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Lower Escape Rate of Symmetric
Jump-diffusion Processes

Yuichi Shiozawa

Abstract. We establish an integral test on the lower escape rate of symmetric jump-diòusion pro-
cesses generated by regularDirichlet forms. Using this test, we can ûnd the speed of particles escap-
ing to inûnity. We apply this test to symmetric jump processes of variable order. We also derive the
upper and lower escape rates of time-changed processes by using those of underlying processes.

1 Introduction

In [27], we studied the upper escape rate of symmetric jump-diòusion processes gen-
erated by regular Dirichlet forms (see [25] and the references given there for sym-
metric diòusion processes and [12, 14] for Markov chains on weighted graphs). _is
notion expresses how far particles can go for all suõciently large time, and is thus
regarded as a quantitative version of conservativeness (see [7, 10, 13, 18, 19, 26, 28] for
conservativeness criteria of symmetric jump-diòusion processes). _e result in [27]
shows how the upper escape rate can be aòected by the rates of volume growth, coef-
ûcient growth, and big jump. In this paper, we are concerned with the lower escape
rate of symmetric jump-diòusion processes, that is, the speed of particles escaping to
inûnity. We can regard this notion as a quantitative version of transience. _e pur-
pose of this paper is to establish an integral test on the lower escape rate of symmetric
jump-diòusion processes (_eorem 2.1 and Corollary 3.3). We also apply this test to
symmetric jump processes of variable order. _is application ensures the sharpness
of the test.
Dvoretzky and Erdös [6] determined the speed of Brownian particles onRd escap-

ing to inûnity, andTakeuchi [30] extended this result to symmetric stable processes on
Rd . More precisely, let ({Xt}t≥0 , P) be the symmetric α-stable process onRd starting
from the origin for 0 < α ≤ 2. _is process is nothing but the Brownian motion for
α = 2. It is well known that for d > α, this process is transient and escapes to inûnity
as t → ∞ almost surely. Furthermore, if we deûne rα ,p(t) = t1/α/(log t)

1+p
d−α for a

constant p, then

P( ∣Xt ∣ ≥ rα ,p(t) for all suõciently large t) =
⎧⎪⎪⎨⎪⎪⎩

1, p > 0,
0, p ≤ 0.
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_is result shows that the smaller the index α is, the faster the escape speed of particles
is. For p > 0, the function rα ,p(t) is called a lower rate function for the symmetric
α-stable process on Rd .

Ichihara [15, _eorem E] extended the result of Dvoretzky and Erdös [6] to sym-
metric diòusion processes on Rd generated by uniformly elliptic operators with
smooth coeõcients. For the proof of this result, full heat kernel estimates and mar-
tingale theory are utilized. Grigor’yan [9] obtained an integral test on the lower es-
cape rate of Brownian motions on Riemannian manifolds (see also [2]). _is result
means that lower rate functions can be determined by the upper bounds of the volume
growth rate and the heat kernel on-diagonal part. In the proof of this result, the ca-
pacitary upper estimate by Sturm [29] played an important role in estimating hitting
probabilities to compact sets. On the other hand, Hendricks [11] and Khoshnevisan
[17] extended the result of Takeuchi [30] to direct products of stable processes with
diòerent indices.

Our result is applicable to more general symmetricMarkov processes. In fact, we
can generalize the result of Grigor’yan [9] to symmetric jump-diòusion processes.
_is generalization reveals that the scaling order of big jumps determines the speed of
particles escaping to inûnity. Our approach here is similar to Grigor’yan [9]. Namely,
we ûrst give an upper estimate of the hitting probability to a compact set a�er a ûxed
time in terms of the capacity in a similar way to Bendikov and Saloò-Coste [2]. We
then use the capacitary upper estimate forDirichlet forms of non-local type as devel-
oped byÔkura [23] (see also the recent result ofÔkura andUemura [24]). Our result
seems to be the ûrst application of his estimate to the transient case.

We ûnally note that the upper and lower escape rates of time changed processes
can be determined by using those of underlying processes. For instance, let {Yt}t≥0
be aMarkov process on Rd generated by the operator

L = −m(x)
2

(−∆)α/2

for 0 < α ≤ 2. Here, m(x) is a positivemeasurable function on Rd such that m(x) ≍
(1 + ∣x∣2)p for some p ≥ 0. _is process is nothing but a time changed symmetric
α-stable process such that, if we take large p, then particles move speedily in space.
If we assume that 0 ≤ p < α/2 and d > α, then {Yt}t≥0 is conservative and transient.
Moreover, we can ûnd the upper and lower escape rates of {Yt}t≥0, and thus

lim
t→∞

log ∣Yt ∣
log t

= 1
α − 2p

almost surely; see Section 5 for details. For α = 2, even though Metafune and Spina
[20] obtained the upper bound of the heat kernel for L, this bound with _eorem 2.1
does not seem to imply the lower escape rate with sharp polynomial growth.

_roughout this paper, the letters c and C (with subscript) denote ûnite positive
constants that may vary from place to place. For nonnegative functions f (x) and
g(x) on a space S, we write f (x) ≍ g(x) if there exist c1 > 0 and c2 > 0 such that

c1g(x) ≤ f (x) ≤ c2g(x) for any x ∈ S .
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2 The Result

2.1 Preliminaries

We recall the notions of Dirichlet forms from [3] and [8]. Let (X, d) be a locally
compact separablemetric space and let m be a positive Radonmeasure onXwith full
support. Wewrite C(X) for the totality of continuous functions onX, and C0(X) for
that of continuous functions on X with compact support. Let (E,F) be a Dirichlet
formon L2(X;m); that is, (E,F) is a closedMarkovian symmetric formon L2(X;m).
We assume that (E,F) is regular: F ∩ C0(X) is dense both in F with respect to the
norm

√
E1, and in C0(X) with respect to the uniform norm. Here for α > 0,

Eα(u, u) ∶= E(u, u) + α∥u∥2
L2
(X;m) , u ∈ F.

By the Beurling–Deny formula ([8,_eorem 3.2.1, Lemma 4.5.4]),

E(u, v) = E(c)(u, v) +∬
X×X∖diag

(u(x) − u(y))(v(x) − v(y)) J(dxdy)

+ ∫
X

u(x)v(x) k(dx)

for u, v ∈ F ∩ C0(X), where
● (E(c) ,F∩C0(X)) is a symmetric formwith the strong local property (see [8, p. 120]
for deûnition);

● J is a symmetric positive Radon measure on X ×X ∖ diag, where
diag = {(x , y) ∈ X ×X ∣ x = y};

● k is a positive Radon measure on X.
In particular, these three factors are determined uniquely for (E,F). We call J and k
the jumping measure and the killing measure, respectively, associated with (E,F).

