REALIZATION OF AN ERGODIC MARKOV CHAIN AS A RANDOM WALK SUBJECT TO A SYNCHRONIZING ROAD COLORING

KOUJI YANO,* Kobe University
KENJI YASUTOMI,** Ritsumeikan University

Abstract

An ergodic Markov chain is proved to be the realization of a random walk in a directed graph subject to a synchronizing road coloring. The result ensures the existence of appropriate random mappings in Propp-Wilson's coupling from the past. The proof is based on the road coloring theorem. A necessary and sufficient condition for approximate preservation of entropies is also given.

Keywords: Markov chain; random walk in a directed graph; road coloring problem; Tsirelson's equation; coupling from the past

2010 Mathematics Subject Classification: Primary 60J10
Secondary 37A35; 05C81; 37H10

1. Introduction

Our aim is to realize an ergodic Markov chain as a suitable random walk in a directed graph, which is generated by a sequence of independent and identically distributed (i.i.d.) random variables taking values in the set of mappings of the state space.

1.1. Notation

Let V be a set of finite symbols, say $V=\{1, \ldots, m\}$. Let $Y=\left(Y_{k}\right)_{k \in \mathbb{Z}}$ be a (timehomogeneous) Markov chain taking values in V and indexed by \mathbb{Z}, the set of all integers. We write $Q=\left(q_{x, y}\right)_{x, y \in V}$ for the one-step transition probability matrix of Y, i.e.

$$
q_{x, y}=\mathrm{P}\left(Y_{1}=y \mid Y_{0}=x\right), \quad x, y \in V
$$

The nth transition probability matrix is given by the nth product $Q^{n}=\left(q_{x, y}^{n}\right)_{x, y \in V}$. We call Y irreducible if, for any $x, y \in V$, there exists a positive number $n=n(x, y)$ such that $q_{x, y}^{n}>0$. We call Y aperiodic if the greatest common divisor among $\left\{n \geq 1: q_{x, x}^{n}>0\right\}$ is 1 for all $x \in V$. We call Y ergodic if Y is both irreducible and aperiodic, which is equivalent to the condition that there exists a positive integer r such that $q_{x, y}^{r}>0$ for all $x, y \in V$.

Let Σ denote the set of all mappings from V to itself. For $\sigma_{1}, \sigma_{2} \in \Sigma$ and $x \in V$, we simply write $\sigma_{2} \sigma_{1} x$ for $\sigma_{2}\left(\sigma_{1}(x)\right)$.

[^0]

Figure 1: Transition probability.

Figure 2: The elements (a) $\sigma^{(1)}$, (b) $\sigma^{(2)}$, (c) $\sigma^{(3)}$, and (d) $\sigma^{(4)}$ of Σ.
Definition 1.1. Let Q be the one-step transition probability matrix of a Markov chain. A probability law μ on Σ is called a mapping law for Q if

$$
\begin{equation*}
q_{x, y}=\sum_{\{\sigma \in \Sigma: \sigma x=y\}} \mu(\sigma), \quad x, y \in V . \tag{1.1}
\end{equation*}
$$

Definition 1.2. For a probability law μ on Σ, a μ-random walk is a Markov chain $(X, N)=$ $\left(X_{k}, N_{k}\right)_{k \in \mathbb{Z}}$ taking values in $V \times \Sigma$ such that $N=\left(N_{k}\right)_{k \in \mathbb{Z}}$ is i.i.d. with common law μ such that each N_{k} is independent of $\sigma\left(X_{j}, N_{j}: j \leq k-1\right)$ and

$$
\begin{equation*}
X_{k}=N_{k} X_{k-1} \quad \text { almost surely for } k \in \mathbb{Z} \tag{1.2}
\end{equation*}
$$

Let $Y=\left(Y_{k}\right)_{k \in \mathbb{Z}}$ be an ergodic Markov chain with one-step transition probability matrix Q. Let (X, N) be a μ-random walk. Then it is obvious that $Y \stackrel{\mathrm{D}}{=} X$ if and only if μ is a mapping law for Q. For any ergodic Markov chain Y, we can find a mapping law μ for Q (see Lemma 3.1).

Let us illustrate our notation. See Figure 1, where $V=\{1,2,3\}$ and

$$
Q=\left[\begin{array}{lll}
q_{1,1} & q_{1,2} & q_{1,3} \\
q_{2,1} & q_{2,2} & q_{2,3} \\
q_{3,1} & q_{3,2} & q_{3,3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \frac{2}{3} & \frac{1}{3} \\
\frac{1}{3} & 0 & \frac{2}{3} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right]
$$

