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Abstract

An ergodic Markov chain is proved to be the realization of a random walk in a directed
graph subject to a synchronizing road coloring. The result ensures the existence of
appropriate random mappings in Propp–Wilson’s coupling from the past. The proof is
based on the road coloring theorem. A necessary and sufficient condition for approximate
preservation of entropies is also given.
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1. Introduction

Our aim is to realize an ergodic Markov chain as a suitable random walk in a directed graph,
which is generated by a sequence of independent and identically distributed (i.i.d.) random
variables taking values in the set of mappings of the state space.

1.1. Notation

Let V be a set of finite symbols, say V = {1, . . . , m}. Let Y = (Yk)k∈Z be a (time-
homogeneous) Markov chain taking values in V and indexed by Z, the set of all integers. We
write Q = (qx,y)x,y∈V for the one-step transition probability matrix of Y , i.e.

qx,y = P(Y1 = y | Y0 = x), x, y ∈ V.

The nth transition probability matrix is given by the nth product Qn = (qn
x,y)x,y∈V . We call Y

irreducible if, for any x, y ∈ V , there exists a positive number n = n(x, y) such that qn
x,y > 0.

We call Y aperiodic if the greatest common divisor among {n ≥ 1 : qn
x,x > 0} is 1 for all x ∈ V .

We call Y ergodic if Y is both irreducible and aperiodic, which is equivalent to the condition
that there exists a positive integer r such that qr

x,y > 0 for all x, y ∈ V .
Let � denote the set of all mappings from V to itself. For σ1, σ2 ∈ � and x ∈ V , we simply

write σ2σ1x for σ2(σ1(x)).
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Figure 1: Transition probability.
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Figure 2: The elements (a) σ (1), (b) σ (2), (c) σ (3), and (d) σ (4) of �.

Definition 1.1. Let Q be the one-step transition probability matrix of a Markov chain. A prob-
ability law µ on � is called a mapping law for Q if

qx,y =
∑

{σ∈� : σx=y}
µ(σ), x, y ∈ V. (1.1)

Definition 1.2. For a probability law µ on �, a µ-random walk is a Markov chain (X, N) =
(Xk, Nk)k∈Z taking values in V × � such that N = (Nk)k∈Z is i.i.d. with common law µ such
that each Nk is independent of σ(Xj , Nj : j ≤ k − 1) and

Xk = NkXk−1 almost surely for k ∈ Z. (1.2)

Let Y = (Yk)k∈Z be an ergodic Markov chain with one-step transition probability matrix Q.
Let (X, N) be a µ-random walk. Then it is obvious that Y

d= X if and only if µ is a mapping law
for Q. For any ergodic Markov chain Y , we can find a mapping law µ for Q (see Lemma 3.1).

Let us illustrate our notation. See Figure 1, where V = {1, 2, 3} and

Q =
⎡
⎣q1,1 q1,2 q1,3

q2,1 q2,2 q2,3
q3,1 q3,2 q3,3

⎤
⎦ =

⎡
⎢⎣

0 2
3

1
3

1
3 0 2

3
2
3

1
3 0

⎤
⎥⎦ .

Let σ (1), σ (2), σ (3), and σ (4) be elements of �, characterized by Figure 2(a), (b), (c), and (d),
respectively. The transition probability Q possesses several mapping laws; among others, we
have µ(1) and µ(2) defined as

µ(1)(σ (1)) = µ(1)(σ (2)) = µ(1)(σ (3)) = 1
3 , (1.3)

µ(2)(σ (3)) = 2
3 , µ(2)(σ (4)) = 1

3 . (1.4)

https://doi.org/10.1239/jap/1316796913 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1316796913


768 K. YANO AND K. YASUTOMI

Identity (1.1) can be checked easily; for instance,

∑
{σ∈� : σ(1)=2}

µ(1)(σ ) = µ(1)(σ (2)) + µ(1)(σ (3)) = 2

3
= q1,2.

The two random walks (X, N) corresponding to µ(1) and µ(2) have distinct joint laws, but have
an identical marginal law of X, which is a Markov chain with one-step transition probability Q.

1.2. Realization of an ergodic Markov chain as a µ-random walk

Our aim is to choose a mapping law µ which satisfies a nice property.