We can extend E(c) uniquely to F. Furthermore, for u ∈ F, there exists a positive
Radon measure µc

⟨u⟩ on X such that

E(c)(u, u) = 1
2
µc
⟨u⟩(X)

(see [8, p. 123]). We call µc
⟨u⟩ the local part of the energy measure of u.

We ûrst introduce the notion of transience. Let {Tt}t>0 be a strongly continuous
Markovian semigroup on L2(X;m) and

St f = ∫
t

0
Ts f ds, f ∈ L2(X;m).

Here, the integral is deûned as the Bochner integral in L2(X;m). We can then extend
Tt and St on L1(X;m) ∩ L2(X;m) to L1(X;m), uniquely. Let
L1
+
(X;m) = {u ∈ L1(X;m) ∣ u ≥ 0,m-a.e.} and G f = lim

N→∞
SN f , f ∈ L1

+
(X;m).

We say that {Tt}t>0 is transient if
G f <∞ m-a.e. for any f ∈ L1

+
(X;m).

_is condition is equivalent to the existence of a function f ∈ L1(X;m) strictly pos-
itive m-a.e. on X such that G f < ∞ m-a.e. ([8, Lemma 1.5.1]). We also know that, if
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{Tt}t>0 is transient, then there exists a bounded and m-integrable function g strictly
positive m-a.e. on X such that ∫X g ⋅ Gg dm ≤ 1 ([8, p. 40]). _is function is called a
reference function of {Tt}t>0. We say that (E,F) is transient if there exists a bounded
m-integrable function g strictly positive m-a.e. on X such that

∫
X
∣u∣g dm ≤

√
E(u, u) for any u ∈ F.

_e function g is called a reference function of (E,F). Let {Tt}t>0 be a strongly con-
tinuousMarkovian semigroup on L2(X;m) associatedwith (E,F). _en by [8,_eo-
rem 1.5.1], (E,F) is transient if and only if {Tt}t>0 is transient. Moreover, there exists
a common reference function of {Tt}t>0 and (E,F).

Let Fe be the totality of m-measurable functions u on X such that ∣u∣ <∞ m-a.e.
and there exists a sequence {un} ⊂ F such that limn→∞ un = u, m-a.e. on X and

lim
m ,n→∞

E(un − um , un − um) = 0.

_is sequence is called an approximating sequence of u. For any u ∈ Fe and its ap-
proximating sequence {un}, the limit

E(u, u) ∶= lim
n→∞

E(un , un)

exists and does not depend on the choice of {un} ([8,_eorem 1.5.2]). We call (Fe ,E)
the extended Dirichlet space of (E,F) ([8, p. 41]). In particular, if (E,F) is transient,
then Fe is complete with respect to E ([8, Lemma 1.5.5]).

We next introduce the notion of capacity. In what follows, we assume that (E,F)
is transient. Let O be the totality of open sets in X. For A ∈ O, deûne

LA = {u ∈ Fe ∣ u ≥ 1 m-a.e. on A}
and

Cap
(0)(A) =

⎧⎪⎪⎨⎪⎪⎩

infu∈LA E(u, u), LA ≠ ∅
∞, LA = ∅.

For any B ⊂ X, we deûne the 0-order capacity by

Cap
(0)(B) = inf

A∈O, B⊂A
Cap

(0)(A).

We see by [8, p. 74] that if LB ≠ ∅, then there exists a unique element e(0)B ∈ LB such
that

Cap
(0)(B) = E(e(0)B , e(0)B ).

_e function e(0)B is called the equilibrium potential of B.
ForA ⊂ X, a statement depending on x ∈ A is said to hold quasi everywhere (q.e. for

short) on A if there exists a set N ⊂ A of zero capacity such that the statement holds
for every x ∈ A∖ N .
A function u ∈ F is said to be quasi continuous if for any ε > 0, there exists O ∈ O

with Cap
(0)(O) < ε such that u∣X∖O is ûnite continuous, where u∣X∖O is the restric-

tion of u onX∖O. It is known that every u ∈ F admits its quasi continuousm-version;
see, for instance, [8,_eorem 2.1.3].
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We say that a positive Radon measure µ on X is of (0-order) ûnite energy integral
(µ ∈ S(0)0 in notation) if there exists C > 0 such that

∫
X
∣ f ∣dµ ≤ C

√
E( f , f ) for any f ∈ F ∩ C0(X).

_en any measure µ ∈ S(0)0 charges no set of zero capacity and associates a unique
element Uµ ∈ Fe , which is called the (0-order) potential of µ, such that

E(Uµ, v) = ∫
X
ṽ dµ for any v ∈ Fe

([8, p. 85]). For any compact set K, there exists a unique measure νK ∈ S(0)0 with
supp[νK] ⊂ K such that e(0)K = UνK and

(2.1) Cap
(0)(K) = E(e(0)K , e(0)K ) = νK(K)

(0-order version of [8, Lemma 2.2.6]). _emeasure νK is called the (0-order) equilib-
rium measure of K.

We write B(X) for the family of all Borel measurable subsets of X. Let X∆ = X ∪
{∆} be the one point compactiûcation of X and

B(X∆) = B(X) ∪ {B ∪ {∆} ∶ B ∈ B(X)} .

Let M = ({Xt}t≥0 , {Px}x∈X) be an m-symmetric Hunt process on X generated by
(E,F), and let {pt}t≥0 be the transition function ofM given by

pt(x ,A) = Px(Xt ∈ A), x ∈ X, t ≥ 0, A ∈ B(X).
A set B ⊂ X is called nearly Borel measurable if for any probability measure µ on X∆ ,
there exist B1 , B2 ∈ B(X∆) such that B1 ⊂ B2 and

Pµ(Xt ∈ B2 ∖ B1 for some t ≥ 0) = 0.
We say that a set N ⊂ X is properly exceptional if N is nearly Borel measurable such
that m(N) = 0 and X ∖ N is M-invariant, that is,

Px(Xt ∈ (X ∖ N)∆ and Xt− ∈ (X ∖ N)∆ for any t > 0) = 1, x ∈ X ∖ N .

Here, (X ∖ N)∆ = (X ∖ N) ∪ {∆} and Xt− = lims↑t Xs . Note that any properly
exceptional set N is exceptional, and thus Cap

(0)(N) = 0 by [8,_eorem 4.2.1].
We now impose the following assumption on M.

