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Uniform Estimates of Ultraspherical
Polynomials of Large Order

In loving memory of mia zia, Lucia Brogi in tributi

Laura De Carli

Abstract. In this paper we prove the sharp inequality

|P(s)
n

(x)| ≤ P(s)
n

(1)
(
|x|n +

n − 1

2s + 1
(1 − |x|n)

)
,

where P(s)
n (x) is the classical ultraspherical polynomial of degree n and order s ≥ n 1+

√

5
4

. This inequal-

ity can be refined in [0, zs

n
] and [zs

n
, 1], where zs

n
denotes the largest zero of P(s)

n (x).

Introduction

The Jacobi polynomials are amongst the classical orthogonal polynomials which are

most used in the applications. One of the many equivalent definition of P(α,β)
n (x), the

Jacobi polynomial of degree n and order (α, β), with α, β > −1, is:

(1.1) P(α, β)
n (x) = (1 − x)−α(1 + x)−β (−1)n

2nn!

(
dn

dx

)
(1 − x)α+n(1 + x)β+n.

They are a complete orthogonal system in L2([−1, 1], (1 − x)α(1 + x)βdx). When

α = β the Jacobi polynomials take the name of ultraspherical, or Gegenbauer, poly-

nomials. We will let

(1.2) P(s)
n (x) = C s

nP
(s− 1

2
, 1

2
)

n (x),

where C s
n =

Γ(s+ 1
2

)

Γ(2s)

Γ(n+2s)

Γ(n+s+ 1
2

)
and s > − 1

2
.

An explicit representation of P(s)
n (x) is the following:

(1.3) P(s)
n (x) =

[ n

2
]∑

m=0

(−1)m
Γ(n − m + s)

Γ(s)Γ(m + 1)Γ(n − 2m + 1)
(2x)n−2m.

See [Sz, p. 84].

In this paper we investigate the asymptotic behavior of the ultraspherical polyno-

mials P(s)
n (x) inside the orthogonality interval [−1, 1] for large values of s.
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The asymptotic properties of Jacobi polynomials are very important and have

been investigated for many decades, but, to the best of our knowledge, the asymptotic

formulas which are in the literature do not provide sharp estimates of the remainders.

Consider for example the following well known identity, (see [Sz, p. 381]).

(1.4) lim
s→+∞

Γ(n + 1)

(2s)n
P(s)

n (x) = xn.

Here n fixed and x ∈ [−1, 1]. To prove (1.4) we multiply both sides of (1.3) by

(2s)−n, and we let s go to infinity. We get

lim
s→+∞

(2s)−nP(s)
n (x) =

xn

Γ(n + 1)
,

and hence (1.4) follows.

The proof, however, does not give any insight on the remainder

ρs

n(x) = xn − Γ(n + 1)

(2s)n
P(s)

n (x).

In particular, we do not know how fast ρs
n(x) goes to zero when s → ∞. Observe that

(2s)n

Γ(n + 1)
∼ P(s)

n (1) =
Γ(n + 2s)

Γ(n + 1)Γ(2s)
,

in the sense that, by Stirling’s formula,

lim
s→∞

P(s)
n (1)

Γ(n + 1)

(2s)n
= lim

s→∞

Γ(n + 2s)

(2s)nΓ(2s)
= 1.

Therefore, (1.4) is equivalent to

(1.5) lim
s→+∞

P(s)
n (x)

P(s)
n (1)

= xn,

and when n is fixed and s → ∞,

ρs

n(x) ∼ R(s)
n (x) = xn − P(s)

n (x)

P(s)
n (1)

.

The asymptotic behavior of ultraspherical polynomials P(s)
n (x) for large values of

the parameter s has been investigated by many authors. We cite for example [EL2],

where the authors express λ− n

2 P(λ)
n

(xλ− 1
2 ) as a finite sum of Hermite polynomials

Hn(x). However, to the best of our knowledge, sharp estimates for R(s)
n (x) are not

available in the literature.

We prove the following:
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Theorem 1.1 For every −1 ≤ x ≤ 1, s > 0 and n ≥ 0,

(1.6)
P(s)

n (x)

P(s)
n (1)

= xn − R(s)
n (x),

where |R(s)
n (x)| ≤ 1 + |x|n, and, for s ≥ n 1+

√
5

4
,

(1.7) |R(s)
n (x)| ≤ (1 − |x|n)

n − 1

2s + 1
.

