An adjoint-functor theorem over topoi

B.J. Day

Abstract

The usual statements of the classical adjoint-functor theorems contain the hypothesis that the codomain category should admit arbitrary intersections of families of monomorphisms with a common codomain. The aim of this article is to formulate an adjoint-functor theorem which refers, in a similar manner, to arbitrary internal intersections of "families of monomorphisms" in the case where the categories under consideration are suitably defined relative to a fixed elementary base topos (in the usual sense of Lawvere and Tierney).

Introduction

The aim of this article is to formulate a suitable context in which to establish the adjoint-functor theorem based on internal intersection in an elementary topos. This is done in Section 1, and the theorem proved in Section 2 generalises a form of the adjoint-functor theorem ([1], Theorem 2.1) which, under additional completeness hypotheses, contains Freyd's original adjoint functor theorems (as given in [6], Chapter V, 6-8). It is closely related to an extension of the adjoint-functor theorem due to Mikkelsen which serves to describe the free E-locale on an object in an elementary topos E.

The references for basic theory and notation are Eilenberg and Kelly [2], Lawvere [5], and Mac Lane [6].

[^0]
1. Categories over a topos

Throughout this section we suppose that E is a fixed elementary topos with subobject representor Ω and that all categorical algebra is relative to E. We denote by \hat{E} the category of ordered objects in E (see [4], 1.2).

A 2-category E~Cat is constructed as follows. A 0-cell of E~Cat is a category \mathcal{C} together with a functor $M: \mathcal{C}^{\mathrm{Op}} \rightarrow \hat{E}$ and a natural transformation $\phi: M \rightarrow \Omega: C^{O p} \rightarrow \hat{E}$ called "factorisation". By the representation theorem the components of $\phi_{C}: M C \rightarrow \Omega$ of ϕ yield a natural transformation:

$$
C(C, D) \times M D \rightarrow \Omega .
$$

Thus we obtain a family:

$$
\Phi=\Phi_{C D} \rightarrow C(C, D) \times M D
$$

of monomorphisms in E; the "elements" of $\Phi_{C D}$ are thought of as "pairs" (f, m) such that f factors through m.

PROPOSITION 1.1. If $\gamma: C(C, D) \times M D \rightarrow \Omega$ denotes the canonical transformation

$$
C(C, D) \times M D \rightarrow M C \xrightarrow{\phi_{C}} \Omega
$$

then the diagram

is a pullback.
Proof. This is immediate from the definition of Φ and the representation theorem. //

A l-cell of $E_{\sim} C a t$ from ($\left.C, M, \phi\right)$ to (B, N, ψ) is a functor $T: C \rightarrow B$ together with a structure transformation

$$
\tau: M \Rightarrow N T^{\mathrm{op}}: \mathcal{C}^{\mathrm{op}} \rightarrow \hat{E}
$$

A 2-cell $\alpha:(T, \tau) \Rightarrow(S, \sigma)$ is a natural transformation $\alpha: T \Rightarrow S$ such that $\tau=\left(N \alpha^{o p}\right) \cdot \sigma$.

With these definitions we see that the topos E is itself a 0-cell with $M C=[C, \Omega]$ and $\phi_{C}=\forall u_{C}:[C, \Omega] \rightarrow \Omega$. It then follows that, for each 0 -cell (\mathcal{C}, M, ϕ), each representable functor $\mathcal{C}(K,-): \mathcal{C} \rightarrow E$ is a l-cell with structure

$$
M D \rightarrow[C(K, D), \Omega]
$$

derived from

$$
\mathcal{C}(K, D) \times M D \rightarrow \Omega
$$

by adjunction.
We also note that the constant functor $C \rightarrow E$ which sends C to 1 is a l-cell with structure $\phi_{C}: M C \rightarrow \Omega \cong[1, \Omega]$.

Let $E=E_{0}(1,-): E \rightarrow$ Ens. An Encategory ($\left.C, M, \phi\right)$ is said to be $M R$ (mono representable) if there exists a subcategory M_{0} of E-monomorphisms in \mathcal{C} such that:

MR1. There is a natural bijection between morphisms $1 \rightarrow M D$ ("global sections" of $M D=$ elements of $E M D$) and M_{0}-monomorphisms $B \longrightarrow D ;$ strictly speaking of course the bijection is with equivalence classes of M_{0}-monomorphisms with codomain D.