Assumption 1 (Absolute continuity) _ere exist a properly exceptional Borel set
N ⊂ X and a nonnegative symmetric kernel pt(x , y) on (0,∞)× (X∖N)× (X∖N)
such that pt(x , dy) = pt(x , y)m(dy) and

pt+s(x , y) = ∫
X∖N

pt(x , z)ps(z, y)m(dz), x , y ∈ X ∖ N , t, s > 0.

If there exists a positive le� continuous function M(t) on (0,∞) such that
∥Tt f ∥∞ ≤ M(t)∥ f ∥1 , for any f ∈ L1(X;m) and t > 0,

then Assumption 1 holds with
pt(x , y) ≤ M(t) for x , y ∈ X ∖ N and t > 0
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(see [1, _eorem 3.1]). We deûne pt(x , y) = 0 for (x , y) /∈ (X ∖ N) × (X ∖ N) and
t > 0 so that

(2.2) pt+s(x , y) = ∫
X

pt(x , z)ps(z, y)m(dz), x , y ∈ X, t, s > 0.

Assume that (E,F) is transient. Let r(x , y) be the Green kernel deûned by

r(x , y) = ∫
∞

0
pt(x , y)dt,

Rµ(x) = ∫
X

r(x , y) µ(dy)

for µ ∈ S(0)0 . We then see that Rµ is a quasi continuous and excessive version of Uµ
in the same way as in [3, Lemma 6.1.1].

2.2 Result

Let (E,F) be a regular Dirichlet form on L2(X;m). We say that a function u on
X belongs to F locally (u ∈ Floc in notation), if for any relatively compact open set
G ⊂ X, there exists a function uG ∈ F such that u = uG m-a.e. on G. We can then
deûne µc

⟨u⟩ for any u ∈ Floc ([8, p. 130]).
Let A be the totality of functions ρ in Floc ∩ C(X) such that

(a) µc
⟨ρ⟩ is absolutely continuous with respect to m;

(b) limx→∆ ρ(x) =∞;
(c) for each r > 0, the set Bρ(r) ∶= {x ∈ X ∣ ρ(x) < r} is relatively compact.

We impose the next assumption on (E,F).

Assumption 2 (i) A is non-empty.
(ii) _e jumping measure J(dxdy) satisûes

J(dxdy) = J(x , dy)m(dx)
for some kernel J(x , dy) that associates a positive Radon measure on B(X ∖
{x}) for each x ∈ X and depends on x ∈ X in ameasurable way.

(iii) _e killing measure k vanishes.

Fix ρ ∈ A and deûne

w(c)(R) = ess. sup
x∈Bρ(R)

Γc(ρ)(x),

w( j)(R) = ess. sup
x∈X

∫
X∖{x}

{(ρ(x) − ρ(y))2 ∧ R2} J(x , dy),

where Γc(ρ) is the density function of µc
⟨ρ⟩ with respect to m. Let f be a strictly

positive and nondecreasing function on (0,∞) such that
f (r) ≥ m(Bρ(r)) for any r > 0.

Let g be a strictly positive, nonincreasing, and diòerentiable function on (0,∞) such
that

g(r) ≥ 1
r2

(w(c)(r) +w( j)(r)) for any r > 0.
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Deûne h(r) = 1/g(r) and

I(R) = ∫
∞

R

h′(t)
f (t) dt.

Note that the function h(t) expresses the scaling order of (E,F). For instance, we
assume that (E,F) is associated with the independent sum of a Brownian motion
and a symmetric α-stable process on Rd for some α ∈ (0, 2). Namely,

E(u, v) = 1
2 ∫Rd ∇u(x) ⋅ ∇v(x)dx

+ 1
2
cd ,α∬

Rd×Rd∖diag

(u(x) − u(y))(v(x) − v(y))
∣x − y∣d+α dxdy

F = {u ∈ L2(Rd) ∣ ∂u
∂x i

∈ L2(Rd), 1 ≤ i ≤ d}

with

cd ,α =
α2α−2Γ((d + α)/2)

πd/2Γ(1 − α/2) .

_en by letting ρ(x) = ∣x∣, we get

w(c)(r) ≤ c1 and w( j)(r) ≤ c2r2−α

for some c1 > 0 and c2 > 0. Hence, we can take h(r) = c3rα for some c3 > 0. _is
implies that if d > α, then I(R) = c4Rα−d for some c4 > 0.

We ûnally impose the next assumption on the volume growth of the underlying
measure.

Assumption 3 (Volume doubling condition) _ere exists cV > 0 such that

m(Bρ(2R)) ≤ cV ⋅m(Bρ(R)) for any R > 0.

Let M = ({Xt}t≥0 , {Px}x∈X) be an m-symmetric Hunt process on X generated
by (E,F). _en M has no killing inside because the killing measure vanishes by As-
sumption 2(iii). _emain result in this paper is the following integral test on the lower
escape rate ofM.

_eorem 2.1 LetAssumptions 1–3 hold. Assume that (E,F) is transient and I(r) <∞
for any r > 0. If r(t) is a positive and strictly increasing function on (0,∞) such that

(2.3) ∫
∞

t0

1
I(r(s)) sup

y∈X
ps(x , y)ds <∞ for any x ∈ X

with some t0 > 0, then

(2.4) Px( ρ(Xt) ≥ r(t) for all suõciently large t)= 1, q.e. x ∈ X.

_e function r(t) in (2.4) is called a lower rate function for M with respect to ρ.
On the other hand, a positive and strictly increasing function r̃(t) on (0,∞) is called
a lower rate function for M if

Px(d(x , Xt) ≥ r̃(t) for all suõciently large t) = 1, q.e. x ∈ X.
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We then see that, if ρ(x) = d(o, x) for some o ∈ X and r(t) →∞ as t →∞ in (2.4),
then for any small ε > 0, the function (1 − ε)r(t) is a lower rate function for M.

Remark 2.2 Let Assumption 1 hold. If

∫
∞

1
sup
y∈X

ps(x , y)ds <∞ for any x ∈ X,

then G f < ∞ m-a.e. for any f ∈ L1(X;m) ∩ Bb(X) strictly positive m-a.e. on X,
because

G f = ∫
∞

0
ps f ds, m-a.e. on X

and

∫
∞

0
ps f (x)ds

= ∫
1

0
(∫

X
ps(x , y) f (y)m(dy)) ds + ∫

∞

1
(∫

X
ps(x , y) f (y)m(dy)) ds

≤ ∥ f ∥∞ + ∥ f ∥1 ∫
∞

1
sup
y∈X

ps(x , y)ds <∞

for q.e. x ∈ X. _erefore, (E,F) is transient as we mentioned in Subsection 2.1 (see
also [8, Lemma 1.5.1]).