Definition 1.3. A subset �0 of � is called synchronizing if there exists a sequence s =
(σp, . . . , σ1) of elements of �0 such that the composition product 〈s〉 := σp · · · σ1 maps
V onto a singleton.

We now introduce one of our main theorems.

Theorem 1.1. Suppose that Y = (Yk)k∈Z is ergodic. Then we can choose a mapping law µ

for Q such that µ has synchronizing support.

Theorem 1.1 will be proved in Section 3.
Let us explain how our µ-random walk is related to road coloring. The support of µ, which

we denote by {σ (1), . . . , σ (d)}, induces the adjacency matrix A of a directed graph (V , A)

which is of constant outdegree, i.e. from every site there are d roads laid. Then each element
σ (1), . . . , σ (d) may be regarded as a road color so that no two roads from the same site have the
same color. For a µ-random walk (X, N), the process X moves in the directed graph (V , A)

being driven by the randomly chosen road colors indicated by N via (1.2). Thus, we may call
(X, N) a random walk in a directed graph subject to a road coloring. For an illustration of
the directed graphs induced by µ(1) and µ(2), which are defined in (1.3) and (1.4), respectively,
see Figure 3(a) and (b), respectively. Since σ (1)σ (2)V = {3}, we see that the support of µ(1) is
synchronizing, while we can easily see that the support of µ(2) is nonsynchronizing.

Let us return to the general discussion. If (X, N) is a µ-random walk and if the support of
µ is synchronizing, then the process X may be represented as

Xk = F(Nk, Nk−1, . . .), k ∈ Z, (1.5)

1

2 3

σ 3( )

σ 1( )

σ 2( )

σ 1( )σ 2( )

σ 2( ) σ 1( )σ 3( ) σ 3( )

σ 3( )

σ 4( )

σ 4( )

σ 3( )

σ 3( )

σ 4( )

1

2 3

(a) (b)

Figure 3: The graphs induced by (a) µ(1) and (b) µ(2).
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for some measurable function F : �−N → V . In fact, define

Tk = max{l ∈ Z, l < k : NkNk−1 · · · NlV is a singleton},
where we follow the convention that max ∅ = −∞. Note that Tk is measurable with respect
to (Nj : j ≤ k). Since the support of µ is synchronizing, it holds that Tk is finite almost surely
for all k ∈ Z, so we may define

Xk = NkNk−1 · · · NTk
x0, k ∈ Z, (1.6)

for a fixed element x0 ∈ V , but the resulting random walk does not depend on the choice of x0.
Such a representation is given in (1.5).

Letting k = 0 in identity (1.6), we have

X0 = N0N−1 · · · NT0x0.

This shows that the stationary law of the Markov chain may be simulated exactly from an i.i.d.
sequence. This method was a central idea of Propp–Wilson’s coupling from the past (see [15]
and also [11, Chapter 10]). Our Theorem 1.1 ensures theoretically that, for any ergodic Markov
chain, there always exists an appropriate mapping law such that Propp–Wilson’s algorithm
terminates almost surely.

For the study of µ-random walks in the case of nonsynchronizing supports, see [19].
Equation (1.2) is called Tsirelson’s equation in discrete time; see [3], [12], [13] [20], [21],
and [22] for the details.

The representation Y
d= X = F(N) of Y by an i.i.d. sequence N of the form (1.5) is called

a nonanticipating representation. Rosenblatt [16], [17] obtained a necessary and sufficient
condition for a Markov chain with countable state space to have a nonanticipating representation
Y

d= X = F(N), where N = (Nk)k∈Z is an i.i.d. sequence with uniform law on [0, 1].
1.3. Condition for approximate preservation of entropies

Let Y and (X, N) be as in Theorem 1.1. We examine the entropy information of Y and N .
See the standard textbook [4] for basic theory of entropies. Let λ be the stationary law of Y ,
and define

h(Y ) = −
∑

x,y∈V

λ(x)qx,y log qx,y

and
h(N) = −

∑
σ∈�

µ(σ) log µ(σ).

Since Y
d= X and X is a measurable function of N as in (1.6), we have

h(Y ) ≤ h(N). (1.7)

Note that Ornstein–Friedman’s theorem (see [10] and [14]) asserts that two ergodic Markov
chains which have common entropy are isomorphic. By this theorem we see that if the equality
holds in (1.7) then Y is isomorphic to N . We do not have any general criterion on Y for the
existence of a mapping law such that Y is isomorphic to N . We will give an example for
nonexistence in Section 5.

