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SUBDIFFERENTIAL ROLLE'S AND
MEAN VALUE INEQUALITY THEOREMS

D. AZAGRA AND R. DEVILLE

In this note we give a subdifferential mean value inequality for every continuous
Gateaux subdifferentiable function / in a Banach space which only requires a
bound for one but not necessarily all of the subgradients of / at every point of its
domain. We also give a subdifferential approximate Rolle's theorem stating that
if a subdifferentiable function oscillates between — e and e on the boundary of the
unit ball then there exists a subgradient of the function at an interior point of the
ball which has norm less than or equal to 2e.

1. INTRODUCTION

Let X be a Banach space and let U be an open convex subset of X. A function
/ : U —> K is said to be Frechet subdifferentiable at a point x G U provided there
exists p € X* such that

and the subdifferential set of / at the point x is denned by

In the same way / is said to be Frechet superdifferentiable at x whenever there exists
p G X* such that

and the superdifferential set of / at x is defined by

^ ^ - f ^ - ^ * 0}.
\\h\\ J|/i|->o
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The function / is said to be Gateaux subdifferentiable at x provided there exists p G X*

such that for every h G X

t->o \\th\\

and the Gateaux subdifferential set of / at the point x is defined by

Gateaux superdifferentiability is defined in a similar way. A function / is said to be
(Frechet or Gateaux) subdifferentiable (respectively, superdifferentiable) on a set U
provided that it is subdifferentiable (respectively, superdifferentiable) at each point x
in W. A function / is (Frechet or Gateaux) differentiate at x if and only if it is
both subdifferentiable and superdifferentiable at x, and in this case we have {df(x)} —
D~f(x) = D+f(x). On the other hand it is clear that D'f(x) C DQ/(X), SO that
every Frechet subdifferentiable function is also Gateaux subdifferentiable.

In this note we give a subdifferential mean value inequality for every continuous
Gateaux subdifferentiable function / which only requires a bound for one but not
necessarily all of the subgradients of / at every point x £ U. That is, if for every
x € U there exists p G DQ/(X) such that ||p|| ̂  M, then

\f(x)-f(y)\^M\\x-y\\

for all x, y G U. From this we can deduce that if a subdifferentiable function / : U —> R
satisfies 0 G D~ f(x) for all x € U then / is necessarily constant. This result cannot
be deduced from other subdifferential mean value inequalities like those in [4] or [1].

Moreover it is proved that if / : U —> R is a Gateaux subdifferentiable function,
x,y eU and M ̂  0 is such that for every t e [0,1] there exists p G D^f(tx + (1 - t)y)
with | | p | | ^ M , t h e n | / ( x ) - / ( i / ) | < M | | a ; - y | | .

On the other hand we also give a subdifferential approximate Rolle's theorem. Let
us recall that Rolle's theorem in finite dimensional spaces states that for every open
connected and bounded subset U in R" and every continuous function / : U —> R
such that / is differentiate in U and / is constant on dU, there exists an x in U
such that df(x) = 0. In [8], Shkarin proved that Rolle's theorem fails in a large class
of infinite dimensional Banach spaces, including all super-reflexive and all non-reflexive
Banach spaces having a Frechet differentiable norm. In [2] it is conjectured that Rolle's
theorem in infinite dimensional Banach spaces holds if and only if the space does not
have a C1 bump function and this conjecture is proved to be true within the class of
those Banach spaces X for which there exist a Banach space Y with an equivalent norm
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||.|| whose dual norm ||.||* is locally uniformly rotund (LUR) in Y* and a continuous

linear injection T : X — t Y. This condition is satisfied by every WCG Banach space,

every space which can be injected in some co(T), and even by every C(K) where K is

a scattered compact set with K^1^ = 0. An interesting approximate version of Rolle's

theorem nevertheless remains true in all Banach spaces, as it is shown in [2]. By an

approximate Rolle's theorem we mean tha t if a differentiable function oscillates between