3 Proof of Theorem 2.1

In this section, we give a proof of_eorem 2.1. As mentioned before, our approach is
similar to that of Grigor’yan [9].

Let K be a compact set in X and let σK = inf{t > 0 ∣ Xt ∈ K} be the hitting
time of M to K. If (E,F) is transient, then the function pK(x) ∶= Px(σK < ∞) is a
quasi continuous modiûcation of e(0)K = UνK ([8,_eorem 4.3.3]), whence pK = RνK
m-a.e. under Assumption 1

We ûrst derive an upper bound of the probability ψK(t, x) given by

ψK(t, x) = Px(Xs ∈ K for some s > t), x ∈ X ∖ N , t ≥ 0.

Lemma 3.1 Let Assumption 1 hold and assume that (E,F) is transient. _en for any
compact set K in X,

ψK(t, x) ≤ Cap(0)(K)∫
∞

t
sup
y∈X

ps(x , y)ds, t > 0, x ∈ X ∖ N .

_is lemma is a 0-order version of Bendikov and Saloò-Coste [2, _eorem 3.10],
and our proof is similar to theirs.

Proof of Lemma 3.1 Let {θ t}t≥0 be the shi� operator of sample paths of M. _en
by theMarkov property,

ψK(t, x) = Px(σK ○ θ t <∞) = Ex[PX t(σK <∞)]

= ∫
X

pt(x , y)pK(y)m(dy).

(3.1)
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Since pK = RνK m-a.e. and supp[νK] ⊂ K, the last expression in (3.1) is equal to

∫
X

pt(x , y)RνK(y)m(dy) = ∫
X

pt(x , y)(∫
K
r(y, z) νK(dz)) m(dy)

= ∫
K
(∫

X
pt(x , y)r(y, z)m(dy)) νK(dz).

_en

∫
X

pt(x , y)r(y, z)m(dy) = ∫
X

pt(x , y)(∫
∞

0
ps(y, z)ds) m(dy)

= ∫
∞

0
(∫

X
pt(x , y)ps(y, z)m(dy)) ds.

(3.2)

By (2.2), the last expression in (3.2) is equal to

∫
∞

0
pt+s(x , z)ds = ∫

∞

t
ps(x , z)ds.

Hence by (2.1),

ψK(t, x) = ∫
K
(∫

∞

t
ps(x , z)ds) νK(dz) = ∫

∞

t
(∫

K
ps(x , z)νK(dz)) ds

≤ νK(K)∫
∞

t
sup
z∈K

ps(x , z)ds = Cap(0)(K)∫
∞

t
sup
y∈X

ps(x , y)ds.

We next obtain the capacitary upper bound as an application of the result byÔku-
ra [23].

Lemma 3.2 Let Assumptions 2 and 3 hold. If I(r) < ∞ for any r > 0, then there
exists C > 0 such that for any r > 0,

(3.3) Cap(Bρ(r)) ≤
C

I(r) .

Proof Fix ρ ∈ A. For R > r > 0, we deûne

ϕr ,R(x) = 0 ∨ ( R − ρ(x)
R − r

) ∧ 1,

J0(r, R) = ∫
Bρ(r)

(∫
Bρ(R)c

J(x , dy)) m(dx).

Note that ϕr ,R ∈ F ∩ C0(X). We will show that for any c0 > 1,

3E(ϕr ,R , ϕr ,R) ≤ C f (r)g(R) for c0 ≤ R/r ≤ c20(3.4)

and

4J0(r, R) ≤ C f (r/c20)g(c20R) for R/r ≥ c0(3.5)

with some positive constant C > 0, which will be explicitly given below. By [23,_e-
orem 2.6], (3.4) and (3.5) imply that

Cap(Bρ(r), Bρ(R)) ≤ C(∫
R

r

h′(t)
f (t) dt)

−1
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for 1 ≤ r < c0r ≤ R. Here for a compact set K and a relatively compact open set G with
K ⊂ G,

Cap(K ,G) = inf{E(u, u) ∣ u ∈ F ∩ C0(X), u ≥ 1 on K, u = 0 on Gc} .
Noting that

Cap
(0)(Bρ(r)) ≤ Cap(Bρ(r), Bρ(R)) ≤ C(∫

R

r

h′(t)
f (t) dt)

−1
,

we get (3.3) by letting R →∞.
In what follows, we show (3.4) and (3.5). Since

Γ(ϕr ,R)(x) =
1

(R − r)2 Γ(ρ)(x) ⋅ 1{r<ρ(x)<R}(x),

we have

E(c)(ϕr ,R , ϕr ,R) =
1

2(R − r)2 ∫r<ρ(x)<R
Γ(ρ)(x)m(dx)

≤ 1
2(R − r)2 m(Bρ(R)) ⋅w(c)(R).

(3.6)

On the other hand, since

∣ϕr ,R(x) − ϕr ,R(y)∣ ≤
1

R − r
{ ∣ρ(x) − ρ(y)∣ ∧ (R − r)} ,

we obtain for any c > 1,

∬
X×X∖diag

(ϕr ,R(x) − ϕr ,R(y))
2 J(x , dy)m(dx)

=∬
Bρ(cR)×Bρ(cR)∖diag

(ϕr ,R(x) − ϕr ,R(y))
2 J(x , dy)m(dx)

+ 2∬
Bρ(cR)×Bρ(cR)c

(ϕr ,R(x) − ϕr ,R(y))2 J(x , dy)m(dx)

≤ 3
(R − r)2 m(Bρ(cR)) ⋅w( j)(R).

(3.7)

Assume ûrst that c0 ≤ R/r ≤ c20 for some c0 > 1. _en

(3.8) 1
(R − r)2 ≤ ( c0

c0 − 1
)

2
⋅ 1
R2 .

If we choose N ≥ 1 so that cc20/2N < 1, then

m(Bρ(R)) ≤ m(Bρ(cR)) ≤ (cV)Nm(Bρ(cR/2N))
≤ (cV)Nm(Bρ(cc20r/2N)) ≤ (cV)Nm(Bρ(r)) ,

by Assumption 3. Hence the last expressions in (3.6) and (3.7) are less than

(cV)N

2
( c0
c0 − 1

)
2
⋅m(Bρ(r)) ⋅

w(c)(R)
R2

and

3(cV)N( c0
c0 − 1

)
2
⋅m(Bρ(r)) ⋅

w( j)(R)
R2 ,
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respectively, which implies that

E(ϕr ,R , ϕr ,R) ≤ 3(cV)N( c0
c0 − 1

)
2
⋅m(Bρ(r)) ⋅

1
R2 (w

(c)(R) +w( j)(R)) .

