J. Appl. Prob. 48, 766–777 (2011) Printed in England © Applied Probability Trust 2011

REALIZATION OF AN ERGODIC MARKOV CHAIN AS A RANDOM WALK SUBJECT TO A SYNCHRONIZING ROAD COLORING

KOUJI YANO,* Kobe University KENJI YASUTOMI,** Ritsumeikan University

Abstract

An ergodic Markov chain is proved to be the realization of a random walk in a directed graph subject to a synchronizing road coloring. The result ensures the existence of appropriate random mappings in Propp–Wilson's coupling from the past. The proof is based on the road coloring theorem. A necessary and sufficient condition for approximate preservation of entropies is also given.

Keywords: Markov chain; random walk in a directed graph; road coloring problem; Tsirelson's equation; coupling from the past

2010 Mathematics Subject Classification: Primary 60J10 Secondary 37A35; 05C81; 37H10

1. Introduction

Our aim is to realize an ergodic Markov chain as a suitable random walk in a directed graph, which is generated by a sequence of independent and identically distributed (i.i.d.) random variables taking values in the set of mappings of the state space.

1.1. Notation

Let *V* be a set of finite symbols, say $V = \{1, ..., m\}$. Let $Y = (Y_k)_{k \in \mathbb{Z}}$ be a (time-homogeneous) Markov chain taking values in *V* and indexed by \mathbb{Z} , the set of all integers. We write $Q = (q_{x,y})_{x,y \in V}$ for the one-step transition probability matrix of *Y*, i.e.

$$q_{x,y} = P(Y_1 = y | Y_0 = x), \qquad x, y \in V.$$

The *n*th transition probability matrix is given by the *n*th product $Q^n = (q_{x,y}^n)_{x,y \in V}$. We call *Y irreducible* if, for any $x, y \in V$, there exists a positive number n = n(x, y) such that $q_{x,y}^n > 0$. We call *Y aperiodic* if the greatest common divisor among $\{n \ge 1 : q_{x,x}^n > 0\}$ is 1 for all $x \in V$. We call *Y ergodic* if *Y* is both irreducible and aperiodic, which is equivalent to the condition that there exists a positive integer *r* such that $q_{x,y}^r > 0$ for all $x, y \in V$.

Let Σ denote the set of all mappings from V to itself. For $\sigma_1, \sigma_2 \in \Sigma$ and $x \in V$, we simply write $\sigma_2 \sigma_1 x$ for $\sigma_2(\sigma_1(x))$.

Email address: kyano@math.kyoto-u.ac.jp

Research supported by KAKENHI (20740060).

Received 14 September 2010; revision received 8 March 2011.

^{*} Current address: Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

^{**} Postal address: Department of Mathematical Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577, Japan.

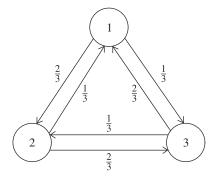


FIGURE 1: Transition probability.

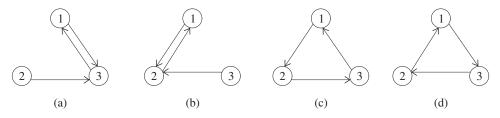


FIGURE 2: The elements (a) $\sigma^{(1)}$, (b) $\sigma^{(2)}$, (c) $\sigma^{(3)}$, and (d) $\sigma^{(4)}$ of Σ .

Definition 1.1. Let Q be the one-step transition probability matrix of a Markov chain. A probability law μ on Σ is called a *mapping law* for Q if

$$q_{x,y} = \sum_{\{\sigma \in \Sigma : \ \sigma x = y\}} \mu(\sigma), \qquad x, y \in V.$$
(1.1)

Definition 1.2. For a probability law μ on Σ , a μ -random walk is a Markov chain $(X, N) = (X_k, N_k)_{k \in \mathbb{Z}}$ taking values in $V \times \Sigma$ such that $N = (N_k)_{k \in \mathbb{Z}}$ is i.i.d. with common law μ such that each N_k is independent of $\sigma(X_j, N_j : j \le k - 1)$ and

$$X_k = N_k X_{k-1}$$
 almost surely for $k \in \mathbb{Z}$. (1.2)

Let $Y = (Y_k)_{k \in \mathbb{Z}}$ be an ergodic Markov chain with one-step transition probability matrix Q. Let (X, N) be a μ -random walk. Then it is obvious that $Y \stackrel{D}{=} X$ if and only if μ is a mapping law for Q. For any ergodic Markov chain Y, we can find a mapping law μ for Q (see Lemma 3.1).