Furthermore, the inequality (1.7) is sharp, since

(1.8) lim
x→1−

R(s)
n (x)

1 − xn
=

n − 1

2s + 1
.

Numerical evidence suggests that the inequality (1.7) holds for every n ≥ 0 and every

s > 0. However, (1.7) is interesting for ultraspherical polynomials of large order.

Ultraspherical polynomials of large degree behave like Bessel functions, in the sense

that

(1.9) lim
n→∞

P(s)
n

(
cos z

n

)

P(s)
n (1)

= Γ

(
s +

1

2

)( z

2

)−s+ 1
2

Js− 1
2
(z).

Then (1.9) easily follows from a well known Mehler–Heine type asymptotic formula

for general Jacobi polynomials, (see [Sz, p. 167]).

The plan of the paper is the following. In Section 2 we collect together some

preliminaries. We refer to [Sz] or to [AAR] for further reading. In Section 3 we prove

Theorem 1.1. In Section 4 we refine the inequality proved in Section 3. We will show

that we can obtain better estimates, which, in some cases, are valid for every positive

integer n and for every s > 0, if we restrict P(s)
n (x) to the intervals [0, zs

n] and [zs
n, 1],

where zs
n denotes the largest zero of P(s)

n (x).

Section 2

In this section we collect together some preliminaries.

We have defined the ultraspherical polynomials P(s)
n

(x) in the Introduction. They

are are either even or odd functions, that is

(2.1) P(s)
n (−x) = (−1)nP(s)

n (x).

The ultraspherical polynomials are related to the Tchebicheff polynomials Tn(x) =

cos(n cos−1(x)) by the following limit relation.

(2.2) lim
s→0

s−1P(s)
n (x) =

2

n
Tn(x).
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The derivatives of ultraspherical polynomials are constant multiples of ultraspherical

polynomials. Indeed, from the definition (1.1) easily follows that

(2.3)
d

dx
P(s)

n (x) = 2sP(s+1)
n−1 (x).

Then P(s)
n (x) satisfies the following differential equation:

(2.4) (1 − x2)y ′ ′ − (2s + 1)xy ′ + n(n + 2s)y = 0.

When s > 0 the maximum of of P(s)
n (x) in [−1, 1] can be explicitly computed. We

have:

(2.5) sup
−1≤x≤1

|P(s)
n (x)| = P(s)

n (1) =
Γ(n + 2s)

Γ(n + 1)Γ(2s)
, s > 0.

The L2 norm of P(s)
n (x) with respect to the measure (1 − x2)s− 1

2 dx in (−1, 1) can be

explicitly computed as well. It is

(2.6)

∫ 1

−1

|P(s)
n (x)|2(1 − x2)s− 1

2 dx =
π21−2s

Γ(n + 2s)

(n + s)(Γ(s))2Γ(n + 1)
.

In what follows we will denote with P̃(s)
n (x) the normalized ultraspherical polyno-

mials
P

(s)
n

(x)

P
(s)
n (1)

. We will also let R(s)
n (x) = xn−P̃(s)

n (x). We state and prove a few properties

of P̃(s)
n (x) and R(s)

n (x) that we will use in the following sections.

d

dx
P̃(s)

n (x) =
n(n + 2s)

1 + 2s
P̃(s+1)

n−1 (x)(2.7)

d2

d2x
P̃(s)

n (x) =
n(n − 1)(n + 2s)(n + 2s + 1)

(1 + 2s)(3 + 2s)
P̃(s+2)

n−2 (x),(2.8)

d

dx
R(s)

n (x) =
n

1 + 2s

(
(n + 2s)R(s+1)

n−1 (x) − (n − 1)xn−1
)
,(2.9)

d2

d2x
R(s)

n (x) = As

nR(s+2)
n−2 (x) + Bs

n xn−2, where(2.10)

As

n =
n(n − 1)(n + 2s + 1)(n + 2s)

(1 + 2s)(3 + 2s)
,

Bs

n
= n(n − 1) − As

n
= −n(n − 1)(n + n2 − 6s + 4ns − 3)

(1 + 2s)(3 + 2s)
.