Let $\sigma^{(1)}, \sigma^{(2)}, \sigma^{(3)}$, and $\sigma^{(4)}$ be elements of Σ, characterized by Figure 2(a), (b), (c), and (d), respectively. The transition probability Q possesses several mapping laws; among others, we have $\mu^{(1)}$ and $\mu^{(2)}$ defined as

$$
\begin{gather*}
\mu^{(1)}\left(\sigma^{(1)}\right)=\mu^{(1)}\left(\sigma^{(2)}\right)=\mu^{(1)}\left(\sigma^{(3)}\right)=\frac{1}{3}, \tag{1.3}\\
\mu^{(2)}\left(\sigma^{(3)}\right)=\frac{2}{3}, \quad \mu^{(2)}\left(\sigma^{(4)}\right)=\frac{1}{3} . \tag{1.4}
\end{gather*}
$$

Identity (1.1) can be checked easily; for instance,

$$
\sum_{\{\sigma \in \Sigma: \sigma(1)=2\}} \mu^{(1)}(\sigma)=\mu^{(1)}\left(\sigma^{(2)}\right)+\mu^{(1)}\left(\sigma^{(3)}\right)=\frac{2}{3}=q_{1,2}
$$

The two random walks (X, N) corresponding to $\mu^{(1)}$ and $\mu^{(2)}$ have distinct joint laws, but have an identical marginal law of X, which is a Markov chain with one-step transition probability Q.

1.2. Realization of an ergodic Markov chain as a $\boldsymbol{\mu}$-random walk

Our aim is to choose a mapping law μ which satisfies a nice property.
Definition 1.3. A subset Σ_{0} of Σ is called synchronizing if there exists a sequence $s=$ $\left(\sigma_{p}, \ldots, \sigma_{1}\right)$ of elements of Σ_{0} such that the composition product $\langle s\rangle:=\sigma_{p} \cdots \sigma_{1}$ maps V onto a singleton.

We now introduce one of our main theorems.
Theorem 1.1. Suppose that $Y=\left(Y_{k}\right)_{k \in \mathbb{Z}}$ is ergodic. Then we can choose a mapping law μ for Q such that μ has synchronizing support.

Theorem 1.1 will be proved in Section 3.
Let us explain how our μ-random walk is related to road coloring. The support of μ, which we denote by $\left\{\sigma^{(1)}, \ldots, \sigma^{(d)}\right\}$, induces the adjacency matrix A of a directed graph (V, A) which is of constant outdegree, i.e. from every site there are d roads laid. Then each element $\sigma^{(1)}, \ldots, \sigma^{(d)}$ may be regarded as a road color so that no two roads from the same site have the same color. For a μ-random walk (X, N), the process X moves in the directed graph (V, A) being driven by the randomly chosen road colors indicated by N via (1.2). Thus, we may call (X, N) a random walk in a directed graph subject to a road coloring. For an illustration of the directed graphs induced by $\mu^{(1)}$ and $\mu^{(2)}$, which are defined in (1.3) and (1.4), respectively, see Figure 3(a) and (b), respectively. Since $\sigma^{(1)} \sigma^{(2)} V=\{3\}$, we see that the support of $\mu^{(1)}$ is synchronizing, while we can easily see that the support of $\mu^{(2)}$ is nonsynchronizing.

Let us return to the general discussion. If (X, N) is a μ-random walk and if the support of μ is synchronizing, then the process X may be represented as

$$
\begin{equation*}
X_{k}=F\left(N_{k}, N_{k-1}, \ldots\right), \quad k \in \mathbb{Z} \tag{1.5}
\end{equation*}
$$

Figure 3: The graphs induced by (a) $\mu^{(1)}$ and (b) $\mu^{(2)}$.
for some measurable function $F: \Sigma^{-\mathbb{N}} \rightarrow V$. In fact, define

$$
T_{k}=\max \left\{l \in \mathbb{Z}, l<k: N_{k} N_{k-1} \cdots N_{l} V \text { is a singleton }\right\},
$$

where we follow the convention that $\max \varnothing=-\infty$. Note that T_{k} is measurable with respect to ($N_{j}: j \leq k$). Since the support of μ is synchronizing, it holds that T_{k} is finite almost surely for all $k \in \mathbb{Z}$, so we may define

$$
\begin{equation*}
X_{k}=N_{k} N_{k-1} \cdots N_{T_{k}} x_{0}, \quad k \in \mathbb{Z}, \tag{1.6}
\end{equation*}
$$

for a fixed element $x_{0} \in V$, but the resulting random walk does not depend on the choice of x_{0}. Such a representation is given in (1.5).

Letting $k=0$ in identity (1.6), we have

$$
X_{0}=N_{0} N_{-1} \cdots N_{T_{0}} x_{0} .
$$

This shows that the stationary law of the Markov chain may be simulated exactly from an i.i.d. sequence. This method was a central idea of Propp-Wilson's coupling from the past (see [15] and also [11, Chapter 10]). Our Theorem 1.1 ensures theoretically that, for any ergodic Markov chain, there always exists an appropriate mapping law such that Propp-Wilson's algorithm terminates almost surely.

For the study of μ-random walks in the case of nonsynchronizing supports, see [19]. Equation (1.2) is called Tsirelson's equation in discrete time; see [3], [12], [13] [20], [21], and [22] for the details.