MR2. Each diagram

with $m \in M_{0}$, admits completion to a pullback diagram in C; that is, $M(f)(m)=f^{-1} m$.

A l-cell $T:(C, M, \phi) \rightarrow(B, N, \psi)$ between MR-categories C and B is called MR if the transformation $E \tau: E M C \rightarrow E N T C$ is induced by T.

An E~category (C, M, ϕ) is called CMR (completely mono
representable) if it is $M R$ and it satisfies the following conditions for each $C \in \mathcal{C}$:

CMR1. each $M C$ is a complete lattice in \hat{E};
CMR2. the square

is a pullback;
CMR3. given any monomorphism $i: B \longrightarrow M C$ and morphism $f: l \rightarrow C(C, D)$, if there exists a factorisation

then there exists a factorisation

PROPOSITION 1.2. If (C, M, ϕ) is $C M R$ then the set map $E \Phi \rightarrow E C(C, D) \times E M D$ is a bijection onto the set of all pairs (f, m) such that $m \in M_{0}$ and f factors through m.

Proof. Because E is representable the diagram

is a pullback by Proposition 1.1 and CMR2. Thus $E \Phi$ is equivalent to the set of all pairs $(f, m), m \in M_{0}$, such that $M(f)(m)=1_{C}$. But, by MR2,

is a pullback so $M(f)(m)={ }^{1} C$ if and only if f factors through m. //
PROPOSITION 1.3. If (C, M, ϕ) is MR and satisfies CMRI then CMR3 is satisfied if $M f: M C \rightarrow M D$ preserves inf for all $f \in C_{0}(C, D)$ and $\phi_{C}: M C \rightarrow \Omega$ preserves inf for all $C \in \mathcal{C}$.

Proof. By Proposition 1.1, $\Phi=\gamma_{*}(t)$.

Thus, if $B \leq \gamma_{*}(t)$ then $B \leq(\gamma(f \times l))_{*}(t)$ so $\exists(\gamma(f \times 1))(B) \leq t$. The proof then follows from considering the diagram:

in which $\cap^{r} X_{t}^{\top}=t$ since $\cap\{\cdot\}=1$. //
COROLLARY 1.4. The elementary topos E is itself CMR.

Proof. Each object $[X, \Omega], X \in E$, is a complete lattice object in \hat{E} and

is a pullback diagram. Moreover $\phi_{X}=\forall u_{X}$ is inf preserving since $u_{*} \dashv \forall u$ and each $[f, \Omega]$ has left adjoint $\exists f$ hence is inf preserving. Thus the result follows from Proposition 1.3. //

2. The adjoint-functor theorem

This section is devoted to the proof of the main theorem. Again we suppose that, unless otherwise stipulated, the categorical algebra is relative to a fixed elementary topos E.

We suppose that $T:(C, M, \phi) \rightarrow(B, N, \psi)$ is an $M R$ E~functor and that B is CMR. Furthermore, we suppose that there exists a "bounding" family $\left\{\beta_{B}: B \rightarrow T C(B)\right\}$ of morphisms in B_{0} such that for all $C \in \mathcal{C}$ and $f \in B_{0}(B, T C)$ there exists a commuting square:

with $m \in M_{0}$.
THEOREM 2.1. Under the above hypotheses on T the functor $T_{0}: C_{0} \rightarrow B_{0}$ has an ordinary (Ens-based) left adjoint if C is M-complete in the sense that
(a) $M C$ is a complete Zattice for each $C \in \mathcal{C}$,
(b) C_{0} has pullbacks of M_{0}-subobjects and they lie in M_{0},
(c) C_{0} has equalisers and they lie in M_{0}, and T is
M-continuous in the sense that T_{0} preserves pullbacks of M_{0}-subobjects and equalisers and E applied to

commutes.
Proof. First form the pullback

for each β_{B} in the bounding family. An M_{0}-monomorphism $i: S B \rightarrow C(B)$ is then defined by