Let us illustrate our notation. See Figure 1, where $V = \{1, 2, 3\}$ and

<i>Q</i> =	$\begin{bmatrix} q_{1,1} \\ q_{2,1} \\ q_{3,1} \end{bmatrix}$	$q_{1,2}$ $q_{2,2}$ $q_{3,2}$	$q_{1,3}$ $q_{2,3}$ $q_{3,3}$	=	$\begin{bmatrix} 0 \\ \frac{1}{3} \\ 2 \end{bmatrix}$	$\frac{2}{3}$ 0	$\frac{1}{3}$ $\frac{2}{3}$	
	$[q_{3,1}]$	$q_{3,2}$	<i>q</i> _{3,3}		$L^{\frac{2}{3}}$	$\frac{1}{3}$	0	

Let $\sigma^{(1)}$, $\sigma^{(2)}$, $\sigma^{(3)}$, and $\sigma^{(4)}$ be elements of Σ , characterized by Figure 2(a), (b), (c), and (d), respectively. The transition probability Q possesses several mapping laws; among others, we have $\mu^{(1)}$ and $\mu^{(2)}$ defined as

$$\mu^{(1)}(\sigma^{(1)}) = \mu^{(1)}(\sigma^{(2)}) = \mu^{(1)}(\sigma^{(3)}) = \frac{1}{3},$$
(1.3)

$$\mu^{(2)}(\sigma^{(3)}) = \frac{2}{3}, \qquad \mu^{(2)}(\sigma^{(4)}) = \frac{1}{3}.$$
(1.4)

Identity (1.1) can be checked easily; for instance,

$$\sum_{\{\sigma \in \Sigma : \, \sigma(1)=2\}} \mu^{(1)}(\sigma) = \mu^{(1)}(\sigma^{(2)}) + \mu^{(1)}(\sigma^{(3)}) = \frac{2}{3} = q_{1,2}$$

The two random walks (X, N) corresponding to $\mu^{(1)}$ and $\mu^{(2)}$ have distinct joint laws, but have an identical marginal law of X, which is a Markov chain with one-step transition probability Q.

1.2. Realization of an ergodic Markov chain as a μ -random walk

Our aim is to choose a mapping law μ which satisfies a nice property.

Definition 1.3. A subset Σ_0 of Σ is called *synchronizing* if there exists a sequence $s = (\sigma_p, \ldots, \sigma_1)$ of elements of Σ_0 such that the composition product $\langle s \rangle := \sigma_p \cdots \sigma_1$ maps V onto a singleton.

We now introduce one of our main theorems.

Theorem 1.1. Suppose that $Y = (Y_k)_{k \in \mathbb{Z}}$ is ergodic. Then we can choose a mapping law μ for Q such that μ has synchronizing support.

Theorem 1.1 will be proved in Section 3.

Let us explain how our μ -random walk is related to road coloring. The support of μ , which we denote by $\{\sigma^{(1)}, \ldots, \sigma^{(d)}\}$, induces the adjacency matrix A of a directed graph (V, A)which is of constant outdegree, i.e. from every site there are d roads laid. Then each element $\sigma^{(1)}, \ldots, \sigma^{(d)}$ may be regarded as a road color so that no two roads from the same site have the same color. For a μ -random walk (X, N), the process X moves in the directed graph (V, A)being driven by the randomly chosen road colors indicated by N via (1.2). Thus, we may call (X, N) a random walk in a directed graph subject to a road coloring. For an illustration of the directed graphs induced by $\mu^{(1)}$ and $\mu^{(2)}$, which are defined in (1.3) and (1.4), respectively, see Figure 3(a) and (b), respectively. Since $\sigma^{(1)}\sigma^{(2)}V = \{3\}$, we see that the support of $\mu^{(1)}$ is synchronizing, while we can easily see that the support of $\mu^{(2)}$ is nonsynchronizing.

Let us return to the general discussion. If (X, N) is a μ -random walk and if the support of μ is synchronizing, then the process X may be represented as

$$X_k = F(N_k, N_{k-1}, \ldots), \qquad k \in \mathbb{Z}, \tag{1.5}$$

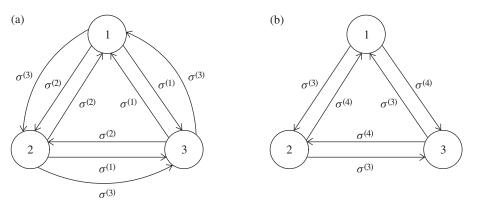


FIGURE 3: The graphs induced by (a) $\mu^{(1)}$ and (b) $\mu^{(2)}$.

for some measurable function $F: \Sigma^{-\mathbb{N}} \to V$. In fact, define

$$T_k = \max\{l \in \mathbb{Z}, l < k \colon N_k N_{k-1} \cdots N_l V \text{ is a singleton}\},\$$

where we follow the convention that $\max \emptyset = -\infty$. Note that T_k is measurable with respect to $(N_j: j \le k)$. Since the support of μ is synchronizing, it holds that T_k is finite almost surely for all $k \in \mathbb{Z}$, so we may define

$$X_k = N_k N_{k-1} \cdots N_{T_k} x_0, \qquad k \in \mathbb{Z}, \tag{1.6}$$

for a fixed element $x_0 \in V$, but the resulting random walk does not depend on the choice of x_0 . Such a representation is given in (1.5).

