BULL. AUSTRAL. MATH. SOC. VOL. 15 (1976), 381-394.

An adjoint-functor theorem over topoi

B.J. Day

The usual statements of the classical adjoint-functor theorems contain the hypothesis that the codomain category should admit arbitrary intersections of families of monomorphisms with a common codomain. The aim of this article is to formulate an adjoint-functor theorem which refers, in a similar manner, to arbitrary internal intersections of "families of monomorphisms" in the case where the categories under consideration are suitably defined relative to a fixed elementary base topos (in the usual sense of Lawvere and Tierney).

Introduction

The aim of this article is to formulate a suitable context in which to establish the adjoint-functor theorem based on internal intersection in an elementary topos. This is done in Section 1, and the theorem proved in Section 2 generalises a form of the adjoint-functor theorem ([1], Theorem 2.1) which, under additional completeness hypotheses, contains Freyd's original adjoint functor theorems (as given in [6], Chapter V, 6-8). It is closely related to an extension of the adjoint-functor theorem due to Mikkelsen which serves to describe the free *E*-locale on an object in an elementary topos *E*.

The references for basic theory and notation are Eilenberg and Kelly [2], Lawvere [5], and Mac Lane [6].

Received 6 July 1976. The author gratefully acknowledges the support of a Post-Doctoral Research Fellowship from the Australian Research Grants Committee.

B.J. Day

1. Categories over a topos

Throughout this section we suppose that E is a fixed elementary topos with subobject representor Ω and that all categorical algebra is *relative* to E. We denote by \hat{E} the category of ordered objects in E(see [4], 1.2).

A 2-category E-Cat is constructed as follows. A 0-cell of E-Cat is a category C together with a functor $M : C^{\text{op}} \rightarrow \hat{E}$ and a natural transformation $\phi : M \rightarrow \Omega : C^{\text{op}} \rightarrow \hat{E}$ called "factorisation". By the representation theorem the components of $\phi_C : MC \rightarrow \Omega$ of ϕ yield a natural transformation:

$$C(C, D) \times MD \rightarrow \Omega$$
.

Thus we obtain a family:

$$\Phi = \Phi_{CD} \rightarrow C(C, D) \times MD$$

of monomorphisms in E; the "elements" of Φ_{CD} are thought of as "pairs" (f, m) such that f factors through m.

PROPOSITION 1.1. If $\gamma : C(C, D) \times MD \rightarrow \Omega$ denotes the canonical transformation

$$C(C, D) \times MD \to MC \xrightarrow{\Phi_C} \Omega$$
,

then the diagram

$$\begin{array}{ccc} \Phi \longrightarrow C(C,D) \times MD \\ u & & & \downarrow \Upsilon \\ 1 \longrightarrow \Omega \end{array}$$

is a pullback.

Proof. This is immediate from the definition of ϕ and the representation theorem. //

A 1-cell of E-Cat from (C, M, ϕ) to (B, N, ψ) is a functor $T : C \rightarrow B$ together with a structure transformation

$$\tau : M \stackrel{\Rightarrow}{\rightarrow} NT^{\text{op}} : C^{\text{op}} \stackrel{\Rightarrow}{\neq} \hat{E} .$$

A 2-cell α : $(T, \tau) \stackrel{\Rightarrow}{\Rightarrow} (S, \sigma)$ is a natural transformation α : $T \stackrel{\Rightarrow}{\Rightarrow} S$ such that $\tau = (N\alpha^{\text{op}}) \cdot \sigma$.

With these definitions we see that the topos E is itself a 0-cell with $MC = [C, \Omega]$ and $\phi_C = \forall u_C : [C, \Omega] \rightarrow \Omega$. It then follows that, for each 0-cell (C, M, ϕ) , each representable functor $C(K, -) : C \rightarrow E$ is a l-cell with structure

 $MD \rightarrow [C(K, D), \Omega]$

derived from

$$C(K, D) \times MD \rightarrow \Omega$$

by adjunction.

We also note that the constant functor $C \rightarrow E$ which sends C to 1 is a 1-cell with structure $\phi_C : MC \rightarrow \Omega \cong [1, \Omega]$.