We are interested in a condition for the existence of mapping laws such that the corresponding
h(N)s approximate the h(Y ). Following [16], we introduce the following definition.
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Definition 1.4. A Markov chain Y is called p-uniform if there exist a probability law ν on V

and a family {τx : x ∈ V } of permutations of V such that

qx,y = ν(τx(y)), x, y ∈ V. (1.8)

(The prefix p is the first letter of ‘permutation’.)

Our second main theorem is as follows.

Theorem 1.2. Let Y be an ergodic Markov chain. Then the following assertions are equiva-
lent.

(i) There exists a sequence {µ(n) : n = 1, 2, . . .} of mapping laws for Q with synchronizing
support such that the N(n) corresponding to µ(n) satisfy

h(N(n)) → h(Y ) as n → ∞. (1.9)

(ii) Y is p-uniform.

In particular, if h(N) = h(Y ) holds for N corresponding to some mapping law µ for Q with
synchronizing support, then Y is necessarily p-uniform.

Theorem 1.2 will be proved in Section 4.
This paper is organized as follows. In Section 2 we introduce the notation needed to state

the road coloring problem. Sections 3 and 4 are devoted to the proofs of Theorems 1.1 and 1.2,
respectively. In Section 5 we give an example for Theorem 1.2.

2. Road colorings of a directed graph

Let A = [A(y, x)]y,x∈V be a (V × V )-dimensional matrix whose entries are nonnegative
integers. The pair (V , A) may be called a directed graph, where, for x, y ∈ V , the value
A(y, x) is regarded as the number of directed edges from x to y. The set V is called the set of
vertices and the matrix A is called the adjacency matrix.

The graph (V , A) is called of constant outdegree if there exists a constant d such that∑
y∈V

A(y, x) = d for all x ∈ V.

In this case (V , A) is called d-out. The graph (V , A) is called strongly connected if, for any
x, y ∈ V , there exists a positive integer n = n(x, y) such that An(y, x) ≥ 1. The graph (V , A)

is called aperiodic if the greatest common divisor among {n ≥ 1 : An(x, x) ≥ 1} is 1 for all
x ∈ V . Note that (V , A) is both strongly connected and aperiodic if and only if there exists
a positive integer r such that Ar(y, x) ≥ 1 for all x, y ∈ V . Following [18], we say that the
graph (V , A) or the adjacency matrix A satisfies assumption (AGW) if (V , A) is of constant
outdegree, strongly connected, and aperiodic.

Recall that � is the set of all mappings from V to itself. For σ1, σ2 ∈ � and x ∈ V , we
simply write σ2σ1x for σ2(σ1(x)). The set � acts on V in the following sense:

(σ1σ2)x = σ1(σ2x), σ1, σ2 ∈ �, x ∈ V.

The set V = {1, . . . , m} may be identified with the set of standard basis {e1, . . . , em} of R
m.

An element σ ∈ � may be identified with the 1-out adjacency matrix σ = [σ(y, x)]y,x∈V given
by

σ = [σe1, . . . , σ em].
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Under these identifications, we see that, for all x, y ∈ V ,

σ(y, x) = 1 if and only if y = σx.

Let (V , A) be a d-out directed graph. A family {σ (1), . . . , σ (d)} of elements of � is called
a road coloring of (V , A) if the following identity holds:

A = σ (1) + · · · + σ (d). (2.1)

Every road is assigned a color chosen from the d colors {σ (1), . . . , σ (d)}. Here we remark that
the elements σ (1), . . . , σ (d) are not necessarily distinct. For an illustration, consider

A =
⎡
⎣0 2 1

1 0 2
2 1 0

⎤
⎦

and see Figure 3(a) in Section 1. In this case we have A = σ (1) + σ (2) + σ (3) and, hence,
{σ (1), σ (2), σ (3)} is a road coloring of (V , A). Here we remark that the family {σ (3), σ (3), σ (4)}
is another road coloring of (V , A) which is different from {σ (1), σ (2), σ (3)}.

Note that, for any graph (V , A) of constant outdegree, there exists at least one road coloring
of (V , A). Conversely, if we are given a family {σ (1), . . . , σ (d)} of elements of �, then it
induces a unique d-out directed graph (V , A), where A is defined by (2.1).