R(s)
n (x) satisfies the differential equation

(2.11) n(n + 2s)y(x) − (1 + 2s)xy ′(x) + (1 − x2)y ′ ′(x) = n(n − 1)xn−2

The proof of (2.7)–(2.11) is simple. To prove (2.7) we use (2.3) and (2.5); we gather

P̃(s)
n (x) = 2s

P(s+1)
n−1 (x)

P(s)
n (1)

= 2s
P̃(s+1)

n−1 (x) Γ(n+2s+1)

Γ(n)Γ(2s+3)

Γ(n+2s)

Γ(n+1)Γ(2s)

=
n(n + 2s)

1 + 2s
P̃(s+1)

n−1 (x).

Then (2.8) follows from (2.7); (2.9) and (2.10) are a straightforward consequence of

(2.7) and (2.8); (2.11) follows from (2.4)
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Section 3

In this Section we prove Theorem 1.1.

Proof of Theorem 1.1 We can prove the theorem for 0 ≤ x ≤ 1, since by (2.1),

P(s)
n (x) is either even or odd.

We also observe that, by (2.5), the inequality |Rs
n(x)| ≤ (1 + xn) is trivial because

|P(s)
n (x)| ≤ |P(s)

n (1)|.
We prove first (1.8). We integrate both sides of (2.9) in the interval (x, 1); since

R(s)
n (1) = 0, we obtain:

(3.1) R(s)
n (x) =

n − 1

2s + 1
(1 − xn) +

n(n + 2s)

1 + 2s

∫ x

1

R(s+1)
n−1 (t) dt.

By the de l’Hopital rule,

lim
x→1−

R(s)
n (x)

1 − xn
=

n − 1

2s + 1
+ lim

x→1−

1

1 − xn

∫ x

1

R(s+1)
n−1 (t) dt

=
n − 1

2s + 1
− lim

x→1−

R(s+1)
n−1 (x)

nxn−1
=

n − 1

2s + 1
,

as required.

We prove (1.7) by induction on n. We observe first that P(s)
0 (x) ≡ 1 and P(s)

1 (x) =

2sx. Thus, R(s)
n (x) ≡ 0 in these cases, and (1.7) is satisfied.

We shall verify (1.7) also when n = 2 and n = 3. Observe that

P(s)
2 (x) = 2s(s + 1)x2 − s, and R(s)

2 (x) =
1 − x2

2s + 1
,

which is exactly the right-hand side of (1.7) with n = 2.

When n = 3, we get

P(s)
3 (x) = −2s(1 + s)x +

4s(1 + s)(2 + s)x3

3
and R(s)

3 (x) =
3x(1 − x2)

2s + 1
.

It is easy to verify that 3x(1 − x2) ≤ 2(1 − x3), and thus that R(s)
3 (x) satisfies (1.7).

We now assume that (1.6) and (1.7) hold for every integer 1 ≤ m ≤ n − 1, with

n ≥ 3, and for every s ≥ m 1+
√

5
4

, and we prove that the same is also true for n and

for every s ≥ n 1+
√

5
4

.

To prove that |R(s)
n (x)| ≤ (1 − xn) n−1

2s+1
we estimate the integral on the right-hand

side of (3.1), and we prove that

−2
n − 1

2s + 1
(1 − xn) ≤ n(n + 2s)

1 + 2s

∫ x

1

R(s+1)
n−1 (t) dt ≤ 0, x ∈ [0, 1],

or equivalently

(3.2) −2(n − 1)(1 − xn) ≤ n(n + 2s)

∫ x

1

R(s+1)
n−1 (t) dt ≤ 0, x ∈ [0, 1].
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Let x ∈ [0, 1) be a critical point for I(s+1)
n−1 (x) =

∫ x

1
R(s+1)

n−1 (t) dt . Then,

(3.3)
d

dx
I(s+1)

n−1 (x) = R(s+1)
n−1 (x) = 0.

We integrate the differential equation (2.11), with n−1 in place of n and s+1 in place

of s, in the interval (1, x]; we obtain:

(3.4) (n − 1)(n + 2s + 1)I(s+1)
n−1 (x) − (3 + 2s)

∫ x

1

x
d

dx
R(s+1)

n−1 (x) dx

+

∫ x

1

(1 − x2)
d2

d2x
R(s+1)

n−1 (x) dx = −(n − 1)(1 − xn−2).

