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Introduction. Let D be a domain in Euclidean space of d dimensions and K a
compact subset of D. The well known Harnack inequality assures the existence of a
positive constant A depending only on D and K such that (l/A)u(x)<u(y)<Au(x) for
all x and y in K and all positive harmonic functions u on D. In this we obtain a global
integral version of this inequality under geometrical conditions on the domain. The result
is the following: suppose D is a Lipschitz domain satisfying the uniform exterior sphere
condition—stated in Section 2. If u is harmonic in D with continuous boundary data /
then » ,

\u\(x)dx^c\ \f\ds

where ds is the d — 1 dimensional Hausdorff measure on the boundary 3D. A large class of
domains satisfy this condition. Examples are C2-domains, convex domains, etc.

The lemma on which we base our proof states: For bounded domains satisfying the
uniform exterior sphere condition solution of the Poisson equation with Dirichlet bound-
ary conditions and constant forcing term has bounded gradient.

1. Generalities. Let D be a bounded domain in Euclidean space of d > 3 dimen-
sions. G will denote its Green function: For all x, y

G(x,y) = K(x,y)-H(x,y) (1.1)

where K(x, y) = |x - y|~d+2 and H(x, y) is the solution of the Dirichlet problem for D with
boundary data K(-, y). Write

<r(x) = JG(x,y)dy, (1.2)

Then a satisfies the Poisson equation

4 " = - A - (1.3)
(T = 0 at regular points of dd.

where Ad = (d -2)2ird/2/r(d/2).
For any positive Radon measure m on D the function J G(x, y)m(dy) is locally

integrable in D if it is finite at one point. Such a function is called a potential.
With the above notation and terminology we have

PROPOSITION 1.1. Let z be an arbitrary but fixed point in D. All potentials in D are
integrable on D iff there is a constant A depending only on z and D such that

<r(y)<AG(z,y), yeD. (1.4)
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Proof. Suppose all potentials in D are integrable. If the assertion were false we could
find a sequence yn such that o-(yn)>n2G(z, yn). If m is the measure giving mass a(yn)~l

to yn we have J G(z, y)m(dy)<°°. So m determines a potential and this potential is
integrable by assumption. However the integral of this potential is Jo-(y)m(dy) = °°. A
contradiction.

Conversely suppose (1.4) is valid. Let p be the potential of the measure m. We have

Jp(x)dx=Jer(x)dm(x):sAp(z).

so that if p(z) <°° we are done. If p(z) = <» we proceed as follows: Take a ball contained in
D and containing z. The balayage q of p on the complement of B is finite at z. q is thus
integrable. Since p is locally integrable and equals q off B we find p is integrable. The
proof is complete.

COROLLARY 1.2. If all potentials on a domain D are integrable so are all positive
harmonic functions.

Proof. Let z be any point in D. From Proposition 1.1 there is a constant A such that
<r(y) <AG(z, y). Let u be positive harmonic. For any compact subdomain E, the reduit of
u on E is a potential. The last inequality shows that the integral of this potential is
bounded by Au(z). As E expands to D, these reduits increase to u. That completes the
proof.

PROPOSITION 1.3. Let D be a bounded domain. For xsD let

d(x) = dist(x, dD).
Then

|gradcr(x)|<(d/d(x))o-(x) (1.5)

where d = dimension of space.

Proof, a satisfies the Poisson equation (see (1.3))

with Dirichlet boundary conditions. It follows that grad cr is harmonic in D. Let xeD and
B the ball centre x and radius d(x). By the mean value property

grad o-(x) = r^r grad <r(y) dy
|B | , B

= r—T ands

where |B| denotes volume of B; the last equality above being a consequence of the
divergence theorem. Continuing

because a is superharmonic. The proof is complete.
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COROLLARY 1.4. Let D be a bounded domain such that all points ofBD are regular.
Then grad <x is bounded in D iff

a(x) <const d(x) (1.6)

where d(x) as in Proposition 1.3 denotes distance to the boundary.

Proof. Let grad a be bounded, xeD and zedD satisfying \x- z\ = d(x). The line
joining x and z is in D; z being regular <r(z) = 0. We have

cr(x)=j —o-(z + t(x-z))dt

= (x-z) . grader dt

=s|x-z|||grad<r|U

PROPOSITION 1.5. Let D be a bounded domain, f measurable with | / | ^ 1 . Then

|gradG/(x)|<^-G |/| (x) +const (1.7)

where const is independent of f. In particular if grad <r is bounded and all points of BD
regular then ||grad Gf\\^^ M where M is independent of f and depends only on the dimension
and volume of D.

Proof. Assume / vanishes outside D and put <p = Kf. <j) is continuously differentiable
[1] and

Gf=4>-u (1.8)

where u is the Dirichlet solution with boundary data (j>. Let us estimate the gradients of <f>
and u.