Letting k = 0 in identity (1.6), we have

$$X_0 = N_0 N_{-1} \cdots N_{T_0} x_0.$$

This shows that the stationary law of the Markov chain may be simulated exactly from an i.i.d. sequence. This method was a central idea of *Propp–Wilson's coupling from the past* (see [15] and also [11, Chapter 10]). Our Theorem 1.1 ensures theoretically that, for any ergodic Markov chain, there always exists an appropriate mapping law such that Propp–Wilson's algorithm terminates almost surely.

For the study of μ -random walks in the case of nonsynchronizing supports, see [19]. Equation (1.2) is called *Tsirelson's equation in discrete time*; see [3], [12], [13] [20], [21], and [22] for the details.

The representation $Y \stackrel{\text{D}}{=} X = F(N)$ of Y by an i.i.d. sequence N of the form (1.5) is called a *nonanticipating representation*. Rosenblatt [16], [17] obtained a necessary and sufficient condition for a Markov chain with countable state space to have a nonanticipating representation $Y \stackrel{\text{D}}{=} X = F(N)$, where $N = (N_k)_{k \in \mathbb{Z}}$ is an i.i.d. sequence with uniform law on [0, 1].

1.3. Condition for approximate preservation of entropies

Let Y and (X, N) be as in Theorem 1.1. We examine the entropy information of Y and N. See the standard textbook [4] for basic theory of entropies. Let λ be the stationary law of Y, and define

$$h(Y) = -\sum_{x,y \in V} \lambda(x) q_{x,y} \log q_{x,y}$$

and

$$h(N) = -\sum_{\sigma \in \Sigma} \mu(\sigma) \log \mu(\sigma).$$

Since $Y \stackrel{\text{D}}{=} X$ and X is a measurable function of N as in (1.6), we have

$$h(Y) \le h(N). \tag{1.7}$$

Note that Ornstein–Friedman's theorem (see [10] and [14]) asserts that two ergodic Markov chains which have common entropy are isomorphic. By this theorem we see that if the equality holds in (1.7) then Y is isomorphic to N. We do not have any general criterion on Y for the existence of a mapping law such that Y is isomorphic to N. We will give an example for nonexistence in Section 5.

We are interested in a condition for the existence of mapping laws such that the corresponding h(N)s approximate the h(Y). Following [16], we introduce the following definition.

Definition 1.4. A Markov chain Y is called *p*-uniform if there exist a probability law ν on V and a family $\{\tau_x : x \in V\}$ of permutations of V such that

$$q_{x,y} = \nu(\tau_x(y)), \qquad x, y \in V.$$
(1.8)

(The prefix p is the first letter of 'permutation'.)

Our second main theorem is as follows.

Theorem 1.2. Let Y be an ergodic Markov chain. Then the following assertions are equivalent.

(i) There exists a sequence $\{\mu^{(n)}: n = 1, 2, ...\}$ of mapping laws for Q with synchronizing support such that the $N^{(n)}$ corresponding to $\mu^{(n)}$ satisfy

$$h(N^{(n)}) \to h(Y) \quad as \ n \to \infty.$$
 (1.9)

(ii) Y is p-uniform.

In particular, if h(N) = h(Y) holds for N corresponding to some mapping law μ for Q with synchronizing support, then Y is necessarily p-uniform.

Theorem 1.2 will be proved in Section 4.

This paper is organized as follows. In Section 2 we introduce the notation needed to state the road coloring problem. Sections 3 and 4 are devoted to the proofs of Theorems 1.1 and 1.2, respectively. In Section 5 we give an example for Theorem 1.2.

2. Road colorings of a directed graph

Let $A = [A(y, x)]_{y,x \in V}$ be a $(V \times V)$ -dimensional matrix whose entries are nonnegative integers. The pair (V, A) may be called a *directed graph*, where, for $x, y \in V$, the value A(y, x) is regarded as the number of directed edges from x to y. The set V is called the *set of vertices* and the matrix A is called the *adjacency matrix*.

The graph (V, A) is called *of constant outdegree* if there exists a constant d such that

$$\sum_{y \in V} A(y, x) = d \quad \text{for all } x \in V.$$

In this case (V, A) is called *d*-out. The graph (V, A) is called *strongly connected* if, for any $x, y \in V$, there exists a positive integer n = n(x, y) such that $A^n(y, x) \ge 1$. The graph (V, A) is called *aperiodic* if the greatest common divisor among $\{n \ge 1 : A^n(x, x) \ge 1\}$ is 1 for all $x \in V$. Note that (V, A) is both strongly connected and aperiodic if and only if there exists a positive integer r such that $A^r(y, x) \ge 1$ for all $x, y \in V$. Following [18], we say that the graph (V, A) or the adjacency matrix A satisfies assumption (AGW) if (V, A) is of constant outdegree, strongly connected, and aperiodic.