Let $E = E_0(1, -) : E \rightarrow Ens$. An *E*-category (C, *M*, ϕ) is said to be MR (mono representable) if there exists a *subcategory* M_0 of *E*-monomorphisms in *C* such that:

MR1. There is a natural *bijection* between morphisms $1 \rightarrow MD$ ("global sections" of MD = elements of EMD) and M_0 -monomorphisms $B \rightarrow D$; strictly speaking of course the bijection is with equivalence classes of M_0 -monomorphisms with codomain D.

MR2. Each diagram

$$\begin{array}{c} M(f)(m) - \rightarrow B \\ \downarrow \\ C \xrightarrow{} \\ f \end{array} \begin{array}{c} D \end{array}$$

with $m \in M_0$, admits completion to a *pullback* diagram in C ; that is, $M(f)(m) = f^{-1}m$.

A l-cell $T : (C, M, \phi) \rightarrow (B, N, \psi)$ between MR-categories C and B is called MR if the transformation $E\tau : EMC \rightarrow ENTC$ is induced by T.

An E-category (C, M, ϕ) is called CMR (completely mono

representable) if it is MR and it satisfies the following conditions for each $C \in C$:

CMR1. each MC is a complete lattice in \hat{E} ;

CMR2. the square

is a pullback;

CMR3. given any monomorphism $i: B \rightarrow MC$ and morphism $f: 1 \rightarrow C(C, D)$, if there exists a factorisation

then there exists a factorisation

$$\Phi \xrightarrow{f} C(C,D) \times MD .$$

PROPOSITION 1.2. If (C, M, ϕ) is CMR then the set map $E\phi \rightarrow EC(C, D) \times EMD$ is a bijection onto the set of all pairs (f, m) such that $m \in M_0$ and f factors through m.

Proof. Because E is representable the diagram

is a pullback by Proposition 1.1 and CMR2. Thus $E\Phi$ is equivalent to the set of all pairs (f, m), $m \in M_0$, such that $M(f)(m) = 1_C$. But, by MR2,

is a pullback so $M(f)(m) \approx l_C$ if and only if f factors through $m \cdot //$

PROPOSITION 1.3. If (C, M, ϕ) is MR and satisfies CMRl then CMR3 is satisfied if Mf : MC \rightarrow MD preserves inf for all $f \in C_0(C, D)$ and $\phi_C : MC \rightarrow \Omega$ preserves inf for all $C \in C$.

Proof. By Proposition 1.1, $\Phi = \gamma_*(t)$.

Thus, if $B \leq \gamma_*(t)$ then $B \leq (\gamma(f \times 1))_*(t)$ so $\exists (\gamma(f \times 1))(B) \leq t$. The proof then follows from considering the diagram:

Proof. Each object $[\,X,\,\Omega\,]$, $\,X\,\in\,E$, is a complete lattice object in \hat{E} and

is a pullback diagram. Moreover $\phi_X = \forall u_X$ is inf preserving since $u_* \rightarrow \forall u$ and each $[f, \Omega]$ has left adjoint $\exists f$ hence is inf preserving. Thus the result follows from Proposition 1.3. //

2. The adjoint-functor theorem

This section is devoted to the proof of the main theorem. Again we suppose that, unless otherwise stipulated, the categorical algebra is *relative* to a fixed elementary topos E.

We suppose that $T : (C, M, \phi) \rightarrow (B, N, \psi)$ is an MR E-functor and that B is CMR. Furthermore, we suppose that there exists a "bounding" family $\{\beta_B : B \rightarrow TC(B)\}$ of morphisms in B_0 such that for all $C \in C$ and $f \in B_0(B, TC)$ there exists a commuting square:

$$\begin{array}{c} B \xrightarrow{\beta} TC(B) \\ f \downarrow & \downarrow Tg \\ TC \xrightarrow{Tm} TD \end{array}$$

with $m \in M_0$.

THEOREM 2.1. Under the above hypotheses on T the functor $T_0 : C_0 \rightarrow B_0$ has an ordinary (Ens-based) left adjoint if C is M-complete in the sense that

- (a) MC is a complete lattice for each $C \in C$,
- (b) C_0 has pullbacks of M_0 -subobjects and they lie in M_0 ,
- (c) \boldsymbol{C}_0 has equalisers and they lie in \boldsymbol{M}_0 , and \boldsymbol{T} is

https://doi.org/10.1017/S0004972700022814 Published online by Cambridge University Press

M-continuous in the sense that T_0 preserves pullbacks of M_0 -subobjects and equalisers and E applied to

$$[MC, \Omega] \xrightarrow{\text{inf}} MC \\ \exists \tau_C \downarrow \qquad \qquad \downarrow^{\tau_C} \\ [NTC, \Omega] \xrightarrow{\text{inf}} NTC$$

commutes.