Let �0 be a subset of �. A sequence s = (σp, . . . , σ2, σ1) of elements of �0 is called a
�0-word. For a �0-word s = (σp, . . . , σ2, σ1), we write 〈s〉 for the product σp · · · σ2σ1. The
following definition is a slight modification of Definition 1.3.

Definition 2.1. A road coloring �0 = {σ (1), . . . , σ (d)} is called synchronizing if �0 as a subset
of � is synchronizing.

By this definition we see that a road coloring �0 = {σ (1), . . . , σ (d)} is synchronizing if and
only if 〈s〉V is a singleton for some �0-word s. If we express

s = (σ (i(p)), . . . , σ (i(2)), σ (i(1)))

for some numbers i(1), . . . , i(p) ∈ {1, . . . , d}, the assertion ‘〈s〉V is a singleton’ may be
stated in other words as follows. Those who walk in the graph (V , A) according to the colors
σ (i(1)), . . . , σ (i(p)) in this order will lead to a common vertex, no matter where they started
from.

Now we state the road coloring theorem.

Theorem 2.1. ([18].) Suppose that the directed graph (V , A) satisfies assumption (AGW).
Then there exists a synchronizing road coloring of (V , A).

This was first conjectured in the case of no multiple directed edges by Adler et al. [1] (see
also [2, Section 11]) in the context of the isomorphism problem of symbolic dynamics with
common topological entropy. For related studies published prior to that of Trahtman [18], see
[8] and [9]; see also [5], [6], and [7].

3. Construction of a mapping law on a synchronizing road coloring

We need the following lemma.

Lemma 3.1. Let Y be a Markov chain with one-step transition probability matrix Q. Then
there exists a mapping law µ for Q.
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Proof. First, we suppose that qx,y is a rational number for all x, y ∈ V . Then we may take
an integer d sufficiently large so that A(y, x) := qx,yd is an integer for all x, y ∈ V . Then
A := [A(y, x)]x,y∈V is the adjacency matrix of a d-out directed graph (V , A); in fact,∑

y∈V

A(y, x) = d
∑
y∈V

qx,y = d.

Let {σ (1), . . . , σ (d)} be a road coloring of (V , A), and define

µ(σ) = 1

d
#({i = 1, . . . , d : σ (i) = σ }),

where #(·) denotes the number of elements of the set indicated. Thus, for any x, y ∈ V , we see
that ∑

{σ∈�:y=σx}
µ(σ) = 1

d
#({i = 1, . . . , d : σ (i)(y, x) = 1}) = 1

d
A(y, x) = qx,y,

which shows that µ is a mapping law for Q.
Second, we consider the general case. Let us take a sequence {Q(n) : n = 1, 2, . . .} of one-

step transition probability matrices such that q(n)
x,y is a rational number for all n and x, y ∈ V and

that q
(n)
x,y → qx,y as n → ∞ for all x, y ∈ V . Then, for any n, there exists a mapping law µ(n)

for Q(n). Since � is a finite set, we can choose some subsequence {µ(n(k)) : k = 1, 2, . . .} and
some probability law µ on � such that µ(n(k))(σ ) → µ(σ) as k → ∞. This shows that µ is a
mapping law for Q. This completes the proof.

Now we proceed to prove Theorem 1.1.

Proof of Theorem 1.1. Let Q = (qx,y)x,y∈V be the one-step transition probability matrix for
an ergodic Markov chain Y .

First, we take an adjacency matrix A which is of constant outdegree and satisfies

A(y, x)

{
≥ 1 if qx,y > 0,

= 0 if qx,y = 0.
(3.1)

For this, we introduce a subset V × V defined by

E = {(x, y) ∈ V × V : qx,y > 0}.
For each x ∈ V , we define the outdegree of E at x by

d(x) = #{(x, y) ∈ E : y ∈ V },
and write d = maxx∈V d(x) for the maximum outdegree of E. For each x ∈ V , we choose a
site σ(x) ∈ V so that (x, σ (x)) ∈ E. Now we set

A(y, x) =

⎧⎪⎨
⎪⎩

d − d(x) + 1 if y = σ(x),

1 if y 	= σ(x) and (x, y) ∈ E,

0 otherwise.