Recall that Σ is the set of all mappings from V to itself. For $\sigma_1, \sigma_2 \in \Sigma$ and $x \in V$, we simply write $\sigma_2 \sigma_1 x$ for $\sigma_2(\sigma_1(x))$. The set Σ acts on V in the following sense:

$$(\sigma_1 \sigma_2) x = \sigma_1(\sigma_2 x), \qquad \sigma_1, \sigma_2 \in \Sigma, \ x \in V.$$

The set $V = \{1, ..., m\}$ may be identified with the set of standard basis $\{e_1, ..., e_m\}$ of \mathbb{R}^m . An element $\sigma \in \Sigma$ may be identified with the 1-out adjacency matrix $\sigma = [\sigma(y, x)]_{y, x \in V}$ given by

$$\sigma = [\sigma e_1, \ldots, \sigma e_m].$$

Under these identifications, we see that, for all $x, y \in V$,

$$\sigma(y, x) = 1$$
 if and only if $y = \sigma x$.

Let (V, A) be a *d*-out directed graph. A family $\{\sigma^{(1)}, \ldots, \sigma^{(d)}\}$ of elements of Σ is called a *road coloring* of (V, A) if the following identity holds:

$$A = \sigma^{(1)} + \dots + \sigma^{(d)}. \tag{2.1}$$

Every road is assigned a color chosen from the *d* colors $\{\sigma^{(1)}, \ldots, \sigma^{(d)}\}$. Here we remark that the elements $\sigma^{(1)}, \ldots, \sigma^{(d)}$ are not necessarily distinct. For an illustration, consider

$$A = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{bmatrix}$$

and see Figure 3(a) in Section 1. In this case we have $A = \sigma^{(1)} + \sigma^{(2)} + \sigma^{(3)}$ and, hence, $\{\sigma^{(1)}, \sigma^{(2)}, \sigma^{(3)}\}$ is a road coloring of (V, A). Here we remark that the family $\{\sigma^{(3)}, \sigma^{(3)}, \sigma^{(4)}\}$ is another road coloring of (V, A) which is different from $\{\sigma^{(1)}, \sigma^{(2)}, \sigma^{(3)}\}$.

Note that, for any graph (V, A) of constant outdegree, there exists at least one road coloring of (V, A). Conversely, if we are given a family $\{\sigma^{(1)}, \ldots, \sigma^{(d)}\}$ of elements of Σ , then it induces a unique *d*-out directed graph (V, A), where A is defined by (2.1).

Let Σ_0 be a subset of Σ . A sequence $s = (\sigma_p, \ldots, \sigma_2, \sigma_1)$ of elements of Σ_0 is called a Σ_0 -word. For a Σ_0 -word $s = (\sigma_p, \ldots, \sigma_2, \sigma_1)$, we write $\langle s \rangle$ for the product $\sigma_p \cdots \sigma_2 \sigma_1$. The following definition is a slight modification of Definition 1.3.

Definition 2.1. A road coloring $\Sigma_0 = \{\sigma^{(1)}, \ldots, \sigma^{(d)}\}$ is called *synchronizing* if Σ_0 as a subset of Σ is synchronizing.

By this definition we see that a road coloring $\Sigma_0 = \{\sigma^{(1)}, \dots, \sigma^{(d)}\}$ is synchronizing if and only if $\langle s \rangle V$ is a singleton for some Σ_0 -word *s*. If we express

$$s = (\sigma^{(i(p))}, \dots, \sigma^{(i(2))}, \sigma^{(i(1))})$$

for some numbers $i(1), \ldots, i(p) \in \{1, \ldots, d\}$, the assertion ' $\langle s \rangle V$ is a singleton' may be stated in other words as follows. Those who walk in the graph (V, A) according to the colors $\sigma^{(i(1))}, \ldots, \sigma^{(i(p))}$ in this order will lead to a common vertex, no matter where they started from.

Now we state the road coloring theorem.

Theorem 2.1. ([18].) Suppose that the directed graph (V, A) satisfies assumption (AGW). Then there exists a synchronizing road coloring of (V, A).

This was first conjectured in the case of no multiple directed edges by Adler *et al.* [1] (see also [2, Section 11]) in the context of the isomorphism problem of symbolic dynamics with common topological entropy. For related studies published prior to that of Trahtman [18], see [8] and [9]; see also [5], [6], and [7].

3. Construction of a mapping law on a synchronizing road coloring

We need the following lemma.

