exponentially at k £ km. 

The evolution of the power spectrum after decoupling (for z < ZQ) is more 
difficult to work out theoretically. In general, the power spectrum grows in 
amplitude (preserving the shape), as long as the perturbations are small. In this 
case, we can write A(k,z) = [f(z)/f(zD))A(k,ZD) for z < ZQ. For example, 
in CDM models with fi = l , / ( z ) = (1 + z ) - 1 ; thus A(fc) grows by a factor 103 

at all scales between the epoch of decoupling (ZD — 103) and the present epoch 
(z = 0), if we assume that linear theory is valid at all scales. The resulting 
Ao(A;), obtained by linear extrapolation, is often used to specify the properties 
of the models. This spectrum correctly describes the power at large scales (say, 
fc-1 £ 30ft-1 Mpc) where A 0 £ 0.1. Fig. 1 shows the density contrast <r(R) 
computed from the linearly extrapolated power spectrum Ao{k) in four different 
models. The density contrast <r(R) measures the rms fluctuations in mass within 
a randomly placed sphere of radius R; up to factors of order unity, cr(R) a A(k ~ 
R-1). 

At small scales, the true power Atrue(fc) will be larger than Ao(k) due to 
nonlinear effects. There have been several attempts in the literature to under­
stand the form of Atrae(k) at fc-1 £ 30ft-1 Mpc. Since dark matter particles 
interact only through gravity, it is possible to study the formation of dark matter 
structures by numerical simulations. For a wide class of models, one can relate 
(Bagla & Padmanabhan 1993; Hamilton et al. 1991) the nonlinear and linear 
density contrasts by a set of power laws of the form: ajfL(a, x) — A[cr\{a, /)]" 
with /3 = a;3(l + a2

NL) where A = n = 1 for <r£ < 1.2; A = 0.794, n = 2.9 for 
1-2 < a\ < 6.0 and A = 9.12, n = 1.55 for a\ > 6.0. This relation shows that 
<TNL is steeper than CTL at small scales. 

The evolution at small scales is also complicated due to baryonic physics. 
Since baryons can dissipate energy and sink to the minima of the dark matter 
potential wells, the statistical properties of visible galaxies and dark matter 
halos could be quite different. One should also remember that, in hierarchical 
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models, considerable amount of merging takes place at small scales. It is usual to 
quantify our ignorance at these scales by a 'bias' (acronym for 'Basic Ignorance 
of Astrophysical Scenarios') factor b and write £gai(r) = b2^maaa(r). Such a 
parametrisation is useful only if 6 is idependent of scale and morphology of 
galaxies, which seems to be somewhat unlikely. Since small scale observations 
are based on galactic properties, while theoretical calculations usually deal with 
the underlying mass distribution, any scale (or morphology) dependence of 6 
could have important bearing on the comparison of observations with models. 

2. Probing the Power Spectrum 

One of the direct ways of constraining the models is to estimate the density 
contrast (T0bs(R) from observations at different scales and compare it with the 
theoretically predicted values. Fortunately, we now have observational probes 
covering four decades of scales from 10_1 Mpc to 103 Mpc; these are summarised 
in Table 1. 

The first column of the Table 1 describes the scale of observation in units 
of h~l Mpc. At large scales, one can convert the linear size L to the equiva­
lent angular scale 9 in the microwave anisotropy measurements by the relation 
9(L) = 1°(£/100A_1 Mpc). Similarly, one can associate with a scale L the mass 
Mamooth(L) = l.imh2 x 1012M®(L/Mpc)3. The first column also gives 9(L) 
and Msmooth(L) wherever relevant. The second and third columns list the key 
probes and the constraints arising from them. There are several points which 
need to be highlighted in this table. 