The representation $Y \stackrel{\mathrm{D}}{=} X=F(N)$ of Y by an i.i.d. sequence N of the form (1.5) is called a nonanticipating representation. Rosenblatt [16], [17] obtained a necessary and sufficient condition for a Markov chain with countable state space to have a nonanticipating representation $Y \stackrel{\mathrm{D}}{=} X=F(N)$, where $N=\left(N_{k}\right)_{k \in \mathbb{Z}}$ is an i.i.d. sequence with uniform law on $[0,1]$.

1.3. Condition for approximate preservation of entropies

Let Y and (X, N) be as in Theorem 1.1. We examine the entropy information of Y and N. See the standard textbook [4] for basic theory of entropies. Let λ be the stationary law of Y, and define

$$
h(Y)=-\sum_{x, y \in V} \lambda(x) q_{x, y} \log q_{x, y}
$$

and

$$
h(N)=-\sum_{\sigma \in \Sigma} \mu(\sigma) \log \mu(\sigma) .
$$

Since $Y \stackrel{\mathrm{D}}{=} X$ and X is a measurable function of N as in (1.6), we have

$$
\begin{equation*}
h(Y) \leq h(N) \tag{1.7}
\end{equation*}
$$

Note that Ornstein-Friedman's theorem (see [10] and [14]) asserts that two ergodic Markov chains which have common entropy are isomorphic. By this theorem we see that if the equality holds in (1.7) then Y is isomorphic to N. We do not have any general criterion on Y for the existence of a mapping law such that Y is isomorphic to N. We will give an example for nonexistence in Section 5.

We are interested in a condition for the existence of mapping laws such that the corresponding $h(N)$ s approximate the $h(Y)$. Following [16], we introduce the following definition.

Definition 1.4. A Markov chain Y is called p-uniform if there exist a probability law v on V and a family $\left\{\tau_{x}: x \in V\right\}$ of permutations of V such that

$$
\begin{equation*}
q_{x, y}=v\left(\tau_{x}(y)\right), \quad x, y \in V \tag{1.8}
\end{equation*}
$$

(The prefix p is the first letter of 'permutation'.)
Our second main theorem is as follows.
Theorem 1.2. Let Y be an ergodic Markov chain. Then the following assertions are equivalent.
(i) There exists a sequence $\left\{\mu^{(n)}: n=1,2, \ldots\right\}$ of mapping laws for Q with synchronizing support such that the $N^{(n)}$ corresponding to $\mu^{(n)}$ satisfy

$$
\begin{equation*}
h\left(N^{(n)}\right) \rightarrow h(Y) \quad \text { as } n \rightarrow \infty . \tag{1.9}
\end{equation*}
$$

(ii) Y is p-uniform.

In particular, if $h(N)=h(Y)$ holds for N corresponding to some mapping law μ for Q with synchronizing support, then Y is necessarily p-uniform.

Theorem 1.2 will be proved in Section 4.
This paper is organized as follows. In Section 2 we introduce the notation needed to state the road coloring problem. Sections 3 and 4 are devoted to the proofs of Theorems 1.1 and 1.2, respectively. In Section 5 we give an example for Theorem 1.2.

2. Road colorings of a directed graph

Let $A=[A(y, x)]_{y, x \in V}$ be a $(V \times V)$-dimensional matrix whose entries are nonnegative integers. The pair (V, A) may be called a directed graph, where, for $x, y \in V$, the value $A(y, x)$ is regarded as the number of directed edges from x to y. The set V is called the set of vertices and the matrix A is called the adjacency matrix.

The graph (V, A) is called of constant outdegree if there exists a constant d such that

$$
\sum_{y \in V} A(y, x)=d \quad \text { for all } x \in V
$$

In this case (V, A) is called d-out. The graph (V, A) is called strongly connected if, for any $x, y \in V$, there exists a positive integer $n=n(x, y)$ such that $A^{n}(y, x) \geq 1$. The graph (V, A) is called aperiodic if the greatest common divisor among $\left\{n \geq 1: A^{n}(x, x) \geq 1\right\}$ is 1 for all $x \in V$. Note that (V, A) is both strongly connected and aperiodic if and only if there exists a positive integer r such that $A^{r}(y, x) \geq 1$ for all $x, y \in V$. Following [18], we say that the graph (V, A) or the adjacency matrix A satisfies assumption (AGW) if (V, A) is of constant outdegree, strongly connected, and aperiodic.