LEMMA 2.2. If

is a pullback diagrom in E then there exists a factorisation

Proof. $\exists f \dashv f_{*}$ so $\exists f^{\Gamma} x_{p}^{\top} \leq Q$ if and only if $P \leq f_{\star} Q$. But $P=f_{*} Q$; hence $\exists f^{\top} \chi_{P}^{1} \leq Q$. //

From the pullback diagram (*) we obtain, by Lemma 2.2, a factorisation

Because B is assumed CMR this factorisation gives

Because T is M-continuous this gives

Thus we obtain a factorisation

By Proposition 1.2 this implies that, on applying E we obtain a factorisation

where $T i$ is a monomorphism because T is $M R$, so η_{B} is well defined. Finally, to verify that $\eta_{B}: B \rightarrow T S B$ is the required universal arrow, we consider

with $m \in M_{0}$. Let Q be the pullback of m along gi. Clearly $Q \leq S B$ in $\operatorname{EMC}(B)$. Also $Q \in E P(\beta)$; thus $Q \geq S B$:

Hence $Q \cong S B$ as subobjects of $C(B)$. Similarly, equalisers can be used to show that factorisation of the required type through n_{B} is unique. //

REMARK 2.3. The adjunction $S \rightarrow T_{0}: \mathcal{C}_{0} \rightarrow B_{0}$ can be enriched to an E-adjunction if C has cotensoring over E and T preserves this cotensoring (see [3]).

3. Examples

EXAMPLE 3.1 (Mikkelsen). Let C be the E-category of E-locales and let $U: C \rightarrow E$ be the underlying- E-object functor. Then there exists a "bounding" functor $R: E \rightarrow C$ given by

$$
R X=[[X, \Omega], \Omega]
$$

with bounding unit

$$
\beta_{X}: X \rightarrow U[[X, \Omega], \Omega]
$$

the canonical "evaluation" transformation. If $X=U A$ where A is an E-locale then

$$
\beta_{U A}: U A \rightarrow U[[U A, \Omega], \Omega]
$$

is Um:UA $\rightarrow U[[U A, \Omega], \Omega]$ where m has the left-exact left adjoint sup : $[[U A, \Omega], \Omega] \rightarrow U A$. Thus, by Theorem 2.1, U has a left adjoint. This left adjoint describes the free E-locale on each object $x \in E$.

EXAMPLE 3.2. Suppose E and E^{\prime} are elementary topoi and $T: E \rightarrow E^{\prime}$ is a functor which preserves finite limits and which, as a closed functor $T=\left(T, \hat{T}, T^{0}\right)$ is normal in the sense that the canonical transformation $E=E^{\prime} T$ is an isomorphism.

We can consider $T_{*} E$ as an E^{\prime}-category with

$$
\begin{aligned}
\left|T_{*} E\right| & =|E|, \\
T_{*} E(X, Y) & =T[X, Y] .
\end{aligned}
$$

Moreover, $T_{\star} E$ is an E^{\prime}-category with

$$
M:\left(T_{*} E\right)^{\mathrm{op}} \rightarrow E^{\prime}
$$

given by $M X=T[X, \Omega]$ and $\phi: M \rightarrow \Omega^{\prime}$ given by

$$
\phi_{X}: T[X, \Omega] \xrightarrow{T X_{X}} T \Omega \xrightarrow{X_{T t}} \Omega^{\prime}
$$

The functor $T: T_{*} E \rightarrow E^{\prime}$ is an $E^{\prime} \sim$ functor with $\tau_{X}: M X \rightarrow N T X$ given by

$$
\tau_{X}: T[X, \Omega] \xrightarrow{\hat{T}}[T X, T \Omega] \xrightarrow{\left[1, X_{T t}\right]}\left[T X, \Omega^{\prime}\right] .
$$

Both $T_{*} E$ and E^{\prime} are CMR and (T, τ) is MR by normality of T and the fact that T is assumed to preserve finite limits

The functor $T: T_{*} E \rightarrow E^{\prime}$ then has a left adjoint if E^{\prime} applied to

commutes and T has a bounding family of morphisms. It has a left-adjoint E'-functor if $T_{*} E$ is cotensored and T preserves this cotensoring. In particular $T_{*} E$ is cotensored if T is the left-adjoint part of a geometrical morphism of topoi (see [3], 5).