We integrate by parts the second integral in (3.4). We gather

(n − 1)(n + 2s + 1)I(s+1)
n−1 (x) − (3 + 2s)

∫ x

1

x
d

dx
R(s+1)

n−1 (x) dx + (1 − x2)
d

dx
R(s+1)

n−1 (x)

+ 2

∫ x

1

x
d

dx
R(s+1)

n−1 (x)dx = −(n − 1)(1 − xn−2),

that is,

(3.5) (n − 1)(n + 2s + 1)I(s+1)
n−1 (x) − (2s + 1)

∫ x

1

x
d

dx
R(s+1)

n−1 (x) dx

+ (1 − x2)
d

dx
R(s+1)

n−1 (x) = −(n − 1)(1 − xn−2).

By our assumption (3.3),

0 = xR(s+1)
n−1 (x) =

∫ x

1

d

dx
(xR(s+1)

n−1 (x)) dx = I(s+1)
n−1 (x) +

∫ x

1

x
d

dx
R(s+1)

n−1 (x) dx.

Therefore,
∫ x

1
x d

dx
R(s+1)

n−1 (x) dx = −I(s+1)
n−1 (x), and from (3.5) follows that

n(n + 2s)I(s+1)
n−1 (x) = −(1 − x2)

d

dx
R(s+1)

n−1 (x) − (n − 1)(1 − xn−2).

By (2.9), d

dx
R(s+1)

n−1 (x) =
n−1
3+2s

((n + 2s + 1)R(s+2)
n−2 (x) − (n − 2)xn−2). Thus,

(3.6) n(n + 2s)I(s+1)
n−1 (x) = −(1 − x2)

n − 1

3 + 2s

×
(

(n + 2s + 1)R(s+2)
n−2 (x) − (n − 2)xn−2

)
− (n − 1)(1 − xn−2).
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The identity (3.6) holds at every critical point of I(s+1)
n−1 (x) in [0, 1), and hence also at

the points where I(s+1)
n−1 (x) attains its maximum and minimum value. Note that (3.6)

is also satisfied when x = 1.

By assumption, R(s+2)
n−2 (x) ≥ − n−3

2s+5
(1 − xn−2). Hence,

(3.7) n(n + 2s)I(s+1)
n−1 (x) ≤ (1 − x2)(1 − xn−2)

(n − 1)(n − 3)(n + 2s + 1)

(3 + 2s)(5 + 2s)

+
(n − 2)(n − 1)

3 + 2s
xn−2(1 − x2) − (n − 1)(1 − xn−2).

We prove that the right-hand side of (3.7) is ≤ 0 for every x ≤ 1, which is equivalent

to proving that

(3.8) (1 − x2)
(n − 3)(n + 2s + 1)

(5 + 2s)(3 + 2s)
+

n − 2

3 + 2s

xn−2(1 − x2)

1 − xn−2
≤ 1.

We prove first that if n ≥ 4, then x
n−2(1−x

2)

1−xn−2 ≤ 2
n−2

x2, or

(3.9)
xn−4(1 − x2)

1 − xn−2
≤ 2

n − 2
.

Let f (x) be the function on the left-hand side of (3.9). When n = 4 then f (x) ≡ 1,

which is the right-hand side of (3.6). When n > 4 it is easy to verify that f (x) is

increasing in [0, 1]. Thus,

f (x) ≤ lim
x→1−

xn−4(1 − x2)

1 − xn−2
=

2

n − 2

as required. Thus, (3.8) follows if we prove that

(1 − x2)
(n − 3)(n + 2s + 1)

(3 + 2s)(5 + 2s)
+

2

3 + 2s
x2 ≤ 1,

or equivalently that

(3.10) max
{ 2

3 + 2s
,

(n − 3)(n + 2s + 1)

(3 + 2s)(5 + 2s)

}
=

(n − 3)(n + 2s + 1)

(3 + 2s)(5 + 2s)
≤ 1.

