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An adjoint-functor theorem

over topoi

B.J. Day

The usual statements of the classical adjoint-functor theorems

contain the hypothesis that the codomain category should admit

arbitrary intersections of families of monomorphisms with a

common codomain. The aim of this article is to formulate an

adjoint-functor theorem which refers, in a similar manner, to

arbitrary internal intersections of "families of monomorphisms"

in the case where the categories under consideration are suitably

defined relative to a fixed elementary base topos (in the usual

sense of Lawvere and Tierney).

Introducti on

The aim of this article is to formulate a suitable context in which to

establish the adjoint-functor theorem based on internal intersection in an

elementary topos. This is done in Section l,and the theorem proved in

Section 2 generalises a form of the adjoint-functor theorem ([ I], Theorem

2.1) which, under additional completeness hypotheses, contains Freyd's

original adjoint functor theorems (as given in [6], Chapter V, 6-8). It is

closely related to an extension of the adjoint-functor theorem due to

Mikkelsen which serves to describe the free E-locale on an object in an

elementary topos E .

The references for basic theory and notation are Ei lenberg and Kelly

[2], Lawvere [5], and Mac Lane [6].
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382 B . J . Day

1. Categories over a topos

Throughout this section we suppose that E is a fixed elementary

topos with subobject representor Si and that a l l categorical algebra is

relative to E . We denote by E the category of ordered objects in E

(see [4], 1.2).

A 2-category E~Ccut i s constructed as follows. A 0-cell of E~Ccut

i s a category C together with a functor M : Cop •+ E and a natural

transformation $ : M •* SI : C°P -»• E called "factorisation". By the

representation theorem the components of <))„ : MC •* SI of $ yield a

natural transformation:

C(C, D) x MD ->• SI .

Thus we obtain a family:

$ = $ ->• C(C, D) x MD

of monomorphisms in E ; the "elements" of $„„ are thought of as "pairs"

(f, m) such that / factors through m .

PROPOSITION 1.1. If y = C{C, D) x MD + SI denotes the canonical

transformation

C(C, D) x MD •* MC — ^ n ,

then the diagram

t

is a pullback.

Proof. This is immediate from the definition of $ and the

representation theorem. / /

A 1-cell of E~Cat from (C, M, <|>) to (8, N, \p) i s a functor

T : C •*• 8 together with a structure transformation

T : M - OT°P : C ° P - E .
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A 2-oell a : (T, x) =* (S, a) is a natural transformation a : T °* S

such that x = (ilfaop)»o .

With these definitions we see that the topos E is itself a O-cell

with MC = [C, fi] and <}>_ = Vu_ : [C, ft] ->• (2 . It then follows that, for
is Lf

each O-cell (C, M, <j>) , each representable functor C(K, -) : C -»• E is a

1-cell with structure

MD * [C(X, D ) , «]

derived from

c(x, D) xffl + a

by adjunction.

We also note that the constant functor C -*• E which sends C to 1

is a 1-cell with structure ^ : MC •* U & [1, fl] .

Let fi1 = E (l, -) : E -»• Ens . An E~category (C, Af, <(>) is said to

be MR (mono representable) if there exists a suboategory M of

E-monomorphisms in C such that:

MR1. There is a natural bisection between morphisms 1 -*• MD

("global sections" of MD = elements of EMD ) and M.-monomorphisms

B >—*• D ; strictly speaking of course the bijection is with equivalence

classes of M0-monomorphisms with codomain D .

MR2. Each diagram

r
D

f ) { )

J I"
with m £ M, admits completion to a pullbaok diagram in C ; that i s ,

M(f)(m) = fXm .

A 1 - ce l l T : (C, M, <))) -+• (B, N, ty) between MR-categories C and 8

i s c a l l e d MR i f t h e t rans format ion Et : EMC •+ ENTC i s induced by T .

An E~category (C, M, <)>) i s c a l l e d CMR (completely mono
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representable) if it is MR and it satisfies the following conditions for

each C £ C :

CMR1. each MC is a complete lattice in E ;

CMR2. the square

t

n

is a pullback;

CMR3. given any monomorphism i : B >—• MC and morphism

/ : 1 -»• C(C, D) , if there exists a factorisation

,'' \f*i

$ > • C(.C,D)*MD

then there exists a factorisation

/xinfB

C(C,D)*MD .