Lemma 3.1. Let Y be a Markov chain with one-step transition probability matrix Q. Then there exists a mapping law μ for Q.

Proof. First, we suppose that $q_{x,y}$ is a rational number for all $x, y \in V$. Then we may take an integer d sufficiently large so that $A(y, x) := q_{x,y}d$ is an integer for all $x, y \in V$. Then $A := [A(y, x)]_{x,y \in V}$ is the adjacency matrix of a d-out directed graph (V, A); in fact,

$$\sum_{y \in V} A(y, x) = d \sum_{y \in V} q_{x, y} = d.$$

Let $\{\sigma^{(1)}, \ldots, \sigma^{(d)}\}$ be a road coloring of (V, A), and define

$$\mu(\sigma) = \frac{1}{d} \#(\{i = 1, \dots, d : \sigma^{(i)} = \sigma\}),$$

where $\#(\cdot)$ denotes the number of elements of the set indicated. Thus, for any $x, y \in V$, we see that

$$\sum_{\{\sigma \in \Sigma: y = \sigma x\}} \mu(\sigma) = \frac{1}{d} \#(\{i = 1, \dots, d: \sigma^{(i)}(y, x) = 1\}) = \frac{1}{d} A(y, x) = q_{x, y},$$

which shows that μ is a mapping law for Q.

Second, we consider the general case. Let us take a sequence $\{Q^{(n)}: n = 1, 2, ...\}$ of onestep transition probability matrices such that $q_{x,y}^{(n)}$ is a rational number for all n and $x, y \in V$ and that $q_{x,y}^{(n)} \to q_{x,y}$ as $n \to \infty$ for all $x, y \in V$. Then, for any n, there exists a mapping law $\mu^{(n)}$ for $Q^{(n)}$. Since Σ is a finite set, we can choose some subsequence $\{\mu^{(n(k))}: k = 1, 2, ...\}$ and some probability law μ on Σ such that $\mu^{(n(k))}(\sigma) \to \mu(\sigma)$ as $k \to \infty$. This shows that μ is a mapping law for Q. This completes the proof.

Now we proceed to prove Theorem 1.1.

Proof of Theorem 1.1. Let $Q = (q_{x,y})_{x,y \in V}$ be the one-step transition probability matrix for an ergodic Markov chain *Y*.

First, we take an adjacency matrix A which is of constant outdegree and satisfies

$$A(y, x) \begin{cases} \ge 1 & \text{if } q_{x,y} > 0, \\ = 0 & \text{if } q_{x,y} = 0. \end{cases}$$
(3.1)

For this, we introduce a subset $V \times V$ defined by

$$E = \{ (x, y) \in V \times V : q_{x, y} > 0 \}.$$

For each $x \in V$, we define the outdegree of *E* at *x* by

$$d(x) = \#\{(x, y) \in E : y \in V\},\$$

and write $d = \max_{x \in V} d(x)$ for the maximum outdegree of *E*. For each $x \in V$, we choose a site $\sigma(x) \in V$ so that $(x, \sigma(x)) \in E$. Now we set

$$A(y, x) = \begin{cases} d - d(x) + 1 & \text{if } y = \sigma(x), \\ 1 & \text{if } y \neq \sigma(x) \text{ and } (x, y) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

Then this $(A(y, x))_{x,y \in V}$ is of constant outdegree and satisfies (3.1).

Since Y is an ergodic Markov chain, there exists a positive integer r such that $q_{x,y}^r > 0$ for all $x, y \in V$. Hence, we have $A^r(y, x) \ge 1$ for all $x, y \in V$; in fact, there exists a path $x = x_0, x_1, \ldots, x_n = y$ such that $q_{x_{k-1},x_k} > 0$ for $k = 1, 2, \ldots, n$, which implies that $A(x_k, x_{k-1}) \ge 1$ for $k = 1, 2, \ldots, n$. Thus, we see that (V, A) satisfies assumption (AGW). This means that we can apply Theorem 2.1 to obtain a synchronizing road coloring $\{\sigma^{(1)}, \ldots, \sigma^{(d)}\}$ of (V, A). Define

$$\hat{\mu}(\sigma) = \frac{1}{d} \#(\{i = 1, \dots, d : \sigma^{(i)} = \sigma\}), \qquad \sigma \in \Sigma,$$

and define

$$\hat{q}_{x,y} = \sum_{\{\sigma \in \Sigma : y = \sigma x\}} \hat{\mu}(\sigma), \quad x, y \in V.$$

Then $\hat{\mu}$ is a mapping law for \hat{Q} and has synchronizing support. We also note that

$$\hat{q}_{x,y} = 0$$
 if $(x, y) \notin E$.