It is easy to verify that (3.10) is satisfied if s ≥ n − 11 +
√

49 − 30 n + 5 n2

4
, and also

that
s

n
≤ lim

n→∞

n − 11 +
√

49 − 30 n + 5 n2

4n
=

1 +
√

5

4
,

as required.
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We are left to prove that I(s+1)
n−1 (x) ≥ −2 n−1

n(n+2s)
(1 − xn). We go back to (3.6), and

we use R(s+2)
n−2 (x) ≤ n−3

2s+5
(1 − xn−2). We obtain

(3.11) n(n + 2s)I(s+1)
n−1 (x) ≥ −(1 − x2)(1 − xn−2)

(n − 1)(n − 3)(n + 2s + 1)

(3 + 2s)(5 + 2s)

+
(n − 1)(n − 2)

3 + 2s
xn−2(1 − x2) − (n − 1)(1 − xn−2).

We prove that the right-hand side of the inequality (3.11) is ≥ −2(n− 1)(1− xn) for

every x ∈ [0, 1], or equivalently, we prove that

(1 − x2)
(n − 1)(n − 3)(n + 2s + 1)

(5 + 2s)(3 + 2s)
− (n − 1)(n − 2)

3 + 2s

( 1 − x2

1 − xn−2

)
xn−2 + n − 1

≤ 2(n − 1)
1 − xn

1 − xn−2
.

Since 1 − x2 ≤ 1, ( 1−x
2

1−xn−2 )xn−2 ≥ 0, and 1−x
n

1−xn−2 ≥ 1 whenever 0 ≤ x ≤ 1, it is

sufficient to prove that

(n − 1)(n − 3)(n + 2s + 1)

(5 + 2s)(3 + 2s)
+ n − 1 ≤ 2(n − 1),

or
(n − 3)(n + 2s + 1)

(5 + 2s)(3 + 2s)
≤ 1,

which is true whenever s ≥ n 1+
√

5
4

.

The proof of Theorem 1.1 is complete.

Section 4

The following upper bound for the largest zero of P(s)
n

(x) is an easy consequence of

Theorem 1.1.

Corollary 4.1 Let zs
n be the largest zero of P(s)

n (x). Let s ≥ n 1+
√

5
4

. Then

(4.1) zs

n ≤
( n − 1

n + 2s

) 1
n

.

Proof The proof is simple. Indeed, if z = zs
n, then P(s)

n (z) = zn − R(s)
n (z) = 0.

By (1.7),

zn
= |R(s)

n (z)| ≤ n − 1

2s + 1
(1 − zn)

from which (4.1) follows.

Our upper bound is far from being optimal. There is a lot of literature concerning

the zeros of Jacobi polynomials and good asymptotic estimates are known. See [I,

IS1, IS2, EL1, EL2, E], just to cite a few.
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To the best of our knowledge, the best available upper bound for zs
n is in [ADGR].

(4.2) zs

n <

√
(n − 1)(n + 2s − 2)

(n + s − 2)(n + s − 1)
cos

( π

n + 1

)
, n ≥ 1.

The inequality (4.2) improves the following inequality due to Elbert [E].

(4.3) zs

n <

√
(n − 1)(n + 2s + 1)

n + s
.

Let us recall the following inequality, which holds for every s > 0 and n ≥ 2.

(4.4) zs

n > zs+1
n−1.

Indeed, by (2.7) d

dx
P̃(s)

n (x) =
n(n+2s)

1+2s
P̃(s+1)

n−1 (x). Since the zeros of ultraspherical polyno-

mials are real and lie in the interval [−1, 1], (see [Sz]), and between any two zeros of

P̃(s)
n (x) there is at least a zero of its derivative, then the largest zero of P̃(s)

n (x) is larger

than the largest zero of P̃(s+1)
n−1 (x).

We prove that the asymptotic formula (1.6) can be refined in the intervals [0, zs
n]

and [zs
n, 1].

Theorem 4.2

(a) Let n ≥ 1 and s > 0. For every zs
n ≤ x ≤ 1 the following sharp inequality holds.

(4.5) 0 ≤ P̃(s)
n (x) ≤ xn.

(b) For every 0 ≤ x ≤ zs
n and n ≥ 3,

(4.6) |P̃(s)
n (x)| ≤ (n − 1)(n + 2s + 1)

(2s + 1)(2s + 3)
(1 − (zs+1

n−1)2)(zs+1
n−1)n−2.

When n = 2 and 0 ≤ x ≤ zs
2 =

1√
2(s+1)

, then

(4.7) |P̃(s)
2 (x)| ≤ 1

2s + 1
.

