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Abstract
The purpose of this paper is to quantify the size of the Lebesgue constants (𝑳𝑚)

∞
𝑚=1 associated with the thresholding

greedy algorithm in terms of a new generation of parameters that modulate accurately some features of a general
basis. This fine tuning of constants allows us to provide an answer to the question raised by Temlyakov in 2011 to
find a natural sequence of greedy-type parameters for arbitrary bases in Banach (or quasi-Banach) spaces which
combined linearly with the sequence of unconditionality parameters (𝒌𝑚)∞𝑚=1 determines the growth of (𝑳𝑚)

∞
𝑚=1.

Multiple theoretical applications and computational examples complement our study.
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1. Introduction and background

Let X be an infinite-dimensional separable Banach space (or, more generally, a quasi-Banach space)
over the real or complex field F, and let X = (𝒙𝑛)

∞
𝑛=1 be a basis in X, that is, (𝒙𝑛)∞𝑛=1 is a norm-bounded

sequence that generates the entire space X, in the sense that

span(𝒙𝑛 : 𝑛 ∈ N) = X,

and for which there is a (unique) norm-bounded sequence X ∗ = (𝒙∗𝑛)
∞
𝑛=1 in the dual space X∗ such that

(𝒙𝑛, 𝒙
∗
𝑛)

∞
𝑛=1 is a biorthogonal system. The sequence X ∗ will be called the dual basis of X .

For each 𝑚 ∈ N, we let Σ𝑚 [X ,X] denote the collection of all f in X which can be expressed as a
linear combination of m elements of X , that is,

Σ𝑚 [X ,X] =
{∑
𝑛∈𝐴

𝑎𝑛 𝒙𝑛 : 𝐴 ⊆ N, |𝐴| = 𝑚, 𝑎𝑛 ∈ F

}
, 𝑚 = 1, 2, . . .

A fundamental question in nonlinear approximation theory using bases is how to construct for each
𝑓 ∈ X and each 𝑚 ∈ N an element 𝑔𝑚 in Σ𝑚 so that the error of the approximation of f by 𝑔𝑚 is as
small as possible. To that end we need, on one hand, an easy way to build for all 𝑚 ∈ N an m-term
approximant of any function (or signal) 𝑓 ∈ X and, on the other hand, a way to measure the efficiency
of our approximation.

Konyagin and Temlyakov [34] introduced in 1999 the thresholding greedy algorithm (TGA for short)
(G𝑚)

∞
𝑚=1, where G𝑚( 𝑓 ) is obtained by choosing the first m terms in decreasing order or magnitude from

the formal series expansion
∑∞

𝑛=1 𝒙
∗
𝑛 ( 𝑓 ) 𝒙𝑛 of f with respect to X , with the agreement that when two

terms are of equal size we take them in the basis order. By our assumptions on the dual basis X ∗, the
coefficient transform

F : X→ FN, F ( 𝑓 ) = (𝒙∗𝑛 ( 𝑓 ))
∞
𝑛=1, 𝑓 ∈ X,

is a bounded map from X into 𝑐0 so that the maps G𝑚 : X→ X are well defined for all 𝑚 ∈ N; however,
the operators (G𝑚)

∞
𝑚=1 are not linear nor continuous.

To measure the performance of the greedy algorithm, we compare the error ‖ 𝑓 − G𝑚( 𝑓 )‖ in the
approximation of any 𝑓 ∈ X by G𝑚 ( 𝑓 ), with the best m-term approximation error, given by

𝜎𝑚 [X ,X] ( 𝑓 ) := 𝜎𝑚( 𝑓 ) = inf{‖ 𝑓 − 𝑔‖ : 𝑔 ∈ Σ𝑚}.

An upper estimate for the rate ‖ 𝑓 − G𝑚 ( 𝑓 )‖/𝜎𝑚( 𝑓 ) is usually called a Lebesgue-type inequality for the
TGA (see [44, Chapter 2]). Obtaining Lebesgue-type inequalities is tantamount to finding upper bounds
for the Lebesgue constants of the basis, given for 𝑚 ∈ N by

𝑳𝑚 = 𝑳𝑚 [X ,X] = sup
{
‖ 𝑓 − G𝑚 ( 𝑓 )‖

𝜎𝑚( 𝑓 )
: 𝑓 ∈ X \ Σ𝑚

}
.

https://doi.org/10.1017/fms.2022.102 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.102


Forum of Mathematics, Sigma 3

By definition, the basis X is greedy [34] if and only if

𝑪𝑔 = 𝑪𝑔 [X ,X] := sup
𝑚

𝑳𝑚 < ∞.