Recall that Σ is the set of all mappings from V to itself. For $\sigma_{1}, \sigma_{2} \in \Sigma$ and $x \in V$, we simply write $\sigma_{2} \sigma_{1} x$ for $\sigma_{2}\left(\sigma_{1}(x)\right)$. The set Σ acts on V in the following sense:

$$
\left(\sigma_{1} \sigma_{2}\right) x=\sigma_{1}\left(\sigma_{2} x\right), \quad \sigma_{1}, \sigma_{2} \in \Sigma, x \in V
$$

The set $V=\{1, \ldots, m\}$ may be identified with the set of standard basis $\left\{e_{1}, \ldots, e_{m}\right\}$ of \mathbb{R}^{m}. An element $\sigma \in \Sigma$ may be identified with the 1-out adjacency matrix $\sigma=[\sigma(y, x)]_{y, x \in V}$ given by

$$
\sigma=\left[\sigma e_{1}, \ldots, \sigma e_{m}\right] .
$$

Under these identifications, we see that, for all $x, y \in V$,

$$
\sigma(y, x)=1 \quad \text { if and only if } \quad y=\sigma x
$$

Let (V, A) be a d-out directed graph. A family $\left\{\sigma^{(1)}, \ldots, \sigma^{(d)}\right\}$ of elements of Σ is called a road coloring of (V, A) if the following identity holds:

$$
\begin{equation*}
A=\sigma^{(1)}+\cdots+\sigma^{(d)} \tag{2.1}
\end{equation*}
$$

Every road is assigned a color chosen from the d colors $\left\{\sigma^{(1)}, \ldots, \sigma^{(d)}\right\}$. Here we remark that the elements $\sigma^{(1)}, \ldots, \sigma^{(d)}$ are not necessarily distinct. For an illustration, consider

$$
A=\left[\begin{array}{lll}
0 & 2 & 1 \\
1 & 0 & 2 \\
2 & 1 & 0
\end{array}\right]
$$

and see Figure 3(a) in Section 1. In this case we have $A=\sigma^{(1)}+\sigma^{(2)}+\sigma^{(3)}$ and, hence, $\left\{\sigma^{(1)}, \sigma^{(2)}, \sigma^{(3)}\right\}$ is a road coloring of (V, A). Here we remark that the family $\left\{\sigma^{(3)}, \sigma^{(3)}, \sigma^{(4)}\right\}$ is another road coloring of (V, A) which is different from $\left\{\sigma^{(1)}, \sigma^{(2)}, \sigma^{(3)}\right\}$.

Note that, for any graph (V, A) of constant outdegree, there exists at least one road coloring of (V, A). Conversely, if we are given a family $\left\{\sigma^{(1)}, \ldots, \sigma^{(d)}\right\}$ of elements of Σ, then it induces a unique d-out directed graph (V, A), where A is defined by (2.1).

Let Σ_{0} be a subset of Σ. A sequence $s=\left(\sigma_{p}, \ldots, \sigma_{2}, \sigma_{1}\right)$ of elements of Σ_{0} is called a Σ_{0}-word. For a Σ_{0}-word $s=\left(\sigma_{p}, \ldots, \sigma_{2}, \sigma_{1}\right)$, we write $\langle s\rangle$ for the product $\sigma_{p} \cdots \sigma_{2} \sigma_{1}$. The following definition is a slight modification of Definition 1.3.
Definition 2.1. A road coloring $\Sigma_{0}=\left\{\sigma^{(1)}, \ldots, \sigma^{(d)}\right\}$ is called synchronizing if Σ_{0} as a subset of Σ is synchronizing.

By this definition we see that a road coloring $\Sigma_{0}=\left\{\sigma^{(1)}, \ldots, \sigma^{(d)}\right\}$ is synchronizing if and only if $\langle s\rangle V$ is a singleton for some Σ_{0}-word s. If we express

$$
s=\left(\sigma^{(i(p))}, \ldots, \sigma^{(i(2))}, \sigma^{(i(1))}\right)
$$

for some numbers $i(1), \ldots, i(p) \in\{1, \ldots, d\}$, the assertion ' $\langle s\rangle V$ is a singleton' may be stated in other words as follows. Those who walk in the graph (V, A) according to the colors $\sigma^{(i(1))}, \ldots, \sigma^{(i(p))}$ in this order will lead to a common vertex, no matter where they started from.

Now we state the road coloring theorem.
Theorem 2.1. ([18].) Suppose that the directed graph (V, A) satisfies assumption (AGW). Then there exists a synchronizing road coloring of (V, A).

This was first conjectured in the case of no multiple directed edges by Adler et al. [1] (see also [2, Section 11]) in the context of the isomorphism problem of symbolic dynamics with common topological entropy. For related studies published prior to that of Trahtman [18], see [8] and [9]; see also [5], [6], and [7].

3. Construction of a mapping law on a synchronizing road coloring

We need the following lemma.
Lemma 3.1. Let Y be a Markov chain with one-step transition probability matrix Q. Then there exists a mapping law μ for Q.