W r i t i n g a = \x - y \ , b = \z- y \ ,

1 1
\K(x,y)-K(z,y)\ =

-2 fcd-

= |a-b| X l/a'b'

For i + / = d —1, a~'b~' <a~d + 1 + b~d+1. We can continue from above

|^ (x ,y) -K(2 ,y) |< |x -z |d [ l / a d - 1 + l/bd-1]. (1.9)

| / | ^ | and the integral

where |D| is the volume of D, w the surface area of unit sphere and d is the dimension.
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Integrating (1.9) and using (1.10)

A|£-T)| (1.11)

where A depends only on the volume of D and the dimension. We use (1.11) to estimate
the gradient of u.

u being harmonic in D, so is grad u. Let x e D and B the ball with centre x and
radius d(x). By the mean value property

gradu(x) = r—; grad u(y) dy

= VR\\ U7]ds

by the divergence theorem. Let zedD such that \x-z\ = d(x). Continuing from above

Igrad u(x)\ = —I ur\ds

-\W\\ l«(y)-

Let x(y) be a point on 3D satisfying

|y-T(y)| = dist(y,aD)

z being in 3D,

|y-T(y)|<|y-z|<2d(x)
T(y)-z|<|y-T(y)| + | y - 2 | < 4 d ( )

Continuing from (1.12):

|grad u(x)|£|^f Ky)-

(1.8), (1.11) and (1.13) can be used to estimate the integrands above
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Using these and continuing from (1.14) and remembering that G |/| (y) is superharmonic

|gradu(x) |<-^-G| / | (x) + 6DA (1.15)

Finally using (1.8), (1.11) and (1.15) we get (1.7). Since G |/| (x)<<r(x), the second
statement of the proposition follows from Corollary 1.4.

2. Domain condition. In this section we assume that the domain D is nice enough
to satisfy the uniform R-sphere condition:

There exists R > 0 such that for each z e 3D corresponds a point £ such that
\£ — z\ = R and the open ball with centre £ and radius -R is completely contained in the
complement of D.

This is a well known condition. See for example Courant-Hilbert [1]. Examples of
such domains are domains with c2-boundaries convex domains etc.

PROPOSITION 2.1. Let D be a domain satisfying the uniform R-sphere condition. Let a
be as in (1.2). Then for xeD

|gradcr(x)l<M (2.1)

where M depends only the diameter of D, the dimension of space and R.

Proof. Let x e D and zedD such that | z - x | = d(x). By assumption there is a ball
B(£, R) in the complement of D and | £ - z\ = R. The function

is positive and superharmonic in the complement of B(£, R). And for all y e D

where A = diameter of D. Since by (1.3) Aa = -A d in D, N<p with N =
Ad((A + i?)d+1/d~l) satisfies A(iV<£ - <r) < 0 in L>. This means that N<f>-<r is superhar-
monic in D and since a = 0 on dD, N<f> - cr > 0 on dD. By the boundary minimum
principle N<}>^o- in D. Because <f>(x)^R~d \z-x\ we obtain

a(x)<R-dN\z-x\\

Proposition (1.3) then gives (2.1).

THEOREM 2.2 (Harnack inequality). Let D be a bounded Lipschitz domain satisfying
the uniform exterior R-sphere condition. If u is harmonic in D with boundary data / > 0

udx<—d\fds

where ds is the (d-1) dimensional Hausdorff measure on 3D, M and Ad are given in (2.1)
and (1.3).
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Proof. Let A be a smooth subdomain of D and F > 0 smooth on Rd. Then

F+-J- f G(x, y) AF(y) dy = u (2.2)

where u is the harmonic function in D with boundary data F. Using Green's identity for
A and from (1.3)

f A c , A f n- f BF ( dacrAF+Ad F = a F—

In this last equality if we let A increase to D, and note that a = 0 on 3D:

[ o-AF+Ad[ F = -lim[ F— (2.3)

Integrate both sides of (2.2) on D, compare with (2.3) and use (2.1) to get

Fds (2.4)f A* f
U ~ A ~

where ds is the Hausdorff dimensional measure on SD.

REMARK. An easy conclusion from (2.4) is that for each x e D the harmonic measure
at x is absolutely continuous relative to ds and has bounded density. Indeed let m(x, dz)
denote the harmonic measure at x and put m(dz) = JDm(x, dz) dx. If u and F are as
above

I w = Fdm
JD 4D

and (2.4) immediately tells us that m is absolutely continuous relative to ds and has
density bounded by M/Ad. On the other hand if fe^im), then necessarily feL\m(x, •))
for each x e D i.e. for each xeD, m(x, •) has bounded density relative to m. In particular
m(x, •) has bounded density relative to ds as claimed.
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