(c) For every 0 ≤ x ≤ zs
n, n ≥ 2 and s ≥ n 1+

√
5

4
,

(4.8) |P̃(s)
n (x)| ≤ n − 1

2s + 1
(1 − xn).

Remark The estimates (4.5) and (4.6) are valid without any restriction on n and s.

When 0 ≤ x ≤ zs+1
n−1, s ≥ n 1+

√
5

4
and n ≥ 3, we can also prove the following easy

refinement of (4.6):

(4.9) |P̃(s)
n

(x)| ≤ (1 − xn)(zs+1
n−1)n−2.
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Indeed, (n−1)(n+2s+1)

(2s+1)(2s+3)
< 1 whenever s ≥ n 1+

√
5

4
, and 1 − (zs+1

n−1)2 ≤ 1 − x2 ≤ 1 − xn if

0 ≤ x ≤ zs+1
n−1.

By (4.2) or (4.3), the inequality (4.9) implies (4.8) when 0 ≤ x ≤ zs+1
n−1 and n ≥ 5,

but in the interval [0, zs
n] a different proof is needed.

Proof of Theorem 4.2 We prove (4.5) first. Since R(s)
n (x) = xn − P̃(s)

n (x), (4.5) is

equivalent to proving that

(4.10) 0 ≤ R(s)
n (x) ≤ 2xn

whenever x ≥ zs
n.

When x > zs
n, P̃(s)

n (x) does not vanish, and hence it is either positive or negative.

Since P̃(s)
n (1) = 1 > 0, then P̃(s)

n (x) ≥ 0 whenever x ≥ zs
n. Therefore, R(s)

n (x) =

xn − P̃(s)
n (x) ≤ xn, which is better than the inequality on the right-hand side of (4.10).

We are left to prove that R(s)
n (x) ≥ 0 whenever x ≥ zs

n. To this aim we use induction

on n. It is trivial to verify the cases n = 1 and n = 2, (see the previous Section). We

now assume that R(s)
m (x) ≥ 0 whenever x ≥ z(s)

m and m ≥ n − 1, with m ≥ 3, and we

prove that the same holds also for n.

It is convenient to use the identity (3.1). Since

R(s)
n (x) =

n − 1

2s + 1
(1 − xn) +

n(n + 2s)

1 + 2s
I(s+1)

n−1 (x),

where I(s+1)
n−1 (x) =

∫ x

1
R(s+1)

n−1 (t) dt , proving that R(s)
n (x) ≥ 0 is equivalent to proving

that

(4.11) I(s+1)
n−1 (x) =

∫ x

1

R(s+1)
n−1 (t) dt ≥ − n − 1

n(n + 2s)
(1 − xn).

It is sufficient to prove that (4.11) holds at the critical points of I(s+1)
n−1 (x) in [zs

n, 1]. We

use the identity (3.6), which is satisfied at every critical point of I(s+1)
n−1 (x) in [0, 1].

n(n + 2s)

1 − x2
I(s+1)

n−1 (x) = − (n − 1)(n + 2s + 1)

3 + 2s
R(s+2)

n−2 (x)

+
(n − 2)(n − 1)

3 + 2s
xn−2 − (n − 1)

1 − xn−2

1 − x2
.

Observe that the largest zero of P(s)
n (x) is larger than the largest zero of P(s+2)

n−2 . By

assumption, R(s+2)
n−2 (x) ≤ xn−2 for every x > zs

n, and

n(n + 2s)I(s+1)
n−1 (x) ≥ −(n − 1)xn−2(1 − x2) − (n − 1)(1 − xn−2) = −(n − 1)(1 − xn).

Thus,

n(n + 2s)I(s+1)
n−1 (x) ≥ −(n − 1)(1 − xn),

as required.
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We now prove (4.6). It is well known, (see e.g., [Sz]), that the local maxima of

|P(s)
n (x)| are increasing. The critical points of P(s)

n (x) are the zeros of P(s+1)
n−1 (x), and

hence |P(s)
n (x)|, restricted to the interval [0, zs

n], attains its maximum at zs+1
n−1.

