On finite soluble groups and the fixed-point groups of automorphisms

J.N. Ward

Abstract

Let p denote a prime, G a finite soluble p^{\prime}-group and A an elementary abelian p-group of operators on G. Suppose that A has order p^{4} and that if $\omega \dot{\in} A^{\#}$ then $C_{G}(\omega)$ has nilpotent derived group. Then G has nilpotent derived group.

Abstract

A number of results have been obtained relating the structure of a finite group to the structure of the fixed-point groups of certain automorphisms of the group. The results so far obtained fall into two classes: those which deduce from the hypotheses that the group is soluble and those which assume solubility and then give more detailed information about the structure of the group. It is to this second group of results that the following theorem belongs.

THEOREM. Let p denote a prime, G a finite soluble p^{\prime}-group and A an elementary abelian p-group of operators on G. Suppose that A has order p^{4} and that if $\omega \in A^{\#}$ then $C_{G}(\omega)$ has nilpotent derived group. Then the derived group of G is nilpotent.

This result differs from earlier results of the same kind in that we have assumed neither the nilpotence of $C_{G}(\omega)$ for any automorphism ω nor the nilpotence of $C_{G}(A)$.

Received 28 June 1971.

It is also in a sense the best possible theorem in that if the order of A is a proper divisor of p^{4}, the other assumptions being satisfied, then the conclusion is not necessarily valid. This is shown by means of an example at the end of the paper.

Other results of this kind may be found in [2], [3] and the references given in those papers. We use the notation of [1].

Proof. The theorem is proved by induction on the order of G. Thus we may assume that if H and K are A-subgroups of $G, H \triangleright K$, and either $G \neq H$ or $K \neq 1$ then $(H / K)^{\prime}$ is nilpotent. We also suppose that G^{\prime} is not nilpotent. Thus by [2], Lemma 2, the Fitting subgroup $F=F(G)$ is the unique minimal normal A-subgroup of $G . F$ is an elementary abelian r-group for some prime r.

First assume that G / F is nilpotent. By induction, any proper A-subgroup of G / F is abelian. Thus we may assume that G / F is a q-group for some prime q, and $D=(G / F) / \Phi(G / F)$ is the sum of at most two components which are irreducible under A. Since A is abelian, it follows that for any irreducible A-component D_{1} of $D, C_{D_{1}}(\omega)=1$ or D_{1} for each $\omega \in A^{\#}$. Hence $A D_{1} / C_{A}\left(D_{1}\right)$ is a Frobenius group with complement $A / C_{A}\left(D_{1}\right)$. It follows that $A / C_{A}\left(D_{1}\right)$ is cyclic. Hence if $B=C_{A}(D)$ then $|B| \geq p^{2}$. If $\omega \in B^{\#}$ then $G=F C_{G}(\omega)$. Hence as F is abelian, $C_{F}(\omega)$ is a normal A-subgroup of G for $\omega \in B^{\#}$. Since F is the unique minimal normal A-subgroup of G, for each $\omega \in B^{\#}$ we have $C_{F}(\omega)=1$ or F. As above we conclude that $\left|C_{B}(F)\right|$ has order at least p. Let $\omega \in C_{B}(F)^{\#}$. Then $G=C_{G}(\omega)$ and hence G^{\prime} is nilpotent. Since we have assumed G^{\prime} is not nilpotent, this contradiction shows that G / F is not nilpotent.

By induction $F_{2}(G) / F$ is abelian and $G / F_{2}(G)$ is elementary abelian and irreducible under A. Let q and s denote distinct primes such that $\left|G: F_{2}(G)\right|$ is a power of q and s is a divisor of $\left|F_{2}(G): F\right|$. If S denotes a Sylow s-subgroup of G invariant under A, then $N=N_{G}(S)$ is an A-subgroup of G complementing F. We can choose a
minimal A-invariant q-subgroup Q of N covering $G / F_{2}(G)$. Since G / F is not nilpotent we can suppose that Q does not centralize S. Now if either Q is not a Sylow q-subgroup of N or S does not cover $F_{2}(G) / F$ then $Q S$ is a proper A-subgroup of N. By induction $Q S$ is abelian, a contradiction. Hence $Q S=N$. If $S / \Phi(S)$ is not irreducible under the action of $A Q$ then, by Maschke's Theorem, we can find proper $A Q$-invariant subgroups S_{1} and S_{2} of S such that $S=S_{1} S_{2}$. By induction Q centralizes S_{1} and S_{2} and hence S - again a contradiction. Thus $S / \Phi(S)$ is irreducible under the action of $A Q$. Since $[S, Q]$ is normalized by $A Q, S=[S, Q]$.

If $\omega \in A^{\#}$ then $C_{Q}(\omega)$ is normalized by A and hence, as A acts irreducibly on $G / F_{2}(G), \quad C_{Q}(\omega)=1$ or Q. Now the argument used earlier shows that $B_{1}=C_{A}(Q)$ has order at least p^{3}. Similarly $B_{2}=C_{B_{1}}(S)$ has order at least p^{2} and $B=C_{B_{2}}(F)$ has order at least p. Now if $\omega \in B^{\#}$ then $G=C_{G}(\omega)$. But this is a contradiction as before.

This proves the theorem.
EXAMPLE. Let p, q, r, s be distinct primes such that p is a divisor of $q-1, r-1$ and $s-1$. Then we can find solutions α, β, distinct from 1 , of the equations $x^{p} \equiv 1(\bmod r)$ and $x^{p} \equiv 1(\bmod s)$ respectively.

Let X_{1} denote the wreath product of a non abelian group of order $p q$ with a cyclic group of order r. Then X_{1} has a normal subgroup Y_{1} with a complement Z_{1} which is non abelian of order $p q$. We define an automorphism ϕ of X_{1} by letting $y^{\phi}=y^{\alpha}$ for $y \in Y_{1}$ and $z^{\phi}=z$ for $z \in Z_{1}$. ϕ has order p. Let U_{1} denote the splitting extension of X_{1} by (ϕ).

We now repeat this construction starting with U_{l} instead of a non cyclic group of order $p q$ and using s and β instead of r and α respectively. This yields a group U_{2} which has a normal subgroup G of index p^{3}. A Sylow p-subgroup A of U_{2} complements G. It is easy
to check that G, A and p satisfy the conditions of the theorem, except that $|A|=p^{3}$. It is also easily seen that G^{\prime} is not nilpotent.

NOTE. In this example $G \neq F_{2}(G)$. It is also possible to construct examples where $G=F_{2}(G)$ but which are similar to this example in the other relevant details.

References

[1] Daniel Gorenstein, Finite groups (Harper and Row, New York, Evanston, London, 1968).
[2] L.G. Kovács and G.E. Wall, "Involutory automorphisms of groups of odd order and their fixed point groups", Nagoya Math. J. 27 (1966), 113-120.
[3] J.N. Ward, "Automorphisms of finite groups and their fixed-point groups", J. AustraZ. Math. Soc. 9 (1969), 467-477.

University of Sydney,
Sydney,
New South Wales.