If we assume that the power spectrum at large scales is P = Ak, then 
COBE-DMR observations give a(R) = (24 ± 4/T1 Mpc/R)2 at these scales 
(Padmanabhan & Narasimha 1992). A straight extrapolation of this COBE-
DMR result to R = 50/ r 1 Mpc gives acoBE^Oh'1 Mpc) ~ 0.2. On the other 
hand, galaxy surveys and large scale streaming motions also give useful infor­
mation (Rowan-Robinson et al. 1990; Efstathiou et al. 1990; Saunders et al. 
1991) around r = 50A-1 Mpc. For example, the angular correlation of galax­
ies, measured by the APM survey is u(6) ~ (1 - 5) x 10~3 at 6 ~ 14°. This 
corresponds to <TG(50/I-1 Mpc) = 0.2. Similarly the analysis of velocity data 
shows (Bertschinger & Dekel 1989; Dekel et al. 1990; Bertschinger et al. 1990) 
that t>(40/rx Mpc) ~ (388 ±67) kms"1 and v^lr1 Mpc) ~ (327 ±82) kms"1. 
From these values it is possible to deduce that O-LSV(50/I-1 Mpc ) ~ 0.2. 

The consistency of the results, ffcoBE^Oft-"1 Mpc) ~ 0.2 and CTLSV(50/I-1 

Mpc) ~ 0.2, is not surprising since both probe the gravitational potential of 
dark matter. However, the result of galaxy surveys - based on visible matter -
also gives <TAPM(50ft-1 Mpc) ~ 0.2. This suggests observations are consistent 
with the conclusion that biasing is unimportant at R ~ 50/i-1 Mpc. 

At small scales, the galaxy - galaxy correlation function £gg ~ [r/5.4ft-1 

Mpc]-1-8 is fairly well determined. Direct observations suggest that CTgai^ft""1 

Mpc) ~ 1 but the ot)M a n d ^gai at these scales can be quite different because 
of biasing. In fact, one can get a direct estimate of <TDM(8/I-1MPC) from the 
abundance of rich clusters because of the following reason: the scale R = 8ft-1 

Mpc contains a mass of 1.2 X 1015£IIIJQMQ. When this scale becomes nonlinear, 
it will reach an overdensity of about S ~ 178, or - equivalently - it will contract 
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Table 1: OBSERVATIONAL CONSTRAINTS 

Scale 
IHh^Mpc) 
0CMBR 

i l = ( 8 0 - 3 x lO 3 ) 
9 = 0.8° - 30° 

R = 40 - 80 

$ = 0.4" - 0.8° 

71 = (8 - 40) 
6 = (4.8' - 24') 
M = (1015 - 1017) 

71 = (0.05 - 8) 

M = (108 - 10" ) 

Probe 

(i) CODE - DMR 
(ii) Ground, balloon 

observations of (AT/T) 

(i) Galaxy surveys; e.g 
(ii) Large scale streaming 

v(40) = (388 ± 67)fcms-1 

i-(60) = (327 ± 82)fcms"1 

(i) Galaxy surveys 

(ii) Abundance of Abell clusters 

(i) Abundance of qusars 
(ii) Abundance of DLAS 

(iii) Gunn-Peterson effect 

Constraint 
<r = {(SM/M)2)1'1 

(i) (TDwtlO3) ~ 5 x 10-* 
(ii) C D M ( 1 0 2 ) < 5 x lO"2 

(i) <7gu(rt); <rga(50) ~ 0.2 

(ii) <7t,M(50) ~ 0.2 

( i ) ^ f = ( r / 5 k - 1 A f p e ) - " 
<7gll(8) ~ 1 

(ii) <TDM(8) * (0.5 - 0.7) 

(i) cr(0.5) > 3 

(ii) cr(0.5) > (3 - 4) 

-t).1 1 10 100 1000 

R(Mpc) 