Assume next that R/r ≥ c0 for some c0 > 1. _en

J0(r, R)

= ∫
Bρ(r)

(∫
Bρ(R)c

{ 1 ∧ ( ρ(y) − ρ(x)
R − r

)}
2
J(x , dy)) m(dx)

≤ 1
(R − r)2 m(Bρ(r)) ⋅ ess. sup

x∈Bρ(r)
∫
X∖{x}

{(ρ(y) − ρ(x))2 ∧ (R − r)2} J(x , dy)

≤ ( c0
c0 − 1

)
2
m(Bρ(r)) ⋅

w( j)(R)
R2

(3.9)

by (3.8). We now take M ≥ 1 so that 2M ≥ c20. Since

m(Bρ(r)) ≤ (cV)Mm(Bρ(r/2M)) ≤ (cV)Mm(Bρ(r/c20))

by Assumption 3, the last expression in (3.9) is less than

( c0
c0 − 1

)
2
c40(cV)M ⋅m(Bρ(r/c20)) ⋅

1
(c20R)2w

( j)(c20R).

As a result of the argument above, we arrive at (3.4) and (3.5) for any c0 > 1, where

C = ( c0
c0 − 1

)
2
(9(cV)N ∨ 4c40(cV)M).

Hence the proof is complete.

Proof of_eorem 2.1 Fix x ∈ X and let

J(t) = ∫
∞

t
sup
y∈X

ps(x , y)ds.

_en by Lemmas 3.1 and 3.2,

ψBρ(r)(t, x) ≤ Cap(0)(Bρ(r))J(t) ≤ C
J(t)
I(r) .

Let {tk}∞k=0 be an increasing sequence such that

J(tk+1) =
1
2
J(tk)

for any k ≥ 0. _en

J(tk−1) = 2J(tk) = 4J(tk) − 2J(tk) = 4( J(tk) − J(tk+1))

= 4∫
tk+1

tk
sup
y∈X

ps(x , y)ds,
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which implies that

ψBρ(r(tk))(tk−1 , x) ≤ C
J(tk−1)
I(r(tk))

= 4C ∫
tk+1

tk

1
I(r(tk))

sup
y∈X

ps(x , y)ds

≤ 4C ∫
tk+1

tk

1
I(r(s)) sup

y∈X
ps(x , y)ds

for any positive and strictly increasing function r(t). Hence,
∞

∑
k=1

ψBρ(r(tk))(tk−1 , x) <∞

by (2.3). In particular, since

Px( ρ(Xt) ≤ r(t) for some t ∈ [tk−1 , tk))
≤ Px( ρ(Xt) ≤ r(tk) for some t ∈ [tk−1 , tk))
≤ Px( ρ(Xt) ≤ r(tk) for some t ≥ tk−1)
= ψBρ(r(tk))(tk−1 , x),

we have
∞

∑
k=1

Px( ρ(Xt) ≤ r(t) for some t ∈ [tk−1 , tk)) <∞

so that
Px( ρ(Xt) ≥ r(t) for all suõciently large t) = 1

by the Borel–Cantelli lemma. _is completes the proof.

For applications of_eorem 2.1, wemake the following assumption.

Assumption 4 In addition to Assumptions 1–3, the following hold.
(i) _ere exist p > 0 and c1 > 0 such that for any x ∈ X,

pt(x , x) ≤
c1
f (tp) for all t ≥ 1.

(ii) _ere exist ν > 0 and c2 > 0 such that for any r > 0 and R > r,
f (R)
f (r) ≥ c2(

R
r
)

ν
.

(iii) _ere exists c3 > 1 such that for any R > 0, h(c3R) ≥ 2h(R).

Let r(t) be a positive, strictly increasing function on (0,∞) such that r(t)/tp → 0
as t →∞. _en by Assumption 4(iii),

I(r(t)) ≥ ∫
c3 r(t)

r(t)

h′(u)
f (u) du ≥ 1

f (c3r(t))
(h(c3r(t)) − h(r(t))) ≥ h(r(t))

f (c3r(t))
.

Hence, for all suõciently large t > 0,

f (tp)I(r(t)) ≥ f (tp)
f (c3r(t))

h(r(t)) ≥ c2(
tp

c3r(t)
)

ν
h(r(t)) = c2

cν3
⋅ tpν

r(t)ν h(r(t))
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by Assumption 4(ii). Since

sup
y∈X

pt(x , y) ≤ sup
y∈X

pt(y, y) ≤
c1
f (tp)

by (2.2) and Assumption 4(i), we have

1
I(r(t)) sup

y∈X
pt(x , y) ≤

c1
f (tp)I(r(t)) ≤ c1c

ν
3

c2
⋅ r(t)ν

tpνh(r(t)) ,

which implies the following corollary.

Corollary 3.3 Let Assumption 4 hold. Assume that (E,F) is transient and I(r) <∞
for any r > 0. If r(t) is a positive and strictly increasing function on (0,∞) such that
r(t)/tp → 0 as t →∞ and

∫
∞

t0

r(t)ν

tpνh(r(t)) dt <∞

for some t0 > 0, then (2.4) holds.

4 Examples

In this section,we apply_eorem 2.1 and Corollary 3.3 to symmetric jump processes.

Example 4.1 For x ∈ X and r > 0, let Bx(r) = {y ∈ X ∣ d(y, x) < r}. We assume
that Bx(r) is relatively compact for any x ∈ X and r > 0, and that for some α > 0,

m(Bx(r)) ≍ rα for any x ∈ X.

Let γ be a positivemeasurable function on X ×X such that

γ1 ≤ γ(x , y) ≤ γ2 , x , y ∈ X

for some γ1 , γ2 ∈ (0, 2) with γ1 < γ2. Let J(x , y) be a symmetric and strictly positive
function on X ×X ∖ diag such that

J(x , y) ≍ 1
d(x , y)α+γ(x ,y) .

We also assume that C lip
0 (X) ⊂ F and

E(u, u) =∬
X×X∖diag

(u(x) − u(y))2 J(x , y)m(dx)m(dy), u ∈ F ∩ C0(X).