To estimate P̃(s)
n (zs+1

n−1) we use the differential equation (2.4). Since P̃(s+1)
n−1 (zs+1

n−1) =

0, we obtain

n(n + 2s)P̃(s)
n (zs+1

n−1) = −(1 − (zs+1
n−1)2)

d2

d2x
P̃(s)

n (zs+1
n−1).

By (2.8), d
2

d2x
P̃(s)

n (zs+1
n−1) =

n(n−1)(n+2s)(n+2s+1)
(1+2s)(3+2s)

P̃(s+2)
n−2 (zs+1

n−1), and

P̃(s)
n (zs+1

n−1) = −(1 − (zs+1
n−1)2)

(n − 1)(n + 2s + 1)

(2s + n + 1)(3 + 2s)
P̃(s+2)

n−2 (zs+1
n−1).

Since zs+1
n−1 > zs+2

n−2, by (4.5) we gather

(4.12) |P̃(s)
n (zs+1

n−1)| ≤ (1 − (zs+1
n−1)2)

(n − 1)(n + 2s + 1)

(1 + 2s)(3 + 2s)
(zs+1

n−1)n−2,

from which (4.6) follows.

Let us prove (4.8) for n = 2. Recall that, P̃(s)
2 (x) = − 1−2(1+s) x

2

2s+1
, and zs

2 =
1√

2(s+1)
.

The maximum of |P̃(s)
2 (x)| in the interval [0, zs

2] is at x = 0. Therefore, |P̃(s)
2 (x)| is

decreasing in [0, zs
2], and one can see that h(x) = (1 − x2)−1|P̃(s)

2 (x)| is decreasing

too. The maximum of h(x) in [0, zs
2] is then h(0) = (2s + 1)−1. Consequently,

|P̃(s)
2 (x)| ≤ 1−x

2

2s+1
, as required.

To prove (4.8) when n ≥ 3 we start from (4.6), and we prove that

(4.13)
n + 2s + 1

2s + 3
(1 − (zs+1

n−1)2)(zs+1
n−1)n−2 ≤ 1 − (zs

n)n.

This is sufficient to prove (4.8).

It is easy to prove that the function f (x) = xn−2(1 − x2) is increasing whenever

0 ≤ x ≤
√

n−2
n

and is decreasing when x ≥
√

n−2
n

. Therefore, f (x) ≤ f (
√

n−2
n

) =

2
n−2

(1 − 2
n

)
n

2 , and we can reduce matters to proving that

g(n, s) =
2(n + 2s + 1)

(n − 2)(2s + 3)

(
1 − 2

n

) n

2 ≤ 1 − (zs

n)n.

We prove that g(n, s) is a decreasing function of n, and hence that g(n, s) ≤ g(3, s) =
4(2+s)

3
√

3(3+2s)
; indeed,

∂

∂n
g(n, s) = g(n, s)

( 1

1 + n + 2 s
+

1

2
log

( n − 2

n

))
.

It is easy to see that ∂
∂n

g(n, s) is negative for every s ≥ 0 and n ≥ 3, which implies

that n → g(n, s) is decreasing; (4.13) follows if we prove that

(4.14) g(3, s) =
4(2 + s)

3
√

3(3 + 2s)
≤ 1 − (zs

n)n.
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By (4.2), zs
n <

√
n2+2ns−s−1

n+s
=

√
1 − s2+s+1

(n+s)2 .

Let h(n, s) =
(

1− s
2+s+1

(n+s)2

) n

2 . Clearly, h(n, s) is a decreasing function of s, and hence

(4.15) h(n, s) ≤ h
(

n, n
1 +

√
5

4

)

=

( 2

5 +
√

5

) n( 2(3 +
√

5)n2 − 4 − (1 +
√

5)n

n2

) n

2

.

It is not too difficult to see that function on the right-hand side of (4.15) is a decreas-

ing function of n. Thus,

h(n, n
1 +

√
5

4
) ≤ h(3, 3

1 +
√

5

4
) =

8(47 + 15
√

5)
3
2

27(5 +
√

5)
3

.

Therefore, (4.14) follows if we prove that

g(3, s) + h
(

3, 3
1 +

√
5

4

)
=

4(2 + s)

3
√

3(3 + 2s)
+

8(47 + 15
√

5)
3
2

27(5 +
√

5)
3

≤ 1,

which is certainly true for every s ≥ 3 1+
√

5
4

.
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