EXAMPLE 3.3. Suppose $S \rightarrow T: E^{\prime} \rightarrow E$ is a geometrical morphism of topoi. Then, as in Example 3.2, we obtain $T_{*} E^{\prime}$ as an $E_{\text {-category }}$ and we obtain, by Kelly [3], 5, an E-adjunction

$$
(\varepsilon, \eta): S \rightarrow T: T_{\star} E^{\prime} \rightarrow E
$$

The E-category $T_{*} E^{\prime}$ is cotensored over E by Kelly [3], 5.1, with $\left[X, X^{\prime}\right]=\left[S X, X^{\prime}\right]^{\prime}$ and to say that the induced E-adjoint $S: E \rightarrow T_{*} E^{\prime}$ preserves this cotensoring is to say that $S[X, Y] \cong[S X, S Y]^{\prime} ;$ note that S is not necessarily a normal closed functor, so this does not always imply that $S_{0}: E_{0} \rightarrow\left(T_{*} E^{\prime}\right)_{0}$ is a full embedding.

The E-category $T_{*} E^{\prime}$ is a $C M R$ E~category with $N X^{\prime}=T^{\prime}\left[X^{\prime}, \Omega^{\prime}\right]^{\prime}$. Moreover S has structure

$$
\sigma:[X, \Omega] \rightarrow T\left[S X, \Omega^{\prime}\right]^{\prime} \cong\left[X, T \Omega^{\prime}\right]
$$

given by

$$
\Omega \xrightarrow{\eta_{\Omega} T S \Omega \xrightarrow{T X_{S t}} T \Omega^{\prime} .}
$$

To see that (S, σ) is an MR-functor let Y be an arbitrary subobject of X and note that the diagram

transforms to

which becomes

and use the fact that S preserves finite limits.
Because E has Ω as a strong E-cogenerator we obtain a bounding family of morphisms

$$
\beta_{X^{\prime}}: X^{\prime} \rightarrow\left[T_{*} E^{\prime}\left(X^{\prime}, S \Omega\right), S \Omega\right]=\left[S T\left[X^{\prime}, S \Omega\right]^{\prime}, S \Omega\right]^{\prime}
$$

for S with the property that if S preserves cotensoring, the diagram

cormutes for all $f \in E_{0}^{\prime}\left(X^{\prime}, S X\right)$, where $m: X \rightarrow[[X, \Omega], \Omega]$ is the canonical monomorphism in E.

This gives us the result that $S: E \rightarrow T_{*} E^{\prime}$ has a left E-adjoint if S preserves cotensoring and E applied to the diagram

commutes.

References

[1] Brian Day, "On adjoint-functor factorisation", Category Seminar, 1-19 (Proc. Sydney Category Theory Seminar 1972/1973. Lecture Notes in Mathematics, 420. Springer-Verlag, Berlin, Heidelberg, New York, 1974).
[2] Samuel Eilenberg and G. Max Kelly, "Closed categories", Proc. Conf. Categorical Algebra, 421-562 (Springer-Verlag, Berlin, Heidelberg, New York, 1966).
[3] G.M. Kelly, "Adjunction for enriched categories", Reports of the Midwest Category Seminar III, 166-177 (Lecture Notes in Mathematics, 106. Springer-Verlag, Berlin, Heidelberg, New York, 1969).
[4] G.M. Kelly and Ross Street, "The elements of topoi", Abstracts of the Sydney Category Theory Seminari 1972, 2nd Edition, 6-65 (Department of Mathematics, University of Sydney, Sydney; School of Mathematics and Physics, Macquarie University, North Ryde; 1972).
[5] F. William Lawvere, "Introduction", Toposes, algebraic geometry and logic, l-12 (Lecture Notes in Mathematics, 274. Springer-Verlag, Berlin, Heidelberg, New York, 1972).
[6] S. Mac Lane, Categories for the working mathematicion (Graduate Texts in Mathematics, 5. Springer-Verlag, New York, Heidelberg, Berlin, 1971).

Department of Pure Mathematics,
University of Sydney,
Sydney,
New South Wales.

[^0]: Received 6 July 1976. The author gratefully acknowledges the support of a Post-Doctoral Research Fellowship from the Australian Research Grants Committee.