Here, C lip
0 (X) is the totality of Lipschitz continuous functions on X with compact

support. _en for a ûxed point o ∈ X, the function ρ(x) ∶= d(o, x) belongs to Floc ∩
C(X).

(i) Let

γ(x , y) =
⎧⎪⎪⎨⎪⎪⎩

β1 d(x , y) < 1
β2 d(x , y) ≥ 1
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for some β1 , β2 ∈ (0, 2) and ϕ(s) = sβ11{s<1} + sβ21{s≥1}. _en

J(x , y) ≍ 1
ϕ(d(x , y))m(Bx(d(x , y)))

for any (x , y) ∈ X ×X ∖ diag and
ϕ(R)
ϕ(r) ≥ (R

r
)
β1∧β2

for any 0 < r < R <∞. Hence by [1,_eorem 3.1] and [5,_eorems 3.1 and 3.2], there
exists a properly exceptional Borel set N ⊂ X such that

pt(x , dy) = pt(x , y)m(dy)
for some positive symmetric kernel pt(x , y) on (0,∞) × (X ∖ N) × (X ∖ N). Fur-
thermore, there exist c1 > 0 and c2 > 0 such that

pt(x , y) ≤
c2

m(B(ϕ−1(c1 t)))
for any t > 0 and x , y ∈ X ∖ N . _erefore, for some c > 0,

pt(x , y) ≤
c

tα/β2
for all t ≥ 1.

We now assume that 0 < β2 < 2∧α so that (E,F) is transient by Remark 2.2. Since

w( j)(t) = sup
x∈X
∫
X∖{x}

{(ρ(x) − ρ(y))2 ∧ t2} J(x , y)m(dy)

≤ sup
x∈X
∫
X∖{x}

(d(x , y)2 ∧ t2) J(x , y)m(dy) ≤ ct2−β2

for some c > 0, we can take h(t) = c′tβ2 for some c′ > 0. _en by letting ν = α and
p = 1/β2 in Corollary 3.3, we get

∫
∞

1

r(t)α
tα/β2h(r(t)) dt ≍ ∫

∞

1

r(t)α
tα/β2 r(t)β2 dt = ∫

∞

1

r(t)α−β2
tα/β2

dt.

In particular, the last expression above is ûnite for r(t) = ct1/β2/(log t)
1+ε
α−β2 with any

c > 0 and ε > 0. We thus obtain
Px(d(x , Xt) ≥ t1/β2/(log t)

1+ε
α−β2 for all suõciently large t) = 1, q.e. x ∈ X.

_is result is similar to that for the symmetric β2-stable process on Rd (see Takeu-
chi [30]).
(ii) Assume that

β1 ≤ γ(x , y) ≤ β2 for d(x , y) < 1,
γ1 ≤ γ(x , y) ≤ γ2 for d(x , y) ≥ 1

for some β1 , β2 ∈ (0, 2) with β1 < β2 and γ1 , γ2 ∈ (0, 2) with γ1 < γ2. Since

J(x , y) ≥ c1
d(x , y)d+β1

for d(x , y) < 1,

J(x , y) ≥ c2
d(x , y)d+γ2

for d(x , y) ≥ 1,
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we have

E(u, u) ≥ c(∬
d(x ,y)<1

(u(x) − u(y))2

d(x , y)α+β1
m(dx)m(dy)

+∬
d(x ,y)≥1

(u(x) − u(y))2

d(x , y)α+γ2
m(dx)m(dy))

for some c > 0. By [1,_eorem 3.1] and [5,_eorems 3.1 and 3.2] again, there exists a
properly exceptional Borel set N ⊂ X such that pt(x , dy) = pt(x , y)m(dy) for some
positive symmetric kernel pt(x , y) on (0,∞) × (X ∖ N) × (X ∖ N) satisfying

pt(x , y) ≤
c

tα/γ2
for all t ≥ 1.

We assume that 0 < γ1 < γ2 < 2∧α so that (E,F) is transient by Remark 2.2. Since
w( j)(t) ≤ c′t2−γ1 , we can take h(t) = ctγ1 . _en by letting ν = α and p = 1/γ2 in
Corollary 3.3, we get

∫
∞

1

r(t)α
tα/γ2h(r(t)) dt ≍ ∫

∞

1

r(t)α
tα/γ2 r(t)γ1

dt = ∫
∞

1

r(t)α−γ1

tα/γ2
dt.

_e last expression is ûnite for r(t) = ct
1
γ2
⋅
α−γ2
α−γ1 /(log t)

1+ε
α−γ1 with any c > 0 and ε > 0,

and thus

Px (d(x , Xt) ≥ t
1
γ2
⋅
α−γ2
α−γ1 /(log t)

1+ε
α−γ1 for all suõciently large t) = 1, q.e. x ∈ X.

Example 4.2 For each i = 1, 2, let (X(i) , d i) be a locally compact separablemetric
space andm i a positive Radonmeasure onX(i) with full support. SetX = X(1)×X(2)
and m = m1 ⊗ m2. Let (E(i) ,F(i)) be a regular Dirichlet form on L2(X(i);m i) and
M(i) = ({X(i)t }t≥0 , {Px i}x∈X(i)) an associated m i-symmetric Hunt process on X(i).
Let M = ({Xt}t≥0 , {Px}x∈X) be the direct product ofM(1) andM(2) deûned by

Xt = (X1
t , X2

t ), Px = Px1 ⊗ Px2 , x = (x1 , x2) ∈ X.

_en by [21,_eorem 1.4] and [22,_eorem 3.1],M is an m-symmetricMarkov pro-
cess onX and the associated Dirichlet form (E,F) on L2(X;m) is regular. Moreover,
if C(i) is a core for (E(i) ,F(i)), then so is C = C(1) ⊗ C(2) for (E,F) and

E(u, v) = ∫
X(1)

E(2)(u(x1 , ⋅ ), v(x1 , ⋅ ))m1(dx1)

+ ∫
X(2)

E(1)(u( ⋅ , x2), v( ⋅ , x2))m2(dx2)

for u, v ∈ C. Here C(1) ⊗ C(2) is the linear span of functions u(1) ⊗ u(2)(x , y) ∶=
u(1)(x)u(2)(y) for u(i) ∈ C(i).

In what follows, we assume that for each i = 1, 2, C lip
0 (X(i)) ⊂ C(i) and

E(i)(u, u) =∬
X(i)×X(i)∖diag

(u(x) − u(y))2 J i(x , y)m i(dx)m i(dy),

u ∈ F(i) ∩ C0(X(i))
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for some positive measurable function J i(x , y) on X(i) × X(i) ∖ diag. Assume also
that for some α i > 0 and 0 < β i < 2, we have m i(B(i)x (r)) ≍ rα i for any x ∈ X(i) and

J(x , y) ≍ 1
d i(x , y)α i+β i

.