PROPOSITION 1.2. if (C, M, <f>) is CMR then the set map

£•$ -*• EC(C, D) x EMD is a bisection onto the set of all pairs ( / , m) such

that m i MQ and f factors through m .

Proof. Because E is representable the diagram

£$ »• E (C,D)xEMD

EMC

is a pullback by Proposition 1.1 and CMR2. Thus EQ is equivalent to the

set of all pairs (/, m) , m € M' , such that M(f)(m) = !„ . But, by

MR2,
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M(f)(m) >• B

385

i I"
is a puirbaek so M(f)(m) = 1^ if and only if f factors through m . //

PROPOSITION 1.3. If (C, M, <f>) is MR and satisfies CMR1 then CMR3

is satisfied if Mf : MC + MD preserves inf for all f € C (C, D) and

<j> : MC •* Q preserves inf for all C € C .

Proof. By Proposition 1.1, $ = Y*(*) •

• MD

h

Thus, if B £ Y*(t) then B 5 (Y(/ X l))*(t) so 3(y(f xi))(B) 5 t .

The proof then follows from considering the diagram:

Mf

in which nrxi = t since fl{-} = 1 . / /

COROLLARY 1.4. The elementary topos E is itself CM.
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Proof. Each object [X, ft] , X € E , is a complete lat t ice object in
E and

is a pullback diagram. Moreover <)>„ = Vwv is inf preserving since
A A

uA —t Vu and each [/, Q] has left adjoint 3 / hence is inf preserving.

Thus the result follows from Proposition 1.3. / /

2. The adjoint-functor theorem

This section is devoted to the proof of the main theorem. Again we

suppose that, unless otherwise stipulated, the categorical algebra is

relative to a fixed elementary topos E .

We suppose that T : (C, M, ((>)-»- (B, N, \ji) is an MR E~functor and

that 8 is CMR. Furthermore, we suppose that there exists a "bounding"

family {& : B •* TC{B)} of morphisms in BQ such that for all C € C

and f € there exists a commuting square:

B —£-*• TC(B)

TC •
TnT W

with m

THEOREM 2 .1 . Under the above hypotheses on T the functor

T. : C_ 8 has an ordinary (Ens-based) left adjoint if C is

M-aompZete in the sense that

(a) MC is a complete lattice for each C € C ,

(b) C. has pullbacks of M.-subobjects and they lie in M. ,

(a) CL has equalisers and they lie in M- , and T is
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M-continuous in the sense that TQ preserves pullbacks of

M.-subobjects and equalisers and E applied to

n f >

MC

NTC

commutes.

Proof. First form the pullback

• lxMC{B)

(*) Tc(s)

-* B[B,TC(B))*NTC(b)

for each 3D in the "bounding family. An M_-monomorphism i : SB -*• C(B)

is then defined by

xp infP(8)

LEMMA 2.2. If

i n f MC(B) .

c r a

Is a pullback diagram in E then there exists a factorisation

-* C
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Proof. 3 / -i ft so 3/rx' 5 Q if and only if P s ftQ . But

P = / ,<?; hence 3 / ^ 5 Q • II

From the piillback diagram (*) we obtain, by Lemma 2.2, a factorisation

D

Because B is assumed CMR this factorisation gives

*• B[B,TC(B))XNTC(B) .

Because T is M-continuous this gives

1

[MC(B),Q]
inf

3T
C(B)

[NTC(B),Q]
inf

+MC(B)

TC{B)

Thus we obtain a factorisation
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infP(B)

MC{B)

TC(B)

* B[B,TC{B))xNTC(B) .

By Proposition 1.2 this implies that, on applying E we obtain a

factorisation

B

TSB — ^ TC(B)

where K is a monomorphi sin because T is MR, so r\ is well defined.
D

Finally, to verify that rig : B -*• TSB is the required universal arrow, we

consider

TC(B)

with m € MQ

in EMC{B) .

. Let Q be the pullback of m along gi

Also Q € EP(g) ; thus Q ± SB :

Clearly Q 5 SB

MC(B)
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Hence Q = SB as subobjects of C(B) . Similarly, equalisers can be used

to show that factorisation of the required type through n_ i s unique. //
D

REMARK 2.3. The adjunction S -< TQ : CQ •*• B can be enriched to an

E-adjunction if C has cotensoring over E and T preserves this

cotensoring (see [3]).