Then this (A(y, x))x,y∈V is of constant outdegree and satisfies (3.1).
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Since Y is an ergodic Markov chain, there exists a positive integer r such that qr
x,y > 0

for all x, y ∈ V . Hence, we have Ar(y, x) ≥ 1 for all x, y ∈ V ; in fact, there exists a
path x = x0, x1, . . . , xn = y such that qxk−1,xk

> 0 for k = 1, 2, . . . , n, which implies
that A(xk, xk−1) ≥ 1 for k = 1, 2, . . . , n. Thus, we see that (V , A) satisfies assumption
(AGW). This means that we can apply Theorem 2.1 to obtain a synchronizing road coloring
{σ (1), . . . , σ (d)} of (V , A). Define

µ̂(σ ) = 1

d
#({i = 1, . . . , d : σ (i) = σ }), σ ∈ �,

and define

q̂x,y =
∑

{σ∈� : y=σx}
µ̂(σ ), x, y ∈ V.

Then µ̂ is a mapping law for Q̂ and has synchronizing support. We also note that

q̂x,y = 0 if (x, y) /∈ E.

Let

ε = min{qx,y : (x, y) ∈ E} > 0.

If ε = 1 then we have Q = Q̂, so that µ̂ is as desired. Let us assume that ε < 1. Define

Q(ε) = 1

1 − ε
(Q − εQ̂).

Then Q(ε) = (q
(ε)
x,y)x,y∈V is a one-step transition probability matrix of a Markov chain. In fact,

we see that

(1 − ε)q(ε)
x,y = qx,y − εq̂x,y ≥ qx,y − ε 1{(x,y)∈E} ≥ 0, x, y ∈ V,

and that ∑
y∈V

q(ε)
x,y = 1

1 − ε

(∑
y∈V

qx,y − ε
∑
y∈V

q̂x,y

)
= 1.

Now we apply Lemma 3.1 to obtain a mapping law µ(ε) for Q(ε). Define

µ = (1 − ε)µ(ε) + εµ̂.

Since µ(ε) has synchronizing support, so does µ. For x, y ∈ V , we have

∑
{σ∈� : y=σx}

µ(σ) = (1 − ε)
∑

{σ∈� : y=σx}
µ(ε)(σ ) + ε

∑
{σ∈� : y=σx}

µ̂(σ ).

= (1 − ε)q(ε)
x,y + εq̂x,y

= qx,y,

which shows that µ is a mapping law for Q. This completes the proof.
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4. Approximate preservation of entropies

Let us prove Theorem 1.2.

Proof of Theorem 1.2. We prove that (i) implies (ii). Note that

h(Y ) = −
∑

x,y∈V

λ(x)qx,y log qx,y, (4.1)

h(N(n)) = −
∑
σ∈�

µ(n)(σ ) log µ(n)(σ ).

Taking a subsequence if necessary, we assume that there exists a probability law µ on � such
that µ(n)(σ ) → µ(σ) for all σ ∈ �. Note that µ is a mapping law for Q but does not necessarily
have synchronizing support. By assumption (1.9) we see that

h(Y ) = lim
n→∞ h(N(n)) = −

∑
σ∈�

µ(σ) log µ(σ).

For x, y ∈ V , we set
�(y, x) = {σ ∈ � : y = σx},

so that we have
qx,y =

∑
σ∈�(y,x)

µ(σ ).

Hence, we have
µ(σ) ≤ qx,y whenever σ ∈ �(y, x). (4.2)

Since t 
→ log t is increasing, we have

−
∑

σ∈�(y,x)

µ(σ ) log µ(σ) ≥ −
∑

σ∈�(y,x)

µ(σ ) log qx,y = −qx,y log qx,y. (4.3)

Since
⋃

y∈V �(y, x) = �, we have

h(Y ) = −
∑
y∈V

∑
σ∈�(y,x)

µ(σ ) log µ(σ) ≥ q(x) for all x ∈ V, (4.4)

where we set
q(x) = −

∑
y∈V

qx,y log qx,y, x ∈ V.

We take x̂ ∈ V such that
q(x̂) = max

x∈V
q(x).