Certain important bases, such as the Haar system in 𝐿𝑝 , 1 < 𝑝 < ∞, or the Haar system in 𝐻𝑝 ,
0 < 𝑝 ≤ 1, are known to be greedy (see [45, 55, 4]). In the literature, we also find instances where the
Lebesgue constants have been computed or estimated for special nongreedy bases in important spaces:

◦ In [40], the Lebesgue constants of the Haar basis in the spaces BMO and dyadic BMO were computed.
◦ More recently, in [50, 49], the Lebesgue constants for tensor product bases in 𝐿𝑝-spaces (in

particular, for the multi-Haar basis) were calculated.
◦ The Lebesgue constants for the trigonometric basis in 𝐿𝑝 are also known (see [46]).
◦ The paper [23] estimates the Lebesgue constants for bases in 𝐿𝑝-spaces with specific properties

(such as being uniformly bounded).
◦ Lebesgue constants for redundant dictionaries are studied in [48, Section 2.6].

Calculating the exact value of the Lebesgue constants can be in general a difficult task, so to study
the efficiency of nongreedy bases, we must settle for obtaining easy-to-handle estimates that control the
asymptotic growth of (𝑳𝑚)

∞
𝑚=1. To center the problem, we shall introduce some preliminary notation.

1.1. Unconditionality parameters and democracy parameters

Konyagin and Temlyakov [34] characterized greedy bases as those bases that are simultaneously uncon-
ditional and democratic. Thus, in order to find bounds for the Lebesgue constants, it is only natural to
quantify the unconditionality and the democracy of a basis and study their relation with 𝑳𝑚.

For finite 𝐴 ⊆ N, we let 𝑆𝐴 = 𝑆𝐴[X ,X] : X → X denote the coordinate projection on the set A,
that is,

𝑆𝐴( 𝑓 ) =
∑
𝑛∈𝐴

𝒙∗𝑛 ( 𝑓 ) 𝒙𝑛, 𝑓 ∈ X.

The norms of the coordinate projections associated to a basis X = (𝒙𝑛)
∞
𝑛=1 are quantified by the

unconditionality parameters

𝒌𝑚 = 𝒌𝑚 [X ,X] := sup
|𝐴 |=𝑚

‖𝑆𝐴‖, 𝑚 ∈ N,

and by the complemented unconditionality parameters,

𝒌𝒄𝑚 = 𝒌𝒄𝑚 [X ,X] := sup
|𝐴 |=𝑚

‖IdX − 𝑆𝐴‖, 𝑚 ∈ N.

Note that, if X is a p-Banach space, 0 < 𝑝 ≤ 1, then

(𝒌𝑚)
𝑝 ≤ 1 + (𝒌𝒄𝑚)

𝑝 , (𝒌𝒄𝑚)
𝑝 ≤ 1 + (𝒌𝑚)

𝑝 , (1.1)

and (𝒌2𝑚)
𝑝 ≤ 2(𝒌𝑚) 𝑝 for all 𝑚 ∈ N.

We also define the mth democracy parameter of the basis as

𝝁𝑚 = 𝝁𝑚 [X ,X] = sup
|𝐴 |= |𝐵 | ≤𝑚

‖1𝐴‖

‖1𝐵 ‖
,

where

1𝐴 = 1𝐴[X ,X] =
∑
𝑛∈𝐴

𝒙𝑛.
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A basis is unconditional if and only if sup𝑚 𝒌𝑚 < ∞, and it is democratic if and only if sup𝑚 𝝁𝑚 < ∞.
A reproduction of the original proof of the above-mentioned characterization of greedy bases from [34]
for general bases, where we pay close attention to the dependency on m in the constants involved, yields
the following upper and lower bounds for the Lebesgue constants in terms of 𝒌𝑚 and 𝝁𝑚:

1
𝐶2

max
{
𝒌𝑚, 𝝁𝑚

}
≤ 𝑳𝑚 ≤ 𝐶1𝒌𝑚 𝝁𝑚, (1.2)

where 𝐶1 and 𝐶2 depend only on the modulus of concavity of the space X (see [13, Proposition 1.1]
and [4, Theorem 7.2]). However, since the function on the left is not the same as the function on the
right, these bounds are not optimal, and as a consequence, when applying them, we lose accuracy in
estimating the size of 𝑳𝑚.