Let

$$\varepsilon = \min\{q_{x,y} \colon (x, y) \in E\} > 0.$$

If $\varepsilon = 1$ then we have $Q = \hat{Q}$, so that $\hat{\mu}$ is as desired. Let us assume that $\varepsilon < 1$. Define

$$Q^{(\varepsilon)} = \frac{1}{1-\varepsilon} (Q - \varepsilon \hat{Q}).$$

Then $Q^{(\varepsilon)} = (q_{x,y}^{(\varepsilon)})_{x,y \in V}$ is a one-step transition probability matrix of a Markov chain. In fact, we see that

$$(1-\varepsilon)q_{x,y}^{(\varepsilon)} = q_{x,y} - \varepsilon \hat{q}_{x,y} \ge q_{x,y} - \varepsilon \mathbf{1}_{\{(x,y)\in E\}} \ge 0, \qquad x, y \in V,$$

and that

$$\sum_{y \in V} q_{x,y}^{(\varepsilon)} = \frac{1}{1 - \varepsilon} \left(\sum_{y \in V} q_{x,y} - \varepsilon \sum_{y \in V} \hat{q}_{x,y} \right) = 1.$$

Now we apply Lemma 3.1 to obtain a mapping law $\mu^{(\varepsilon)}$ for $Q^{(\varepsilon)}$. Define

$$\mu = (1 - \varepsilon)\mu^{(\varepsilon)} + \varepsilon\hat{\mu}.$$

Since $\mu^{(\varepsilon)}$ has synchronizing support, so does μ . For $x, y \in V$, we have

$$\sum_{\{\sigma \in \Sigma : y = \sigma x\}} \mu(\sigma) = (1 - \varepsilon) \sum_{\{\sigma \in \Sigma : y = \sigma x\}} \mu^{(\varepsilon)}(\sigma) + \varepsilon \sum_{\{\sigma \in \Sigma : y = \sigma x\}} \hat{\mu}(\sigma).$$
$$= (1 - \varepsilon)q_{x,y}^{(\varepsilon)} + \varepsilon \hat{q}_{x,y}$$
$$= q_{x,y},$$

which shows that μ is a mapping law for Q. This completes the proof.

4. Approximate preservation of entropies

Let us prove Theorem 1.2.

Proof of Theorem 1.2. We prove that (i) implies (ii). Note that

$$h(Y) = -\sum_{x,y\in V} \lambda(x)q_{x,y}\log q_{x,y},$$

$$h(N^{(n)}) = -\sum_{\sigma\in\Sigma} \mu^{(n)}(\sigma)\log \mu^{(n)}(\sigma).$$
(4.1)

Taking a subsequence if necessary, we assume that there exists a probability law μ on Σ such that $\mu^{(n)}(\sigma) \to \mu(\sigma)$ for all $\sigma \in \Sigma$. Note that μ is a mapping law for Q but does not necessarily have synchronizing support. By assumption (1.9) we see that

$$h(Y) = \lim_{n \to \infty} h(N^{(n)}) = -\sum_{\sigma \in \Sigma} \mu(\sigma) \log \mu(\sigma)$$

For $x, y \in V$, we set

$$\Sigma(y, x) = \{ \sigma \in \Sigma \colon y = \sigma x \},\$$

so that we have

$$q_{x,y} = \sum_{\sigma \in \Sigma(y,x)} \mu(\sigma).$$

Hence, we have

$$\iota(\sigma) \le q_{x,y}$$
 whenever $\sigma \in \Sigma(y, x)$. (4.2)

Since $t \mapsto \log t$ is increasing, we have

$$-\sum_{\sigma\in\Sigma(y,x)}\mu(\sigma)\log\mu(\sigma) \ge -\sum_{\sigma\in\Sigma(y,x)}\mu(\sigma)\log q_{x,y} = -q_{x,y}\log q_{x,y}.$$
 (4.3)

Since $\bigcup_{y \in V} \Sigma(y, x) = \Sigma$, we have

$$h(Y) = -\sum_{y \in V} \sum_{\sigma \in \Sigma(y, x)} \mu(\sigma) \log \mu(\sigma) \ge q(x) \quad \text{for all } x \in V,$$
(4.4)

where we set

$$q(x) = -\sum_{y \in V} q_{x,y} \log q_{x,y}, \qquad x \in V.$$

We take $\hat{x} \in V$ such that

$$q(\hat{x}) = \max_{x \in V} q(x).$$

Using (4.4) and (4.1), we have

$$q(\hat{x}) \le h(Y) = \sum_{x \in V} \lambda(x)q(x) \le q(\hat{x}).$$

$$(4.5)$$

Thus, we see that the equalities hold in (4.5) and that $q(x) = q(\hat{x})$ for all $x \in V$. For any $x \in V$, we combine h(N) = q(x) together with (4.3) to obtain

$$-\sum_{\sigma\in\Sigma(y,x)}\mu(\sigma)\log\mu(\sigma) = -q_{x,y}\log q_{x,y}, \qquad x, y \in V.$$

Combining this with (4.2), we obtain

$$\mu(\sigma) = q_{x,y}$$
 whenever $\sigma \in \Sigma(y, x)$.