Proof. First, we suppose that $q_{x, y}$ is a rational number for all $x, y \in V$. Then we may take an integer d sufficiently large so that $A(y, x):=q_{x, y} d$ is an integer for all $x, y \in V$. Then $A:=[A(y, x)]_{x, y \in V}$ is the adjacency matrix of a d-out directed graph $(V, A) ;$ in fact,

$$
\sum_{y \in V} A(y, x)=d \sum_{y \in V} q_{x, y}=d
$$

Let $\left\{\sigma^{(1)}, \ldots, \sigma^{(d)}\right\}$ be a road coloring of (V, A), and define

$$
\mu(\sigma)=\frac{1}{d} \#\left(\left\{i=1, \ldots, d: \sigma^{(i)}=\sigma\right\}\right)
$$

where \#(•) denotes the number of elements of the set indicated. Thus, for any $x, y \in V$, we see that

$$
\sum_{\{\sigma \in \Sigma: y=\sigma x\}} \mu(\sigma)=\frac{1}{d} \#\left(\left\{i=1, \ldots, d: \sigma^{(i)}(y, x)=1\right\}\right)=\frac{1}{d} A(y, x)=q_{x, y}
$$

which shows that μ is a mapping law for Q.
Second, we consider the general case. Let us take a sequence $\left\{Q^{(n)}: n=1,2, \ldots\right\}$ of onestep transition probability matrices such that $q_{x, y}^{(n)}$ is a rational number for all n and $x, y \in V$ and that $q_{x, y}^{(n)} \rightarrow q_{x, y}$ as $n \rightarrow \infty$ for all $x, y \in V$. Then, for any n, there exists a mapping law $\mu^{(n)}$ for $Q^{(n)}$. Since Σ is a finite set, we can choose some subsequence $\left\{\mu^{(n(k))}: k=1,2, \ldots\right\}$ and some probability law μ on Σ such that $\mu^{(n(k))}(\sigma) \rightarrow \mu(\sigma)$ as $k \rightarrow \infty$. This shows that μ is a mapping law for Q. This completes the proof.

Now we proceed to prove Theorem 1.1.
Proof of Theorem 1.1. Let $Q=\left(q_{x, y}\right)_{x, y \in V}$ be the one-step transition probability matrix for an ergodic Markov chain Y.

First, we take an adjacency matrix A which is of constant outdegree and satisfies

$$
A(y, x) \begin{cases}\geq 1 & \text { if } q_{x, y}>0 \tag{3.1}\\ =0 & \text { if } q_{x, y}=0\end{cases}
$$

For this, we introduce a subset $V \times V$ defined by

$$
E=\left\{(x, y) \in V \times V: q_{x, y}>0\right\}
$$

For each $x \in V$, we define the outdegree of E at x by

$$
d(x)=\#\{(x, y) \in E: y \in V\}
$$

and write $d=\max _{x \in V} d(x)$ for the maximum outdegree of E. For each $x \in V$, we choose a site $\sigma(x) \in V$ so that $(x, \sigma(x)) \in E$. Now we set

$$
A(y, x)= \begin{cases}d-d(x)+1 & \text { if } y=\sigma(x) \\ 1 & \text { if } y \neq \sigma(x) \text { and }(x, y) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Then this $(A(y, x))_{x, y \in V}$ is of constant outdegree and satisfies (3.1).

Since Y is an ergodic Markov chain, there exists a positive integer r such that $q_{x, y}^{r}>0$ for all $x, y \in V$. Hence, we have $A^{r}(y, x) \geq 1$ for all $x, y \in V$; in fact, there exists a path $x=x_{0}, x_{1}, \ldots, x_{n}=y$ such that $q_{x_{k-1}, x_{k}}>0$ for $k=1,2, \ldots, n$, which implies that $A\left(x_{k}, x_{k-1}\right) \geq 1$ for $k=1,2, \ldots, n$. Thus, we see that (V, A) satisfies assumption (AGW). This means that we can apply Theorem 2.1 to obtain a synchronizing road coloring $\left\{\sigma^{(1)}, \ldots, \sigma^{(d)}\right\}$ of (V, A). Define

$$
\hat{\mu}(\sigma)=\frac{1}{d} \#\left(\left\{i=1, \ldots, d: \sigma^{(i)}=\sigma\right\}\right), \quad \sigma \in \Sigma
$$

and define

$$
\hat{q}_{x, y}=\sum_{\{\sigma \in \Sigma: y=\sigma x\}} \hat{\mu}(\sigma), \quad x, y \in V
$$

Then $\hat{\mu}$ is a mapping law for \hat{Q} and has synchronizing support. We also note that

$$
\hat{q}_{x, y}=0 \quad \text { if }(x, y) \notin E .
$$

Let

$$
\varepsilon=\min \left\{q_{x, y}:(x, y) \in E\right\}>0 .
$$

If $\varepsilon=1$ then we have $Q=\hat{Q}$, so that $\hat{\mu}$ is as desired. Let us assume that $\varepsilon<1$. Define

$$
Q^{(\varepsilon)}=\frac{1}{1-\varepsilon}(Q-\varepsilon \hat{Q})
$$

Then $Q^{(\varepsilon)}=\left(q_{x, y}^{(\varepsilon)}\right)_{x, y \in V}$ is a one-step transition probability matrix of a Markov chain. In fact, we see that

$$
(1-\varepsilon) q_{x, y}^{(\varepsilon)}=q_{x, y}-\varepsilon \hat{q}_{x, y} \geq q_{x, y}-\varepsilon \mathbf{1}_{\{(x, y) \in E\}} \geq 0, \quad x, y \in V
$$

and that

$$
\sum_{y \in V} q_{x, y}^{(\varepsilon)}=\frac{1}{1-\varepsilon}\left(\sum_{y \in V} q_{x, y}-\varepsilon \sum_{y \in V} \hat{q}_{x, y}\right)=1
$$