F i g . l The linearly extrapolated density contrast, filtered by a sphere of radius 
R, in four different models. All models are for fit = 1, and normalised by 
CODE. Solid line: CDM model; Dashed line A+ CDM model with fi„ = 
0.8,ftcDM = °-2.h = 0.8; Dash-dot line : C + HDM model with ftcDM = 
0.7, OHDM = 0.3; Dotted line : CDM model with b = 2.5 
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to a radius of Rf ~ (8 / r 1 Mpc) /(178)1/3 ~ 1.5/T1 Mpc. A mass of 1015Af® 
in a radius of 1.5 Mpc is a good representation of Abell clusters we see in the 
universe and hence, the observed abundance of the Abell clusters can be used to 
constrain the value of a(8h~1 Mpc). Several people have attempted to do this 
(see, for a recent attempt, White et al. 1993) ; the final results vary depending 
on the modelling of Abell clusters, and give <J(8/I - 1 Mpc) ~ (0.5 — 0.7). Since 
CTgal(8ft_1 Mpc) ~ 1, this shows that b ~ (1.23 - 2) at 8ft-1 Mpc. 

It is possible to present the above argument in a more general context 
(Subramanian & Padmanabhan 1994). Suppose that the contribution to critical 
density from collapsed structures with mass larger than M is ft(M), at a given 
redshift z. Then one can show that 

where 8C = 1.68 and erfc(x) is the complementary error function. Given the 
abundance il(M) of any class of objects at any redshift z, this relation can be 
used to determine ao(M). The Abell clusters (at z = 0) contribute in the range 
ft ~ (0.001-0.02). Even with such a wide uncertainty, we get <TCIUS ~ (0.5-0.7). 

One can perform a similar analysis using the abundance of quasars and 
damped Lyman systems. The luminosity function of quasars is fairly well deter­
mined up to z w 4. If the astrophysical processes leading to quasar formation are 
known, then the luminosity function can be used to estimate the abundance of 
host objects at these redshifts. Though these processes are somewhat uncertain, 
most of the models for quasar formation suggest (Hachnelt, 1993) that we must 
have <r(0.5/i-1 Mpc) £ 3. Similarly, we can convert the observed (dN/dz) values 
for damped Lyman alpha systems into abundances of host dark matter halos 
by making some assumptions about these objects. We find that (Subramanian 
& Padmanabhan 1994) in the redshift range of z ~ (1.7 - 3.5) damped Lyman 
alpha systems contribute a fractional density of QLV ~ (0.06 — 0.23). This would 
require <r(1012Af@) ~ (3 - 4.5). 

Finally, we should remember that while we do see absorption due to clumped 
neutral hydrogen, quasar spectra do not show any absorption due to smoothly 
distributed neutral hydrogen. Since the universe became neutral at z £ zjy — 
103, and since galaxy formation could not have made all the neutral hydrogen 
into clumps, we expect the IGM to have been ionised sometime during 5 £ 
z £ 103 (Gunn & Peterson 1965). It is not clear what is the source for these 
ionising photons. Several possible scenarios (quasars, massive primordial stars, 
decaying particles etc.) have been suggested in the literature though none of 
these appears to be completely satisfactory (Miralda-Escude & Ostriker 1990). 
In all these scenarios, it is necessary to form structures at z ^ 5 so that an 
ionising flux of about J = 10-21ergs c m - 2 s _ 1 Hz - 1 s r - 1 can be generated at 
these epochs. Once again, it is difficult to convert this constraint into a firm 
bound on a though it seems that <r(0.5/i-1 Mpc) ^ 3 will be necessary. 
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3. Scorecard for the Models 

The simplest models one can construct will contain a single component of dark 
matter, either cold or hot. Such models are ruled out by the observations. 
The HDM models, normalised to the COBE result will have maximum power 
of A m 3 0A2h-2(m/30eV)2 at k = km = 0.11 Mpc-^m/SOeV). In such a 
case, structures could have started forming only around (1 + zc) £ (Am/1.68) = 
h>5Q(m/30eV)2 or at zc S 0. We cannot explain a host of high-z phenomena 
with these models. The pure CDM models face a different difficulty. These 
models, normalised to COBE, predict eg — 1? which is too high compared to the 
bounds from cluster abundance. When nonlinear effects are taken into account, 
one obtains fgg oc r~2-2 for h = 0.5 which is too steep compared to the observed 
value of £gg oc r - 1 - 8 . In other words, CDM models have the wrong shape for 
f (r) to account for the observations. 