—e and £ on the boundary of the unit ball Bx then there exists a point in the interior of

the ball in which the differential of the function has norm less than or equal to e. In this

note we prove both Frechet and Gateaux subdifferential versions of this result within

the class of all Banach spaces having a Frechet (respectively Gateaux) differentiable

Lipschitz bump function (the second one is quite a large class, as it includes all WCG

Banach spaces). That is, if a subdifferentiable function oscillates between —e and e on

the boundary of the unit ball then there exists a point x in the interior of the ball and

there exists p G D~f(x) (respectively, p G DQ/(X)) such tha t | |p|| ̂  2e. In fact, for a

Banach space X having a Frechet differentiable Lipschitz bump function, it is proved

that every bounded continuous function / : Bx —> K such that / oscillates between

—e and e on the unit sphere satisfies inf{||p|| : p G D~ f(x) U D+f(x), \\x\\ < 1} ^ 2e.

2. S U B D I F F E R E N T I A L MEAN VALUE INEQUALITY T H E O R E M

THEOREM 2 . 1 . Let X be a Banach space, let U an open convex subset of X
and let f : U —> M a continuous Gateaux subdifferentiable function. Suppose that
there exists M ^ 0 such that for every x G U there exists p € DQ/(X) such that
\\p\\ s? M. Then

\f(x)-f(y)\^M\\x-y\\

for all x, y G U.

P R O O F : Let x,y eU, x ^ y, and let e > 0. Define h = y - x and

A={ae [0,1] | f(x + ah) - f(x) > -(M + e)a \\h\\} .

We show that A / 0. Take p G D^f(x) such that ||p|| ^ M. Since

1*1—»-o

there exists 5 > 0 such that f(x + th) - f(x) - (p,th) ^ -e \t\ \\h\\ whenever \t\ ^ 6.

Then

f(x + th) - f(x) > <p, th) - e | / | \\h\\ > -M \t\ \\h\\ - £ \t\ \\h\\

= -(M + e)\t\\\h\\;
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and by taking t = 8 we get f(x + 6h) - f(x) ^ - ( M + e)6 \\h\\, so that 6 € A.

Let /? = supvl e (0,1]. Since /? = sup ,4, there exists ( a n ) c [0,/?] n A such
that a n /* (3 and / ( x + o:n/i) - /(a;) ^ - ( M + e )a n ||/i|| for all ra € N . By
letting n go to infinity and using the continuity of / , we get f(x + (3h) — f(x) =
lim [f(x + anh) - fix)} > lim - ( M + e)an \\h\\ =-(M + e)0 \\h\\, that is,

(1) f(x + (3h)-f(x)Z-(M + e)(3\\h\\,

which means (1 € A.

We now show that (3 = 1. If /3 < 1, put z — x + (3h and choose p € DQ/(Z) such
that ||p 11 ^ M . Since

there exists 5 > 0 such that if \t\ ^ <5 then / ( z + th) - f(z) - (p, t/i) ^ - e ||t/i||, and so

(2) f(z + th) - f(z) > - ( M + e) \t\ \\h\\ if \t\ ̂  6.

From (1) and (2) it follows that

f{x + [3h + th) ^ f{x + (3h) -(M + e) \t\ \\h\\ > f(x) - (M + s)f3 \\h\\ - (M + e) \t\ \\h\\

whenever |i| ^ 6. By taking t — S, we obtain

fix + {(3 + 6)h) > fix) - (M + e){0 + 6) \\h\\,

which implies (3 + S € A. This is a contradiction because (3 + 6 > (3 = sup A. Thus,
P = 1. By substituting /3 = 1 in (1) we get fix + h) - fix) ^ - ( M + e) \\h\\ and since
h = y — x this means /(?/) — fix) }? — (M + e) \\y — x\\. This reasoning proves that for
all x,y eU and for all e > 0 we have

By interchanging x and y we also get fiy) — fix) ^ (M + e) \\y — x\\. Therefore
1/(2/) - f(x)\ ^ (M + e) ||j/ - x\\ for all x,y £ U and for all e > 0. Finally, by fixing
x,y e U and letting e \ 0 we have |/(a;) - fiy)\ ^ M||a; - y\\, so it is proved that