Proof. First form the pullback

for each β_B in the bounding family. An M_0 -monomorphism $i : SB \rightarrow C(B)$ is then defined by

LEMMA 2.2. If

 $\begin{array}{c} P \longrightarrow E \\ \downarrow & \qquad \downarrow f \\ Q \xrightarrow{h} C \end{array}$

is a pullback diagram in E then there exists a factorisation

Proof. $\exists f \dashv f_*$ so $\exists f^r \chi_p^1 \leq Q$ if and only if $P \leq f_*Q$. But $P = f_*Q$; hence $\exists f^r \chi_p^1 \leq Q$. //

From the pullback diagram (*) we obtain, by Lemma 2.2, a factorisation

Because B is assumed CMR this factorisation gives

Because T is *M*-continuous this gives

Thus we obtain a factorisation

By Proposition 1.2 this implies that, on applying E we obtain a factorisation

where Ti is a monomorphism because T is MR, so η_B is well defined. Finally, to verify that $\eta_B : B \rightarrow TSB$ is the required universal arrow, we consider

with $m \in M_0$. Let Q be the pullback of m along gi. Clearly $Q \leq SB$ in EMC(B). Also $Q \in EP(\beta)$; thus $Q \geq SB$:

Hence $Q \cong SB$ as subobjects of C(B). Similarly, equalisers can be used to show that factorisation of the required type through n_B is unique. //

REMARK 2.3. The adjunction $S \to T_0 : C_0 \to B_0$ can be enriched to an E-adjunction if C has cotensoring over E and T preserves this cotensoring (see [3]).

3. Examples

EXAMPLE 3.1 (Mikkelsen). Let C be the E-category of E-locales and let $U : C \rightarrow E$ be the underlying-E-object functor. Then there exists a "bounding" functor $R : E \rightarrow C$ given by

$$RX = [[X, \Omega], \Omega]$$

with bounding unit

$$\beta_{\chi} : X \to U[[X, \Omega], \Omega]$$

the canonical "evaluation" transformation. If X = UA where A is an E-locale then

$$\beta_{UA} : UA \rightarrow U[[UA, \Omega], \Omega]$$

is $Um : UA \rightarrow U[[UA, \Omega], \Omega]$ where *m* has the left-exact left adjoint sup : $[[UA, \Omega], \Omega] \rightarrow UA$. Thus, by Theorem 2.1, *U* has a left adjoint. This left adjoint describes the free *E*-locale on each object $x \in E$.

EXAMPLE 3.2. Suppose E and E' are elementary topoi and $T : E \neq E'$ is a functor which preserves finite limits and which, as a closed functor $T = (T, \hat{T}, T^0)$ is normal in the sense that the canonical transformation $E \Rightarrow E'T$ is an isomorphism.

We can consider T_*E as an E'-category with

$$|T_*E| = |E|$$
,
 $T_*E(X, Y) = T[X, Y]$.

Moreover, T_*E is an E'-category with

$$M: (T_{A}E)^{op} \rightarrow E'$$

given by $MX = T[X, \Omega]$ and $\phi : M \to \Omega'$ given by

390

$$\phi_{\chi} : T[X, \Omega] \xrightarrow{T_{\chi_{\chi}}} T\Omega \xrightarrow{\chi_{Tt}} \Omega' .$$

The functor $T: T_*E \to E'$ is an E'-functor with $\tau_Y : MX \to NTX$ given by

$$\tau_{\chi} : T[X, \Omega] \xrightarrow{\hat{T}} [TX, T\Omega] \xrightarrow{[1,\chi_{Tt}]} [TX, \Omega'] .$$

Both $T_{\star}E$ and E' are CMR and (T, τ) is MR by normality of T and the fact that T is assumed to preserve finite limits

The functor $T: T_*E \rightarrow E'$ then has a left adjoint if E' applied to

commutes and T has a bounding family of morphisms. It has a left-adjoint E'-functor if T_*E is cotensored and T preserves this cotensoring. In particular T_*E is cotensored if T is the left-adjoint part of a geometrical morphism of topoi (see [3], 5).