In a similarway to Example 4.1(i), there exists a properly exceptional Borel set N(i) ⊂
X(i) such that

p(i)t (x , dy) = p(i)t (x , y)m i(dy)
for some positive symmetric kernel p(i)t (x , y) on

(0,∞) × (X(i) ∖ N(i)) × (X(i) ∖ N(i)).
Furthermore, there exists c > 0 such that for any x , y ∈ X(i) ∖ N(i),

p(i)t (x , y) ≤ c
tα i/β i

for all t ≥ 1.

_erefore, if we denote by pt(x , dy) the transition probability ofM, then
pt(x , dy) = pt(x , y)m(dy)

for pt(x , y) = p(1)t (x1 , y1)p(2)t (x2 , y2), and thus

pt(x , y) ≤
c
tλ

for all t ≥ 1

for any x = (x1 , x2), y = (y1 , y2) ∈ X ∖ N . Here,

λ = α1/β1 + α2/β2 and N = X ∖ {(X(1) ∖ N(1)) × (X(2) ∖ N(2))}.
Note that N is of zero capacity with respect to (E,F) ([22,_eorem 4.3 (3)]).

We now assume that β1 ≥ β2 and λ > 1 so that (E,F) is transient by Remark 2.2.
We further assume that for each i = 1, 2, the set B(i)x (r) ∶= {y ∈ X(i) ∣ d i(x , y) < r} is
relatively compact for any x ∈ X(i) and r > 0. _en by letting d(x , y) = d1(x1 , y1) +
d2(x2 , y2) for x = (x1 , x2), y = (y1 , y2) ∈ X, for a ûxed point o ∈ X, the function
ρ(x) ∶= d(o, x) belongs to Floc ∩ C(X) and

w( j)(t) ≤ sup
x∈X

{∫
X(1)∖{x1}

(d1(x1 , y1)2 ∧ t2) J1(x1 , y1)m1(dy1)}

+ sup
x∈X

{∫
X(2)∖{x2}

(d2(x2 , y2)2 ∧ t2) J2(x2 , y2)m2(dy2)}

≤ c(t2−β1 + t2−β2) ≍ t2−β2 .

_is means that we can take h(t) = ctβ2 for some c > 0. Sincem(Bρ(r)) ≍ rα1+α2 , we
let ν = α1 + α2 and p = λ/(α1 + α2) in Corollary 3.3 so that

∫
∞

1

r(t)α1+α2

tλh(r(t)) dt ≍ ∫
∞

1

r(t)α1+α2−β2

tλ
dt.

For instance, if we set
r(t) = ct

λ−1
α1+α2−β2 /(log t)

1+ε
α1+α2−β2

for any c > 0, then the last expression above is ûnite for any ε > 0. Hence byCorollary
3.3,

Px(d(x , (X1
t , X2

t )) ≥ r(t) for all suõciently large t) = 1, q.e. x ∈ X.
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Assume that M(i) is a recurrent symmetric β i-stable process on Rd i for each i =
1, 2. Hendricks [11] showed that for a constant p, the function

s(t) = t
1
β1 /(log t)

1+p
β1(λ−1)

is a lower rate function for M if and only if p > 0, where λ = d1/β1 + d2/β2. Since

r(t) = s(t)
(λ−1)β1
α1+α2−β2 and (λ − 1)β1/(α1 + α2 − β2) ≤ 1,

our result is not sharp for β1 > β2.

5 Time Changed Processes

In this section we discuss the escape rate of time changed processes. Let (E,F) be
a regular Dirichlet form on L2(X;m) and let M = ({Xt}t≥0 , {Px}x∈X , ζ) be an m-
symmetric Hunt process on X generated by (E,F). Here, ζ ∶= inf{t > 0 ∣ Xt = ∆} is
the life time. Let µ be a positive Radon measure onX charging no set of zero capacity
and let At be the positive continuous additive functional with Revuzmeasure µ (see,
e.g., [3] or [8] for deûnitions). Let Y be the topological support of µ and let Ỹ be the
quasi support of µ:
(a) Ỹ is a quasi closed set such that µ(X ∖ Ỹ) = 0;
(b) If Y̌ is a quasi closed set with µ(X ∖ Y̌) = 0, then Ỹ ⊂ Y̌ q.e.
We denote by M̌ = ({X̌t}t≥0 , {Px}x∈Ỹ) the time changed process of M with respect
to µ:

X̌t = Xτ t , τt = inf{s > 0 ∣ As > t}.
_en M̌ is a µ-symmetric Markov process on Ỹ and the associated Dirichlet form
(Ě, F̌) on L2(Y; µ) is regular (see [8,_eorem 6.2.1] or [3, Section 5.2]). In particular,
if µ has full quasi support, then

F̌ = Fe ∩ L2(X; µ), Ě(u, u) = E(u, u), u ∈ F̌.

We now assume that M is conservative: Px(ζ = ∞) = 1 for q.e. x ∈ X. If f (t) and
g(t) are strictly increasing functions on (0,∞) such that

Px( f (t) ≤ At ≤ g(t) for all suõciently large t) = 1, q.e. x ∈ X,
then

Px(g−1(t) ≤ τt ≤ f −1(t) for all suõciently large t) = 1, q.e. x ∈ X.

Hence if R(t) is an upper rate function for M, that is,

Px(d(x , Xt) ≤ R(t) for all suõciently large t) = 1, q.e. x ∈ X,
then Px-a.s.,

d(x , X̌t) = d(x , Xτ t) ≤ R(τt) ≤ R( f −1(t))
for all suõciently large t > 0. _is means that R( f −1(t)) is an upper rate function
for M̌. In the same way, if r(t) is a lower rate function for M, then so is r(g−1(t)) for
M̌. A similar argument as above was used in [14] to obtain upper rate functions for
Markov chains on weighted graphs.
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Example 5.1 Let {a i j} be a family of symmetricmeasurable functions on Rd such
that

d

∑
i , j=1

a i j(x)ξ i ξ j ≍ ∣ξ∣2 for any x ∈ Rd and ξ ∈ Rd .

We denote by C∞0 (Rd) the totality of smooth functions onRd with compact support.
If we deûne

E(u, v) = ∫
Rd

d

∑
i , j=1

a i j(x)
∂u
∂x i

(x) ∂v
∂x j

(x)dx

for u, v ∈ C∞0 (Rd), then (E,C∞0 (Rd)) is closable on L2(Rd) (see [8, p. 111]) and the
closure (E,F) is a regular Dirichlet form on L2(Rd).