M ||ar-!,| | foral la; , j /eW. D

It should be noted that the preceding reasoning in fact proves the following result,
which is a subdifferential mean value inequality somewhat flavoured like the classic one.
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THEOREM 2 . 2 . Let X be a Banach space and let f : U —> R be a Gateaux
subdifferentiable function. If x,y £U and M ^ 0 is such that for every t £ [0,1] there
exists p £ £>o/(te + (1 - t)y) with \\p\\ <; M, then \}{x) - f(y)\ ^ M \\x - y\\.

COROLLARY 2 . 3 . Let li be an open convex subset in a Banach space X, and let
f : U —> R be a continuous Gateaux subdifferentiable function such that 0 £ Dgf(x)
for all x £ U. Then f is constant on U.

It is not true that if / : X —> R is continuous and subdifferentiable in a dense
subset D c X and 0 £ D~ f(x) for all x £ D then / is constant. Even though X is
finitely dimensional and the Lebesgue measure of X\D is zero this is not true, as the
following example proves.

EXAMPLE 2.4. Let / : [0,1] —> R be the Cantor-Lebesgue function (see its definition
in [3, p.55], for instance). / is non-decreasing and continuous in [0,1], and / is locally
constant in D = [0,1]\C, where C is Cantor's set. So / is differentiate in D, with
{0} = {df(x)} = DQ/(X) for all x € D, and yet / is not constant.

However, if dim X ^ 2, by using some cardinality reasoning one can easily deduce
the following improvement of Theorem 2.1.

CORLLARY 2 . 5 . Let X be a Banach space with dimX ^ 2, and let U C X
be an open convex subset. Let f : li —> K be continuous such that f is Gateaux
subdifferentiable in U\C, where C is a countable subset of U. Suppose that there
exists M ^ 0 such that for all x e U\C there exists p € D^f(x) with \\p\\ ̂  M. Then

\f(x)-f(y)\^M\\x-y\\

for all x,y € U.

3. SUBDIFFERENTIAL APPROXIMATE ROLLE'S THEOREM

In order to prove the subdifferential approximate Rolle's theorems we shall need
three auxiliary results.

We shall use the following formula for the subdifferential of the sum (due to Deville
and El Haddad [6]) to prove the strongest version of the theorem in the Frechet case.

THEOREM 3 . 1 . (Formula for the subdifferential of the sum) Suppose X is a
Banach space having a CX(X) Lipschitz bump function. Let f,g : X —> R be such that
f is lower semicontinuous and g is uniformly continuous. Then, for every XQ € X, p €
D~(f + g)(x0) and e > 0, there exist Xi,x2 € X, p\ € D~f(xi) and p2 £ D~g(x2)
such that:

(i) \\xi - xo\\ < s and \\x2 - xo\\ < e.
(ii) \fixi) - f(xo)\ < e and \g{x2) - g(xo)\ < e.
(iii) \\pi+p2-p\\ <e.
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We shall also need the following Variational Principle, whose proof can be found
in [5], Chapter I.

THEOREM 3 . 2 . (Variational Principle) Let X be a Banach space which has
a Frechet differentiable Lipschitz bump function (respectively Gateaux differentiable
Lipschitz bump function). Let F : X —> 1 U {oo} be a lower semicontinuous function
that is bounded below, F ^ +oo. Then, for all 5 > 0 there exists a bounded Frechet
differentiable (respectively, Gateaux differentiable) Lipschitz function ip : X —> R such
that:

1. F — <p attains its strong minimum in X,

2. IMU = sup \<p{x)\ < 6, and I^ ' IL = sup W(x)\\ < S.
xex xex

Finally, in order to prove the weaker Gateaux version of the theorem we shall also

use the following version of Ekeland's Variational Principle, whose proof can be found

in [7].
THEOREM 3 . 3 . (Ekeland's Variational Principle) Let X be a Banach space and

let f : X —> [—00,00] be a proper upper semicontinuous function which is bounded
above. Let e > 0 and x0 e X be such that f(x0) > sup{/(z) : x e X) - e. Then for
any A with 0 < A < 1 there exists a point z S Dom(f) such that:

(i) A | | z - x o | | ^ f(z) - f(x0)
(ii) | |z-a;o | | <e /A

(iii) A ||:r — z\\ + f(z) > f(x) whenever x ^ z.