EXAMPLE 3.3. Suppose $S \to T : E' \to E$ is a geometrical morphism of topoi. Then, as in Example 3.2, we obtain T_*E' as an *E*-category and we obtain, by Kelly [3], 5, an *E*-adjunction

$$(\varepsilon, \eta) : S \dashv T : T_*E' \rightarrow E$$
.

The E-category T_*E' is cotensored over E by Kelly [3], 5.1, with [X, X'] = [SX, X']' and to say that the induced E-adjoint $S : E \to T_*E'$ preserves this cotensoring is to say that $S[X, Y] \cong [SX, SY]'$; note that S is not necessarily a normal closed functor, so this does not always imply that $S_0 : E_0 \to (T_*E')_0$ is a full embedding.

The E-category T_*E' is a CMR E-category with $NX' = T[X', \Omega']'$. Moreover S has structure

$$\sigma : [X, \Omega] \rightarrow T[SX, \Omega']' \cong [X, T\Omega']$$

given by

$$\Omega \xrightarrow{\eta_{\Omega}} TS\Omega \xrightarrow{T\chi_{St}} T\Omega' .$$

To see that (S, σ) is an MR-functor let Y be an arbitrary subobject of X and note that the diagram

transforms to

$$SY \longrightarrow S1 \longrightarrow 1'$$

$$\downarrow \qquad \qquad \downarrow St \qquad \qquad \downarrow t'$$

$$SX \longrightarrow S\chi_{Y} S\Omega \xrightarrow{S_{\eta_{\Omega}}} STS\Omega \xrightarrow{ST_{\chi_{St}}} ST\Omega' \xrightarrow{\epsilon_{\Omega'}} \Omega'$$

which becomes

$$\begin{array}{c} SY \longrightarrow S1 \longrightarrow 1' \\ \downarrow & \downarrow St & \downarrow t' \\ SX \xrightarrow{S\chi_{Y}} S\Omega \xrightarrow{\chi_{St}} \Omega' \end{array}$$

and use the fact that S preserves finite limits.

Because E has Ω as a strong E-cogenerator we obtain a bounding family of morphisms

$$\beta_{X'} : X' \rightarrow [T_* \mathcal{E}'(X', S\Omega), S\Omega] = [ST[X', S\Omega]', S\Omega]'$$

for S with the property that if S preserves cotensoring, the diagram

https://doi.org/10.1017/S0004972700022814 Published online by Cambridge University Press

392

commutes for all $f \in E'_0(X', SX)$, where $m : X \to [[X, \Omega], \Omega]$ is the canonical monomorphism in E.

This gives us the result that $S : E \to T_*E'$ has a left E-adjoint if S preserves cotensoring and E applied to the diagram

commutes.

References

- Brian Day, "On adjoint-functor factorisation", Category Seminar, 1-19 (Proc. Sydney Category Theory Seminar 1972/1973. Lecture Notes in Mathematics, 420. Springer-Verlag, Berlin, Heidelberg, New York, 1974).
- [2] Samuel Eilenberg and G. Max Kelly, "Closed categories", Proc. Conf. Categorical Algebra, 421-562 (Springer-Verlag, Berlin, Heidelberg, New York, 1966).
- [3] G.M. Kelly, "Adjunction for enriched categories", Reports of the Midwest Category Seminar III, 166-177 (Lecture Notes in Mathematics, 106. Springer-Verlag, Berlin, Heidelberg, New York, 1969).

- [4] G.M. Kelly and Ross Street, "The elements of topoi", Abstracts of the Sydney Category Theory Seminar 1972, 2nd Edition, 6-65 (Department of Mathematics, University of Sydney, Sydney; School of Mathematics and Physics, Macquarie University, North Ryde; 1972).
- [5] F. William Lawvere, "Introduction", Toposes, algebraic geometry and logic, 1-12 (Lecture Notes in Mathematics, 274. Springer-Verlag, Berlin, Heidelberg, New York, 1972).
- [6] S. Mac Lane, Categories for the working mathematician (Graduate Texts in Mathematics, 5. Springer-Verlag, New York, Heidelberg, Berlin, 1971).

Department of Pure Mathematics, University of Sydney, Sydney, New South Wales.