LetM = ({Xt}t≥0 , {Px}x∈Rd ) be a symmetric diòusion process onRd generated by
(E,F). Let h be a positivemeasurable function on Rd such that h(x) ≍ 1/(1 + ∣x∣2)p

for some p > 0 and µ(dx) = h(x)dx. _en

At = ∫
t

0
h(Xs)ds ≍ ∫

t

0

1
(1 + ∣Xs ∣2)p ds.

Assume that 0 < p ≤ 1. Let M̌ be a time changed process ofM with respect to µ.
Since we see by [25, Example 3.4] that R1(t) ∶= c

√
t log t is an upper rate function for

M, there exists c′ > 0 such that

At ≥ c′ ∫
t

0

1
(1 + R1(s)2)p ds

for all suõciently large t > 0. Hence if we deûne

f (t) = c′ ∫
t

0

1
(1 + R1(s)2)p ds,

then R1( f −1(t)) is an upper rate function for M̌. For all suõciently large t > 0, noting
that

f (t) ≍
⎧⎪⎪⎨⎪⎪⎩

t1−p/(log t)p , 0 < p < 1,
log log t, p = 1,

we get

f −1(t) ≍
⎧⎪⎪⎨⎪⎪⎩

t
1

1−p (log t)
p

1−p , 0 < p < 1,
exp(exp(ct)), p = 1,

and thus

R1( f −1(t)) ≍
⎧⎪⎪⎨⎪⎪⎩

t
1

2(1−p) (log t)
1

2(1−p) , 0 < p < 1,
exp(exp(ct)/2) ⋅ exp(ct/2), p = 1.

We next consider lower rate functions for M̌. Assume that d ≥ 3. _en M is tran-
sient and Corollary 3.3 implies that for any ε > 0, the function r(t) =

√
t/(log t) 1+ε

d−2

is a lower rate function for M. We note that if the coeõcients a i j are smooth, then
Ichihara [15, _eorem E] obtained the same lower rate function and further showed
the sharpness. Hence, for some c > 0,

At ≤ c∫
t

0

1
(1 + r(s)2)p ds
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for all suõciently large t > 0. _is shows that r(g−1(t)) is a lower rate function for
M, where

g(t) = c∫
t

0

1
(1 + r(s)2)p ds.

For all suõciently large t > 0, since

g(t) ≍
⎧⎪⎪⎨⎪⎪⎩

t1−p(log t)
2p(1+ε)
d−2 , 0 < p < 1,

c(log t) d+2ε
d−2 , p = 1,

we obtain

g−1(t) ≍
⎧⎪⎪⎨⎪⎪⎩

t
1

1−p /(log t)
2p
1−p ⋅

1+ε
d−2 , 0 < p < 1,

exp( ct d−2
d+2ε ) , p = 1,

which implies that

r(g−1(t)) ≍
⎧⎪⎪⎨⎪⎪⎩

t
1

2(1−p) /(log t)
1

1−p ⋅
1+ε
d−2 , 0 < p < 1,

exp( ct d−2
d+2ε /2)/t 1+ε

d+2ε , p = 1.

Example 5.2 Let c(x , y) be a positive measurable function on Rd × Rd such that
c(x , y) ≍ 1. If we deûne

E(u, v) =∬
Rd×Rd∖diag

(u(x) − u(y))(v(x) − v(y))
∣x − y∣d+α c(x , y)dxdy

for u, v ∈ C∞0 (Rd), then (E,C∞0 (Rd)) is closable on L2(Rd) (see [8, p. 111]), and the
closure (E,F) is a regular Dirichlet form on L2(Rd).

Let M = ({Xt}t≥0 , {Px}x∈Rd ) be a symmetric Hunt process on Rd generated by
(E,F). _is process is called a symmetric stable-like process as introduced by Chen
and Kumagai [4]. As in Example 5.1, let h be a positive measurable function on Rd
such that h(x) ≍ 1/(1 + ∣x∣2)p for some p > 0 and µ(dx) = h(x)dx.

Let M̌ be a time changed process of M with respect to µ. As mentioned in [27],
R(t) ∶= t 1

α (log t) 1+ε
α is an upper rate function for M if ε > 0. For the symmetric

α-stable process, this upper rate function is obtained by Khintchine [16]. _en for
some c > 0,

At ≥ c∫
t

0

1
(1 + R(s)2)p ds

for all suõciently large t > 0. By letting

f (t) = c∫
t

0

1
(1 + R(s)2)p ds,

R( f −1(t)) is an upper rate function for M̌ under the condition that 0 < p < α/2. We
then get f (t) ≍ t

α−2p
α /(log t)

2p(1+ε)
α , and thus f −1(t) ≍ t

α
α−2p (log t)

2p(1+ε)
α−2p . _is implies

that for all suõciently large t > 0,

R( f −1(t)) ≍ t
1

α−2p (log t)
1+ε
α−2p .

We next consider lower rate functions for M̌. If we assume that d > α, then
M is transient and Corollary 3.3 implies that for any ε > 0, the function r(t) =
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t 1
α /(log t) 1+ε

d−α is a lower rate function for M (see Takeuchi [30] for symmetric stable
processes). _is yields that for some c > 0,

At ≤ c∫
t

0

1
(1 + r(s)2)p ds

for all suõciently large t > 0. _us, if we deûne

g(t) = c∫
t

0

1
(1 + r(s)2)p ds,

then r(g−1(t)) is a lower rate function for M̌. For all suõciently large t > 0, noting
that

g(t) ≍
⎧⎪⎪⎨⎪⎪⎩

t
α−2p
α (log t)

2p(1+ε)
d−α , 0 < p < α/2,

(log t) d+αε
d−α , p = α/2,

we have

g−1(t) ≍
⎧⎪⎪⎨⎪⎪⎩

t
α

α−2p /(log t)
2pα
α−2p ⋅

1+ε
d−α , 0 < p < α/2,

exp( ct d−α
d+αε ) , p = 1,

which implies that

r(g−1(t)) ≍
⎧⎪⎪⎨⎪⎪⎩

t
1

α−2p /(log t)
α

α−2p ⋅
1+ε
d−α , 0 < p < α/2,

exp( c′t d−α
d+αε )/t 1+ε

d+αε , p = α/2.
_is lower rate function is compatible with that for α = 2 (see Example 5.1).
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