Now let us start with the Frechet subdifferential approximate Rolle's theorem. Its
statement is stronger and the proof is simpler than in the Gateaux case thanks to the
formula for the subdifferential of the sum. Hereafter the set {x € X : \\x\\ ^ R} is
denoted by B{0,R), while 5(0, R) stands for {x e X : \\x\\ = R}.

THEOREM 3 . 4 . Let X be a Banach space which has a C1(X) Lipschitz bump

function, let B = B(0,R), S = S(0,R) and let f : B —> R be a bounded continuous

function such that f(S) C [—e,e]. Then:

(i) Ifsupf(B) > snpf(S) then for each a > 0 there exist x € int(5) and

p e D+f(x) such that \\p\\ < a.
(ii) If inf f(B) < 'mif(S) then for each a > 0 there exist x G int (B) and

p € D~f(x) such that \\p\\ < a.
(iii) If f(B) C f(S) then for each a > 0 there exist £1,2:2 € int (B) and

pi 6 D+f(xx), p2 € D~f(x2) such that \\Pl\\, ||p2|| < 2s/i? + a.

PROOF:

CASE ( I ) . Let 77 = sup/(i?) - sup/(5') > 0, and consider F(x) = f(x) if x e
B, F(x) = —00 otherwise. Since F is upper semicontinuous and bounded above,
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the Variational Principle provide us with a Cl(X) function g such that ||<?|| < TJ/3,
||g'|| < a and F + g attains its maximum at a point x € B. Moreover x E in t (B) :
otherwise, by taking a such that f(a) > sup/(£?) — 77/3 we would get

sup f(B) - 2*7/3 < F(a) + g(a) < F[x) + g{x) ^ sup f(S)

which is a contradiction. Therefore x £ int (B) and p = g'{x) £ D+f(x) satisfies
| |p | |<a.

CASE (II ) . The same proof works.

CASE (HI) . Let us consider the function <j>(x) = f{x) — (2e + a) ||a;|| /R. This function
satisfies the conditions of Case (I) and so there exist x £ int (-B) and p € D+<j>{x)
such that ||p|| < a. Now, by the formula for the subdifferential of the sum, there exist
xuyi e int(B) and puqx with px € D+f(x{), qi € D+{-{2s + a)/R\\yi\\) such that
||pi + QI - P\\ < a, which implies

Let us note that q e D+(- ||.||)(u) if and only if —q G £>~(||.||)(v). Moreover, since
l|.|| is convex we have 9||.|| (v) = D~ \\.\\ (v), so that if q £ D~ \\.\\ (v) then q{h) ^
\\v + h\\ - \\v\\ ^ \\h\\ for all h, and therefore ||g|| < 1. Taking this into account we can
deduce that Û U = ||-gi|| < (2e + a)jR and so ||pi|| <2a+ (2e + a)/R.

In order to find X2 and pi it is enough to consider <j>{x) = f(x) + (2e + a) \\x\\ /R
and the same proof holds using Case (II) instead of (I). Q

From this result we deduce the following

THEOREM 3 . 5 . Let U be an open connected bounded set in a Banach space X
which has a Cl(X) Lipschitz bump function, let f : U —> R be a bounded continuous
function and let R > 0 and x0 £ U be such that B(xo,R) C U. Suppose that
f(dU) C [~£,e]. Then:

(i) If sup/(Z7) > sup f(dU) then for each a > 0 there exist x € U and
p £ D+f{x) such that \\p\\ < a.

(ii) If inf f(li) < mif(dU) then for each a > 0 there exist x 6 hi and
p £ D~f(x) such that \\p\\ < a.