Now we apply Lemma 3.1 to obtain a mapping law $\mu^{(\varepsilon)}$ for $Q^{(\varepsilon)}$. Define

$$
\mu=(1-\varepsilon) \mu^{(\varepsilon)}+\varepsilon \hat{\mu}
$$

Since $\mu^{(\varepsilon)}$ has synchronizing support, so does μ. For $x, y \in V$, we have

$$
\begin{aligned}
\sum_{\{\sigma \in \Sigma: y=\sigma x\}} \mu(\sigma) & =(1-\varepsilon) \sum_{\{\sigma \in \Sigma: y=\sigma x\}} \mu^{(\varepsilon)}(\sigma)+\varepsilon \sum_{\{\sigma \in \Sigma: y=\sigma x\}} \hat{\mu}(\sigma) \\
& =(1-\varepsilon) q_{x, y}^{(\varepsilon)}+\varepsilon \hat{q}_{x, y} \\
& =q_{x, y}
\end{aligned}
$$

which shows that μ is a mapping law for Q. This completes the proof.

4. Approximate preservation of entropies

Let us prove Theorem 1.2.
Proof of Theorem 1.2. We prove that (i) implies (ii). Note that

$$
\begin{align*}
h(Y) & =-\sum_{x, y \in V} \lambda(x) q_{x, y} \log q_{x, y} \tag{4.1}\\
h\left(N^{(n)}\right) & =-\sum_{\sigma \in \Sigma} \mu^{(n)}(\sigma) \log \mu^{(n)}(\sigma)
\end{align*}
$$

Taking a subsequence if necessary, we assume that there exists a probability law μ on Σ such that $\mu^{(n)}(\sigma) \rightarrow \mu(\sigma)$ for all $\sigma \in \Sigma$. Note that μ is a mapping law for Q but does not necessarily have synchronizing support. By assumption (1.9) we see that

$$
h(Y)=\lim _{n \rightarrow \infty} h\left(N^{(n)}\right)=-\sum_{\sigma \in \Sigma} \mu(\sigma) \log \mu(\sigma)
$$

For $x, y \in V$, we set

$$
\Sigma(y, x)=\{\sigma \in \Sigma: y=\sigma x\},
$$

so that we have

$$
q_{x, y}=\sum_{\sigma \in \Sigma(y, x)} \mu(\sigma)
$$

Hence, we have

$$
\begin{equation*}
\mu(\sigma) \leq q_{x, y} \quad \text { whenever } \sigma \in \Sigma(y, x) \tag{4.2}
\end{equation*}
$$

Since $t \mapsto \log t$ is increasing, we have

$$
\begin{equation*}
-\sum_{\sigma \in \Sigma(y, x)} \mu(\sigma) \log \mu(\sigma) \geq-\sum_{\sigma \in \Sigma(y, x)} \mu(\sigma) \log q_{x, y}=-q_{x, y} \log q_{x, y} \tag{4.3}
\end{equation*}
$$

Since $\bigcup_{y \in V} \Sigma(y, x)=\Sigma$, we have

$$
\begin{equation*}
h(Y)=-\sum_{y \in V} \sum_{\sigma \in \Sigma(y, x)} \mu(\sigma) \log \mu(\sigma) \geq q(x) \quad \text { for all } x \in V, \tag{4.4}
\end{equation*}
$$

where we set

$$
q(x)=-\sum_{y \in V} q_{x, y} \log q_{x, y}, \quad x \in V
$$

We take $\hat{x} \in V$ such that

$$
q(\hat{x})=\max _{x \in V} q(x)
$$

Using (4.4) and (4.1), we have

$$
\begin{equation*}
q(\hat{x}) \leq h(Y)=\sum_{x \in V} \lambda(x) q(x) \leq q(\hat{x}) . \tag{4.5}
\end{equation*}
$$

Thus, we see that the equalities hold in (4.5) and that $q(x)=q(\hat{x})$ for all $x \in V$. For any $x \in V$, we combine $h(N)=q(x)$ together with (4.3) to obtain

$$
-\sum_{\sigma \in \Sigma(y, x)} \mu(\sigma) \log \mu(\sigma)=-q_{x, y} \log q_{x, y}, \quad x, y \in V
$$