3. Examples

EXAMPLE 3.1 (Mikkelsen). Let C be the E-category of E-locales

and l e t U : C •+• E be the underlying-E-object functor. Then there exis ts

a "bounding" functor R : E •*• C given by

RX = [[X, Si], Si]

with bounding unit

&x : X •* U[[X, fi], n]

the canonical "evaluation" transformation. If X = UA where A is an

E-locale then

&UA • UA - U[[UA, n], a]

is Urn : UA •* u[[UA, Q], fi] where m has the left-exact left adjoint

sup : [[UA, ii], Si] •*• UA . Thus, by Theorem 2.1, U has a left adjoint.

This left adjoint describes the free E-locale on each object x € E .

EXAMPLE 3.2. Suppose E and E1 are elementary topoi and

T : E -*• E' is a functor which preserves finite limits and which, as a

( ^ (h
T, T, T ) is normal in the sense that the canonical

transformation E =* E'T is an isomorphism.

We can consider T^E as an E'-category with

|2\,E| = |E| ,

T,E(X, I) = T[X, Y] .

Moreover, TtE is an E'-category with

M : (T^E)°P * E'

given by MX = T[X, Q] and <j> : M -* Si' given by
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-'Ay Y^T-h

<j>v -. T[X, n] —**• m — ^ n1 .

The functor T : TtE •* V is an E'-functor with T ^ : MX •* NTX given by

m \J-»Xv+J
T^ : T[X, Q] -±+ [TX, TO] 1E-»- [TAT, fi'] .

Both T^E and E' are CMR and {T, T ) is MR by normality of T and the

fact that T is assumed to preserve finite limits

Xy

The functor T : T^E -*• E' then has a left adjoint if E' applied to

[TX,a'

commutes and T has a bounding family of morphisms. It has a left-adjoint

E'-functor if y^E is cotensored and T preserves this cotensoring. In

particular TAE is cotensored if T is the left-adjoint part of a

geometrical morphism of topoi (see [3], 5)-

EXAMPLE 3.3. Suppose S -* T : E' •*• E is a geometrical morphism of

topoi. Then, as in Example 3-2, we obtain 21J(E' as an E_Category and we

obtain, by Kelly [3], 5, an E-adjunction

(e, n) : S -* T : Tjfi' •* E .

The E-category TAE' is cotensored over E by Kelly [3], 5.1, with

[X, X'] = [SX, X'Y and to say that the induced E-adjoint S : E •* TAE'

preserves this cotensoring is to say that S[X, Y] = [SX, SY]' ; note that

S is not necessarily a normal closed functor, so this does not always imply

that SQ : EQ •*• (2'JtE
l) is a full embedding.

The E-category T^E' is a CMR E~category with NX' = T[X', £1']' .

Moreover S has structure
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a : [X, Si] •*• T[SX, Si']' £* [X, TSl']

SI — ^ - T5J2 ^ Til' .

given by

To see that (5, a) is an MR-functor let Y be an arbitrary subobject of

X and note that the diagram

Y • 1 • 2 a '

transforms to

SY • 51 • 1 '

1st \t'

SY • 5 1

I ] •
SX > SSI 5 — • • STSSl — • STSl' — • SI'

which becomes

SY • 51 •• 1'

1st \t'

SX-c—tSSl——* SI' ,
XY XSt

and use the fact that 5 preserves finite limits.

Because E has SI as a strong E-cogenerator we obtain a bounding

family of morphisms

&x, : X' •*• [TtE'(X', SSI), SSI] = [ST[X', SSI]', SSi]'

for 5 with the property that if 5 preserves cotensoring, the diagram
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X'

f

sx

S\T[X' ,

Sm

\s[s,i]

• s[[x,si],ri\

commutes for all / € E Q U ' . SX) .where m : X •* [[X, fi], fi] is the

canonical monomorphism in E .

This gives us the result that S : E •*• T^E' has a left E-adjoint if

5 preserves cotensoring and E applied to the diagram

inf

4 a

inf.

commutes.
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