Let $x_0 \in V$ be fixed, and let $x \in V$. Since $\{\Sigma(y, x) : y \in V\}$ is a partition of Σ , we may choose a permutation τ_x of V so that

$$\Sigma(\tau_x(y), x) \cap \Sigma(y, x_0) \neq \emptyset, \quad y \in V.$$

This shows that

$$q_{x,\tau_x(y)} = q_{x_0,y}, \qquad x, y \in V,$$

which implies p-uniformity of *Y*. This completes the proof of the implication (i) \Rightarrow (ii).

We now prove that (ii) implies (i). Let $\{x_1, \ldots, x_d\}$ be an enumeration of the support of the law ν in (1.8). For $i = 1, \ldots, d$, we define

$$\sigma^{(i)}(\mathbf{y}, \mathbf{x}) = \mathbf{1}_{\{\tau_{\mathbf{x}}(\mathbf{y}) = x_i\}}.$$

For each $x \in V$, there exists a unique $y \in V$ such that $\sigma^{(i)}(y, x) = 1$, so that we have $\sigma^{(i)} \in \Sigma$. By (1.8) we obtain

$$q_{x,y} = \sum_{i=1}^d \sigma^{(i)}(y,x)\nu(x_i), \qquad x, y \in V.$$

Let A be as in (3.1), and let Σ_1 be a synchronizing subset corresponding to some synchronizing road coloring of (V, A). For a sufficiently large integer n, we define a probability law $\mu^{(n)}$ on Σ by

$$\mu^{(n)}(\sigma) = \sum_{\{i: \ \sigma^{(i)} = \sigma\}} \left\{ \nu(x_i) - \frac{1}{nd} \right\} + \frac{1}{n |\Sigma_1|} \mathbf{1}_{\{\sigma \in \Sigma_1\}}.$$

Then it is obvious that $\mu^{(n)}$ is a mapping law for Q and has synchronizing support.

Let us verify condition (1.9). On the one hand, we have

$$h(N^{(n)}) \to -\sum_{i=1}^{d} \nu(x_i) \log \nu(x_i) \text{ as } n \to \infty.$$

On the other hand, we have

$$h(Y) = -\sum_{x,y \in V} \lambda(x) q_{x,y} \log q_{x,y}$$
$$= -\sum_{x,y \in V} \lambda(x) \sum_{i=1}^{d} \sigma^{(i)}(y,x) \nu(x_i) \log \nu(x_i)$$
$$= -\sum_{i=1}^{d} \left\{ \sum_{x,y \in V} \lambda(x) \sigma^{(i)}(y,x) \right\} \nu(x_i) \log \nu(x_i)$$
$$= -\sum_{i=1}^{d} \nu(x_i) \log \nu(x_i).$$

This shows (1.9), completing the proof.

5. An example

Let $V = \{1, 2\}$. Then $\Sigma = \{(12), (21), (11), (22)\}$, where

$$(ij) = \begin{bmatrix} 1 \mapsto i \\ 2 \mapsto j \end{bmatrix}, \quad i, j = 1, 2.$$

Let 0 , and consider a Markov chain Y with one-step transition probability given by

$$\begin{bmatrix} q_{1,1} & q_{1,2} \\ q_{2,1} & q_{2,2} \end{bmatrix} = \begin{bmatrix} p & 1-p \\ 1-p & p \end{bmatrix}.$$

Then it is obvious that Y is an ergodic Markov chain. Since

$$\begin{bmatrix} q_{1,1} \\ q_{2,1} \end{bmatrix} = \begin{bmatrix} q_{2,2} \\ q_{1,2} \end{bmatrix} = \begin{bmatrix} p \\ 1-p \end{bmatrix},$$

we see that *Y* is p-uniform.

It is obvious that the stationary law is given as

$$\lambda(1) = \lambda(2) = \frac{1}{2}$$

We now see that

$$h(Y) = \varphi(p) + \varphi(1-p),$$

where $\varphi(t) = -t \log t$.

If μ is a mapping law for Q then we have

$$\mu(12) + \mu(11) = p, \qquad \mu(21) + \mu(11) = 1 - p.$$

From this, we see that there exists some ε with $0 \le \varepsilon \le \min\{p, 1-p\}$ such that

$$\varepsilon = \mu(11) = \mu(22), \qquad \mu(12) = p - \varepsilon, \qquad \mu(21) = 1 - p - \varepsilon.$$
 (5.1)

Conversely, for any ε with $0 \le \varepsilon \le \min\{p, 1-p\}$, we may define $\mu = \mu^{(\varepsilon)}$ by (5.1) so that $\mu^{(\varepsilon)}$ is a mapping law for Q.