Combining this with (4.2), we obtain

$$
\mu(\sigma)=q_{x, y} \quad \text { whenever } \sigma \in \Sigma(y, x)
$$

Let $x_{0} \in V$ be fixed, and let $x \in V$. Since $\{\Sigma(y, x): y \in V\}$ is a partition of Σ, we may choose a permutation τ_{x} of V so that

$$
\Sigma\left(\tau_{x}(y), x\right) \cap \Sigma\left(y, x_{0}\right) \neq \varnothing, \quad y \in V
$$

This shows that

$$
q_{x, \tau_{x}(y)}=q_{x_{0}, y}, \quad x, y \in V
$$

which implies p-uniformity of Y. This completes the proof of the implication (i) \Rightarrow (ii).
We now prove that (ii) implies (i). Let $\left\{x_{1}, \ldots, x_{d}\right\}$ be an enumeration of the support of the law v in (1.8). For $i=1, \ldots, d$, we define

$$
\sigma^{(i)}(y, x)=\mathbf{1}_{\left\{\tau_{x}(y)=x_{i}\right\}}
$$

For each $x \in V$, there exists a unique $y \in V$ such that $\sigma^{(i)}(y, x)=1$, so that we have $\sigma^{(i)} \in \Sigma$. By (1.8) we obtain

$$
q_{x, y}=\sum_{i=1}^{d} \sigma^{(i)}(y, x) v\left(x_{i}\right), \quad x, y \in V
$$

Let A be as in (3.1), and let Σ_{1} be a synchronizing subset corresponding to some synchronizing road coloring of (V, A). For a sufficiently large integer n, we define a probability law $\mu^{(n)}$ on Σ by

$$
\mu^{(n)}(\sigma)=\sum_{\left\{i: \sigma^{(i)}=\sigma\right\}}\left\{v\left(x_{i}\right)-\frac{1}{n d}\right\}+\frac{1}{n\left|\Sigma_{1}\right|} \mathbf{1}_{\left\{\sigma \in \Sigma_{1}\right\}} .
$$

Then it is obvious that $\mu^{(n)}$ is a mapping law for Q and has synchronizing support.
Let us verify condition (1.9). On the one hand, we have

$$
h\left(N^{(n)}\right) \rightarrow-\sum_{i=1}^{d} v\left(x_{i}\right) \log v\left(x_{i}\right) \quad \text { as } n \rightarrow \infty
$$

On the other hand, we have

$$
\begin{aligned}
h(Y) & =-\sum_{x, y \in V} \lambda(x) q_{x, y} \log q_{x, y} \\
& =-\sum_{x, y \in V} \lambda(x) \sum_{i=1}^{d} \sigma^{(i)}(y, x) v\left(x_{i}\right) \log v\left(x_{i}\right) \\
& =-\sum_{i=1}^{d}\left\{\sum_{x, y \in V} \lambda(x) \sigma^{(i)}(y, x)\right\} v\left(x_{i}\right) \log v\left(x_{i}\right) \\
& =-\sum_{i=1}^{d} v\left(x_{i}\right) \log v\left(x_{i}\right) .
\end{aligned}
$$

This shows (1.9), completing the proof.

5. An example

Let $V=\{1,2\}$. Then $\Sigma=\{(12),(21),(11),(22)\}$, where

$$
(i j)=\left[\begin{array}{c}
1 \mapsto i \\
2 \mapsto j
\end{array}\right], \quad i, j=1,2
$$

Let $0<p<1$, and consider a Markov chain Y with one-step transition probability given by

$$
\left[\begin{array}{ll}
q_{1,1} & q_{1,2} \\
q_{2,1} & q_{2,2}
\end{array}\right]=\left[\begin{array}{cc}
p & 1-p \\
1-p & p
\end{array}\right] .
$$

Then it is obvious that Y is an ergodic Markov chain. Since

$$
\left[\begin{array}{l}
q_{1,1} \\
q_{2,1}
\end{array}\right]=\left[\begin{array}{l}
q_{2,2} \\
q_{1,2}
\end{array}\right]=\left[\begin{array}{c}
p \\
1-p
\end{array}\right]
$$

we see that Y is p-uniform.
It is obvious that the stationary law is given as

$$
\lambda(1)=\lambda(2)=\frac{1}{2} .
$$

We now see that

$$
h(Y)=\varphi(p)+\varphi(1-p)
$$

where $\varphi(t)=-t \log t$.
If μ is a mapping law for Q then we have

$$
\mu(12)+\mu(11)=p, \quad \mu(21)+\mu(11)=1-p .
$$

From this, we see that there exists some ε with $0 \leq \varepsilon \leq \min \{p, 1-p\}$ such that

$$
\begin{equation*}
\varepsilon=\mu(11)=\mu(22), \quad \mu(12)=p-\varepsilon, \quad \mu(21)=1-p-\varepsilon . \tag{5.1}
\end{equation*}
$$

Conversely, for any ε with $0 \leq \varepsilon \leq \min \{p, 1-p\}$, we may define $\mu=\mu^{(\varepsilon)}$ by (5.1) so that $\mu^{(\varepsilon)}$ is a mapping law for Q.