Using (4.4) and (4.1), we have

q(x̂) ≤ h(Y ) =
∑
x∈V

λ(x)q(x) ≤ q(x̂). (4.5)

Thus, we see that the equalities hold in (4.5) and that q(x) = q(x̂) for all x ∈ V . For any
x ∈ V , we combine h(N) = q(x) together with (4.3) to obtain

−
∑

σ∈�(y,x)

µ(σ ) log µ(σ) = −qx,y log qx,y, x, y ∈ V.
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Combining this with (4.2), we obtain

µ(σ) = qx,y whenever σ ∈ �(y, x).

Let x0 ∈ V be fixed, and let x ∈ V . Since {�(y, x) : y ∈ V } is a partition of �, we may
choose a permutation τx of V so that

�(τx(y), x) ∩ �(y, x0) 	= ∅, y ∈ V.

This shows that
qx,τx(y) = qx0,y, x, y ∈ V,

which implies p-uniformity of Y . This completes the proof of the implication (i) ⇒ (ii).
We now prove that (ii) implies (i). Let {x1, . . . , xd} be an enumeration of the support of the

law ν in (1.8). For i = 1, . . . , d, we define

σ (i)(y, x) = 1{τx(y)=xi }.

For each x ∈ V , there exists a unique y ∈ V such that σ (i)(y, x) = 1, so that we have σ (i) ∈ �.
By (1.8) we obtain

qx,y =
d∑

i=1

σ (i)(y, x)ν(xi), x, y ∈ V.

Let A be as in (3.1), and let �1 be a synchronizing subset corresponding to some synchro-
nizing road coloring of (V , A). For a sufficiently large integer n, we define a probability law
µ(n) on � by

µ(n)(σ ) =
∑

{i : σ (i)=σ }

{
ν(xi) − 1

nd

}
+ 1

n|�1| 1{σ∈�1} .

Then it is obvious that µ(n) is a mapping law for Q and has synchronizing support.
Let us verify condition (1.9). On the one hand, we have

h(N(n)) → −
d∑

i=1

ν(xi) log ν(xi) as n → ∞.

On the other hand, we have

h(Y ) = −
∑

x,y∈V

λ(x)qx,y log qx,y

= −
∑

x,y∈V

λ(x)

d∑
i=1

σ (i)(y, x)ν(xi) log ν(xi)

= −
d∑

i=1

{ ∑
x,y∈V

λ(x)σ (i)(y, x)

}
ν(xi) log ν(xi)

= −
d∑

i=1

ν(xi) log ν(xi).

This shows (1.9), completing the proof.
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5. An example

Let V = {1, 2}. Then � = {(12), (21), (11), (22)}, where

(ij) =
[

1 
→ i

2 
→ j

]
, i, j = 1, 2.

Let 0 < p < 1, and consider a Markov chain Y with one-step transition probability given by

[
q1,1 q1,2
q2,1 q2,2

]
=

[
p 1 − p

1 − p p

]
.

Then it is obvious that Y is an ergodic Markov chain. Since

[
q1,1
q2,1

]
=

[
q2,2
q1,2

]
=

[
p

1 − p

]
,

we see that Y is p-uniform.
It is obvious that the stationary law is given as

λ(1) = λ(2) = 1
2 .

We now see that

h(Y ) = ϕ(p) + ϕ(1 − p),

where ϕ(t) = −t log t .
If µ is a mapping law for Q then we have

µ(12) + µ(11) = p, µ(21) + µ(11) = 1 − p.

From this, we see that there exists some ε with 0 ≤ ε ≤ min{p, 1 − p} such that

ε = µ(11) = µ(22), µ(12) = p − ε, µ(21) = 1 − p − ε. (5.1)

Conversely, for any ε with 0 ≤ ε ≤ min{p, 1 − p}, we may define µ = µ(ε) by (5.1) so that
µ(ε) is a mapping law for Q.

If µ(ε) has synchronizing support, ε should be positive. Let {X(ε), N(ε)} be the µ(ε)-random
walk. We then see that

h(N(ε)) = 2ϕ(ε) + ϕ(p − ε) + ϕ(1 − p − ε).

If p = 1
2 , we see that h(Y ) = h(N(1/2)).

Suppose that p 	= 1
2 . Then, by an easy computation we see that

h(Y ) < h(N(ε))

for all ε with 0 < ε ≤ min{p, 1 − p}. However, it holds that h(N(ε)) → h(Y ) as ε → 0+.
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