(iii) If f(U) C f{dU) then for each a > 0 there exist X\,x<i £ U and p\ €
D+f(Xl), p2 e D~f{x2) such that \\Pl\\ ,\\p2\\ <2e/R + a.

In each case, inf{||p|| : p £ D~f(x) UD+f{x),x £ U) ^ 2e/R.

From this we can immediately deduce
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COROLLARY 3 . 6 . Let U be an open connected bounded subset of a Banach
space X that has a Frechet differentiable Lipschitz bump function, and let f : U :—> R
be continuous and bounded on U. Suppose that f is constant on dU. Then

inf{|H : p e D~f(x) U D+f(x), i £ « } = 0 .

and also

COROLLARY 3 . 7 . Let X be a Banach space having a Frechet differentiable
Lipschitz bump function and let f : X —> R be continuous and bounded on X. Then

inf{||p|| : p G D~f(x) U D+f(x), xeX} = 0.

Finally we shall study the subdifferential approximate Rolle's theorem in the
Gateaux case. Here the proof is longer and the statement weaker than in the Frechet
case. If the formula for the subdifferential of the sum were true in the Gateaux case
within the class of those Banach spaces having a Gateaux differentiable and Lipschitz
bump function, the proof of Theorem 3.4 would also work in this case yielding an im-
provement in the statement of theorem 3.8 and its corollaries. We do not know whether
such a formula is true or not within that class of Banach spaces.

THEOREM 3 . 8 . Let X be a Banach space which has a Gateaux differentiable
Lipschitz bump function and let R,e > 0. Let f : B(0,R) —> R be a continu-
ous bounded function on B(0,R) and suppose that f is Gateaux subdifferentiable
in intB(0,R) and f(S{0,R)) C [-e,+e]. Then there exist xe € intB(0,R) and
p € D^f{xe) such that \\p\\ ̂  2e/R.

PROOF: Let us suppose first that e < 2R. We shall consider three cases.

CASE I. f(B(0,R)) C f(S(0,R)) C [-e,e]. Suppose first that /(0) > -e. Let
A = 2e/R. Since /(0) > sup{/(a;) : x e B(0, R)} - 2e, Ekeland's Variational Principle
gives us xi e 5(0, R) such that

(i)
(ii)
(iii) A ||x — xi|| + f(x\) > f(x) whenever x ^ Xi,

so that xi e inti?(0,.R) and, by taking p € Dgf(xi), (iii) implies that ||p|| ̂  2s/R.
Indeed, for every h with \\h\\ = 1 we have

f(Xl + th) - f(Xl) 2e
\t\ < R

for every t, and also, since p € DQ/(XI),

-/(3:1)-^)
t-+o
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or equivalently

and therefore

t->o

l i m s u p

limsup
t->o

t->0

= l i m s u p
t->o

- /(an)

lim sup •

. 2e

This proves that ||p|| ^ 2e/R. Now suppose that /(0) = —e and pick p € £>G/(0).
We may suppose that ||p|| > 2e/R since we would have finished otherwise. Then there
exists h with \\h\\ = 1 such that p(h) > 2s/R. As

and /(0) = —e, there exists J > 0 such that

>
0 it

which implies f(6h) + e > (2e6)/R. Hence f(Sh) > s\ipf(B(0,R)) - 2e. On taking
A = 2e/R we can again use Ekeland's Variational Principle to get xi e B(0,R) such
that:

(i) A ||xx - 6h\\^ /(an) - f(Sh)

(ii) \\Xl-Sh\\<e/X

(iii) A ||x - x\\\ + f(x\) > f(x) whenever x ^ x\.

From (i) and since f{Sh) + e > (2eS)/R we get

g ~ f(8h) 2e - (2eS)/R
< = R 62e/R ^^27jR< 2e/R R 6

which implies ||xi|| ^ \\xx -Sh\\+S < R-S + 6 = R and so ||a;i|| < R. Now, since / is
Gateaux subdifferentiable at x\, the same calculations as above prove that (iii) implies
||p|| ^2e/R for any p e Daf(x1).