If $\mu^{(\varepsilon)}$ has synchronizing support, ε should be positive. Let $\left\{X^{(\varepsilon)}, N^{(\varepsilon)}\right\}$ be the $\mu^{(\varepsilon)}$-random walk. We then see that

$$
h\left(N^{(\varepsilon)}\right)=2 \varphi(\varepsilon)+\varphi(p-\varepsilon)+\varphi(1-p-\varepsilon)
$$

If $p=\frac{1}{2}$, we see that $h(Y)=h\left(N^{(1 / 2)}\right)$.
Suppose that $p \neq \frac{1}{2}$. Then, by an easy computation we see that

$$
h(Y)<h\left(N^{(\varepsilon)}\right)
$$

for all ε with $0<\varepsilon \leq \min \{p, 1-p\}$. However, it holds that $h\left(N^{(\varepsilon)}\right) \rightarrow h(Y)$ as $\varepsilon \rightarrow 0+$.

References

[1] Adler, R. L., Goodwyn, L. W. and Weiss, B. (1977). Equivalence of topological Markov shifts. Israel J. Math., 27, 48-63.
[2] Adler, R. L. and Weiss, B. (1970). Similarity of Automorphisms of the Torus (Memoirs Amer. Math. Soc. 98). American Mathematical Society, Providence, RI.
[3] Akahori, J., Uenishi, C. and Yano, K. (2008). Stochastic equations on compact groups in discrete negative time. Prob. Theory Relat. Fields 140, 569-593.
[4] Billingsley, P. (1978). Ergodic Theory and Information. Robert E. Krieger Publishing, Huntington, NY.
[5] Budzban, G. (2004). Semigroups and the generalized road coloring problem. Semigroup Forum 69, 201-208.
[6] Budzban, G. and Feinsilver, P. (2007). Completely simple semigroups, Lie algebras, and the road coloring problem. Semigroup Forum 74, 206-226.
[7] Budzban, G. and Mukherjea, A. (2000). A semigroup approach to the road coloring problem. In Probability on Algebraic Structures (Gainesville, FL, 1999; Contemp. Math. 261), American Mathematical Society, Providence, RI, pp. 195-207.
[8] Culik, K., II, KarhumäKi, J. and Kari, J. (2002). A note on synchronized automata and road coloring problem. In Developments in Language Theory (Vienna, 2001; Lecture Notes Comput. Sci. 2295), Springer, Berlin, pp. 175-185.
[9] Friedman, J. (1990). On the road coloring problem. Proc. Amer. Math. Soc. 110, 1133-1135.
[10] Friedman, N. A. and Ornstein, D. S. (1970). On isomorphism of weak Bernoulli transformations. Adv. Math. 5, 365-394.
[11] HÄGgStröm, O. (2002). Finite Markov Chains and Algorithmic Applications (London Math. Soc. Student Texts 52). Cambridge University Press.
[12] Hirayama, T. and Yano, K. (2010). Extremal solutions for stochastic equations indexed by negative integers and taking values in compact groups. Stoch. Process. Appl. 120, 1404-1423.
[13] Hirayama, T. and Yano, K. (2010). Strong solutions of Tsirelson's equation in discrete time taking values in compact spaces with semigroup action. Preprint. Available at http://arxiv.org/abs/1005.0038v1.
[14] Ornstein, D. (1970). Bernoulli shifts with the same entropy are isomorphic. Adv. Math. 4, 337-352.
[15] Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Internat. Random Structures Algorithms 9, 223-252.
[16] Rosenblatt, M. (1959). Stationary processes as shifts of functions of independent random variables. J. Math. Mech. 8, 665-681.
[17] Rosenblatt, M. (1962). Stationary Markov chains and independent random variables. J. Math. Mech. 9, 945949. (Addendum: 11 (1962), 317.)
[18] Trahtman, A. N. (2009). The road coloring problem. Israel J. Math. 172, 51-60.
[19] Yano, K. (2010). Random walk in a finite directed graph subject to a road coloring. Preprint. Available at http://arxiv.org/abs/1005.0079v3.
[20] Yano, K. and Takahashi, Y. (2007). Time evolution with and without remote past. Sūrikaisekikenkyūsho Kōkyūroku 1552, 164-171.
[21] Yano, K. and Yor, M. (2010). Around Tsirelson's equation, or: the evolution process may not explain everything. Preprint. Available at http://arxiv.org/abs/0906.3442v2.
[22] Yor, M. (1992). Tsirel'son's equation in discrete time. Probab. Theory Relat. Fields 91, 135-152.

[^0]: Received 14 September 2010; revision received 8 March 2011.

 * Current address: Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan. Email address: kyano@math.kyoto-u.ac.jp Research supported by KAKENHI (20740060).
 ** Postal address: Department of Mathematical Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577, Japan.