If $\mu^{(\varepsilon)}$ has synchronizing support, ε should be positive. Let $\{X^{(\varepsilon)}, N^{(\varepsilon)}\}$ be the $\mu^{(\varepsilon)}$ -random walk. We then see that

$$h(N^{(\varepsilon)}) = 2\varphi(\varepsilon) + \varphi(p - \varepsilon) + \varphi(1 - p - \varepsilon).$$

If $p = \frac{1}{2}$, we see that $h(Y) = h(N^{(1/2)})$.

Suppose that $p \neq \frac{1}{2}$. Then, by an easy computation we see that

$$h(Y) < h(N^{(\varepsilon)})$$

for all ε with $0 < \varepsilon \le \min\{p, 1-p\}$. However, it holds that $h(N^{(\varepsilon)}) \to h(Y)$ as $\varepsilon \to 0+$.

References

- ADLER, R. L., GOODWYN, L. W. AND WEISS, B. (1977). Equivalence of topological Markov shifts. Israel J. Math., 27, 48–63.
- [2] ADLER, R. L. AND WEISS, B. (1970). Similarity of Automorphisms of the Torus (Memoirs Amer. Math. Soc. 98). American Mathematical Society, Providence, RI.
- [3] AKAHORI, J., UENISHI, C. AND YANO, K. (2008). Stochastic equations on compact groups in discrete negative time. *Prob. Theory Relat. Fields* 140, 569–593.
- [4] BILLINGSLEY, P. (1978). Ergodic Theory and Information. Robert E. Krieger Publishing, Huntington, NY.
- [5] BUDZBAN, G. (2004). Semigroups and the generalized road coloring problem. Semigroup Forum 69, 201–208.
- [6] BUDZBAN, G. AND FEINSILVER, P. (2007). Completely simple semigroups, Lie algebras, and the road coloring problem. *Semigroup Forum* 74, 206–226.
- [7] BUDZBAN, G. AND MUKHERJEA, A. (2000). A semigroup approach to the road coloring problem. In *Probability on Algebraic Structures* (Gainesville, FL, 1999; Contemp. Math. 261), American Mathematical Society, Providence, RI, pp. 195–207.
- [8] CULIK, K., II, KARHUMÄKI, J. AND KARI, J. (2002). A note on synchronized automata and road coloring problem. In *Developments in Language Theory* (Vienna, 2001; Lecture Notes Comput. Sci. 2295), Springer, Berlin, pp. 175–185.
- [9] FRIEDMAN, J. (1990). On the road coloring problem. Proc. Amer. Math. Soc. 110, 1133–1135.
- [10] FRIEDMAN, N. A. AND ORNSTEIN, D. S. (1970). On isomorphism of weak Bernoulli transformations. Adv. Math. 5, 365–394.
- [11] HÄGGSTRÖM, O. (2002). Finite Markov Chains and Algorithmic Applications (London Math. Soc. Student Texts 52). Cambridge University Press.
- [12] HIRAYAMA, T. AND YANO, K. (2010). Extremal solutions for stochastic equations indexed by negative integers and taking values in compact groups. *Stoch. Process. Appl.* **120**, 1404–1423.
- [13] HIRAYAMA, T. AND YANO, K. (2010). Strong solutions of Tsirelson's equation in discrete time taking values in compact spaces with semigroup action. Preprint. Available at http://arxiv.org/abs/1005.0038v1.
- [14] ORNSTEIN, D. (1970). Bernoulli shifts with the same entropy are isomorphic. Adv. Math. 4, 337–352.
- [15] PROPP, J. G. AND WILSON, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. *Internat. Random Structures Algorithms* 9, 223–252.
- [16] ROSENBLATT, M. (1959). Stationary processes as shifts of functions of independent random variables. J. Math. Mech. 8, 665–681.
- [17] ROSENBLATT, M. (1962). Stationary Markov chains and independent random variables. J. Math. Mech. 9, 945–949. (Addendum: 11 (1962), 317.)
- [18] TRAHTMAN, A. N. (2009). The road coloring problem. Israel J. Math. 172, 51-60.
- [19] YANO, K. (2010). Random walk in a finite directed graph subject to a road coloring. Preprint. Available at http://arxiv.org/abs/1005.0079v3.
- [20] YANO, K. AND TAKAHASHI, Y. (2007). Time evolution with and without remote past. Sūrikaisekikenkyūsho Kōkyūroku 1552, 164–171.
- [21] YANO, K. AND YOR, M. (2010). Around Tsirelson's equation, or: the evolution process may not explain everything. Preprint. Available at http://arxiv.org/abs/0906.3442v2.
- [22] YOR, M. (1992). Tsirel'son's equation in discrete time. Probab. Theory Relat. Fields 91, 135–152.