CASE II. supf{B(0,R)) > swpf(S(0,R)). Choose x0 such that s\xpf(S(0,R)) <
f(x0), and let Q,A be such that 0 < a < f(x0) - sup f(S{0,R)), a ^ 2e/R and
0 < A < a/(R+ 1). From Ekeland's Variational Principle it follows that there exists
xi e intB(O.ii) such that

f(x)<f(x1) + X\\x-xl\\

for every x ^ x\, and we already know that this implies that ||p|| ^ A < a for any

https://doi.org/10.1017/S0004972700031063 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031063


328 D. Azagra and R. Deville [10]

CASE III. inif(B(O,R)) < inif(S(0,R)). This is the only case in which we shall
use the smooth variational principle. Let rj = inf f(S(0, R)) - inf f(B(0,R)) > 0,
let a > 0 be such that a < 2e/R and consider F : X —> R u { o o } defined by
F(x) = f(x) if x e B(0, R) and F(x) — +oo otherwise. From the smooth variational
principle it follows that there exists a bounded Gateaux differentiable Lipschitz function
ip : X —> R such that Hvlloo < *?/3, Hv'lloo < a an<^ F ~ f attains its minimum at a
point Xo £ B(0,R). Moreover we must have XQ € inti?(0,R): otherwise, by taking a
such that f(a) < inif(B(0,R)) + rj/3 we would have

Mf(B(0,R)) + 277/3 > F(a) - <p(a) > F(xo) - <p(x0) > inif(S(0,R)) - .j/3,

which is a contradiction. It is easy to check that the sum g + h of two subdifferentiable
functions g and h is subdifferentiable, and

Da9(x) + Dch(x) C D^(g + h){x)

and it is obvious that if a function g attains a minimum at x then g is subdifferentiable
at x and 0 S Dgg(x). Taking this into account we can deduce

0 + ip'(xo) £Da(F- <p)(x0) + Dc<p(x0) C DgFixo) = D^f(x0)

so that p = f'(xo) satisfies p G Z?Q/(XO) and ||p|| < a ^ 2e/R.

Finally, consider the case in which e ^ 2R. Taking into account that p G DQ/(X)

if and only if rp € D^(rf)(x) for every r > 0 and considering g = e'f/e, where
e' < 2R, we can conclude (by applying the preceding reasoning to g) that there exist
x in the interior of the ball and a subgradient p S DQ}(X) such that ||p|| ^ 2e/R. D

REMARK 3.9. Note that we have only used the smooth variational principle in the proof
corresponding to the case inf f(B(0,R)) < inf f(S(0, R)). Note also that in the first
case we only used that f(B(0, R)) C [—e, e] • Thus it is clear that for any Banach space
X and any Gateaux subdifferentiable continuous bounded function / : Bx (0, R) —> K
which is Gateaux subdifferentiable in the interior of the ball and satisfies / ^ — e
and f\s(o,R) ^ £ ; there exists a point x in the interior of the ball and a subgradient
p € DQ/(X) such that ||p|| ^ 2e/R.

From the preceding theorem we deduce the more general:

THEOREM 3 . 1 0 . Let U be an open connected bounded set in a Banach space
X that has a Gateaux differentiable Lipschitz bump function. Let f : U —> R be
continuous and bounded, Gateaux subdifferentiable in U. Let R > 0 and XQ € U be
such that dist (xo,dU) — R. Suppose that f{dU) C [-e,e]. Then there exist x£ € U
and p € D^f{x£) such that \\p\\ ̂  2e/R.

COROLLARY 3 . 1 1 . Let U be an open connected bounded subset of a Banach
space X that has a Gateaux differentiable Lipschitz bump function, and let f : U :—>
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K be continuous, bounded, and Gateaux subdifferentiable in U. Suppose that f is
constant on dU. Then

COROLLARY 3 . 1 2 . Let X be a Banach space having a Gateaux differentiable
Lipschitz bump function and let f : X —> R be continuous, Gateaux subdifferentiable
and bounded on X. Then
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