The comparison of the CDM spectrum with observations suggests that we 
need more power at large scales and less power at small scales. This is precisely 
what happens in models with both hot and cold dark matter or in models with 
non-zero cosmological constant. These models have been extensively studied 
during the last year, and they fare well as far as large and intermediate scale 
observations are concerned. However, they have considerably less power at small 
scales compared to CDM models. As a result, they do face some difficulty 
(Subramanian & Padmanabhan 1994) in explaining the existence of high redshift 
objects like quasars and damped Lyman alpha systems. For example a model 
with 30% HDM and 70% CDM will have a0.5 ~ 1.5; to explain the abundance 
of damped Lyman alpha systems one needs CTO.S > 3.0. Similar difficulties exist 
in models with a cosmological constant. 

The comparison of models show that it is not easy to accommodate all the 
observations even by invoking two components to the energy density. (These 
models also suffer from serious problems of fine-tuning). The root cause of the 
difficulty is the following: the abundance of clusters requires ox(8/»-1 Mpc) 
~ 0.6 while the abundance of damped lyman alpha systems require ai,(lh~l 

Mpc) > 3.0. To achieve this, the mean slope of a{R) in the range (1 — 8)ft-1 

Mpc should be about —0.8. Nonlinear evolution will steepen this slope to a 
value much higher than the observed value of —0.9. On the other hand, if we 
use models which reproduce a^L °c r - 0 , 9 , then ox oc r~k with k <C 0.8. Hence, 
CTL(1/»_1 Mpc) < 3 if a ^ h - 1 Mpc) ~ 0.6. 

4. Conclusions and Future Outlook 

The discussion of various models in the last section brings out three points: (1) 
"nice" models (e.g. pure CDM model) do not work; (2) even the "not-so-nice" 
models (which require fine tuning of a larger number of free parameters) are 
either ruled out or severely constrained; (3) the exclusion or survival of many of 
these models depend crucially on the estimate of errors and uncertainties in the 
observations. 

Given these factors, it is possible to spot some of the key future observations 
which will be of relevance in determining the shape of the spectrum at different 
scales. 
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(a) To begin with, the microwave anisotropy measurements are likely to improve 
significantly in the next few years. These observations will hopefully converge to 
a definite value for the primordial index n (which has changed from 1.1 ± 0.6 to 
1.59io!55 recently !), thereby allowing us to determine the shape of the spectrum 
at very large scales. 

(b) At intermediate scales, galaxy surveys still hold the key to our understanding. 
What is probably required is an accurate determination of £gg(r) at the scales 
r ~ (10 — 100)A"*1 Mpc. At present, the attempts to obtain £gg(r) from APM 
u>gg(0) leads to fairly large uncertainties (a factor of 5 - 10) at r ^ 40ft-1 Mpc. 
To determine the shape of £(r) in a useful manner we need an accuracy of better 
than a factor 2 or so at r ~ 60ft-1 Mpc. In this range we also have direct probes 
of dark matter distribution both from CMBR 1° measurements and large scale 
streaming motions. In principle, this should allow us to make direct comparison 
of dark matter and baryonic distributions at these scales; in practice, it is only 
limited by observational and systematic errors. Surveys which go deeper than 
100ft-1 Mpc will, of course, be useful but only if the accuracy is reasonable. 

(c) At small scales, quasars, damped Lyman alpha systems and radio galaxies 
provide a direct window on the high-z universe; as we have already seen most of 
the models have problems in explaining their abundances. 

(d) If we could measure the quasar-quasar correlation function £qq(r; z) at dif­
ferent redshifts, we will have a direct observational probe on the evolution of 
correlations in the universe. At present, we may be at the threshold of getting 
sufficient statistical accuracy on such a project and it is well worth thinking 
about. Similarly, a systematic all-sky search for lensed quasars could improve 
our bounds on the cosmological constant. 

(e) Gravitational lensing also plays a crucial role in determining the nature of 
dark matter via the EROS/MACHO experiments. As the statistics of events 
improve we should be able to put effective constraints on the amount of non-
baryonic dark matter. 
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