The investigation of Lebesgue constants for greedy algorithms dates back to the initial stages of the
theory, with some relevant ideas appearing already in [34]. Oswald gave in [40, Theorem 1] the correct
asymptotic behavior for the quantities 𝑳𝑚 in the general case replacing (𝝁𝑚)

∞
𝑚=1 with other parameters.

However, its application to particular systems is tedious due the complicated, implicit definitions of the
parameters his estimates rely on.

Other authors have approached the subject by imposing extra conditions on the basis which permit
to obtain sharp estimates for (𝑳𝑚)

∞
𝑚=1. The first movers in this direction were Garrigós et al., who in

2013 gave optimal estimates for the Lebesgue constants of quasi-greedy bases, that is, bases for which
the operators (G𝑚)

∞
𝑚=1 are uniformly bounded (or, equivalently, bases for which G𝑚 ( 𝑓 ) converges to f

for all 𝑓 ∈ X).

Theorem 1.1 ([29, Theorem 1.1]). If the basis X is quasi-greedy, then there is a constant C such that

1
𝐶

max{𝝁𝑚, 𝒌𝑚} ≤ 𝑳𝑚 ≤ 𝐶max{𝝁𝑚, 𝒌𝑚}, 𝑚 ∈ N.

Thus, in the particular case that X is unconditional, (𝑳𝑚)
∞
𝑚=1 is asymptotically of the same order as

(𝝁𝑚)
∞
𝑚=1.

In this paper, we seek sharp estimates for the Lebesgue constants in the general case. For that, we
introduce a sequence of greedy-like parameters 𝝀𝑚 = 𝝀𝑚 [X ,X], which we call the squeeze-symmetry
parameters and which allow proving the estimate

𝑳𝑚 ≈ max{𝝀𝑚, 𝒌𝑚}, 𝑚 ∈ N, (1.3)

for the Lebesgue constants of any basis X of any quasi-Banach space X.
Section 3 concentrates on the introduction of the new parameters 𝝀𝑚 and the proof of the promised

estimate for 𝑳𝑚. In Section 4, we will also show the almost greedy analogue of equation (1.3), which
in this case involves the almost greedy constants, the quasi-greedy parameters and some relatives of the
squeeze-symmetry parameters (see Theorem 4.2). In Sections 5, 6 and 7, we investigate the theoretical
applications of the new Lebesgue constants and the new Lebesgue-type estimates derived from them. In
particular, we compare equation (1.3) with other bounds for the Lebesgue constants that can be found in
the literature. As a matter of fact, as we will see, most known estimates for the Lebesgue constants can
be deduced from estimate (1.3). For instance, Theorem 1.1 can be deduced from Theorem 5.3. Since
the practical interest of our results depend on the ability to estimate the squeeze-symmetry parameters,
we devote Section 8 to relating these parameters with other parameters that quantify different degrees
of democracy. In Section 9, we compute the Lebesgue constants and obtain Lebesgue-type estimates in
some important examples. These examples suggest the pattern that the Lebesgue constants grow linearly
with the unconditionality parameters and the democracy parameters. However, to dispel doubts about
the optimality of equation (1.3) and the convenience of introducing the squeeze-symmetry parameters
𝝀𝑚, in the last section of the paper we provide an example of a basis that shows that max{𝝁𝑚, 𝒌𝑚} could
be asymptotically strictly smaller than 𝑳𝑚.
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2. Terminology and notation

Throughout this paper, we use standard facts and notation from Banach spaces and approximation theory
(see, e.g., [9]). The reader will find the required specialized background and notation on greedy-like
bases in quasi-Banach spaces in the recent article [4]; however, a few remarks are in order.

Let us first recall that a quasi-Banach space is a vector space X over the real or complex field F
equipped with a map ‖·‖ : X→ [0,∞), called a quasi-norm, which satisfies all the usual properties of
the norm with the exception that the triangle law is replaced with the inequality

‖ 𝑓 + 𝑔‖ ≤ 𝜅(‖ 𝑓 ‖ + ‖𝑔‖), 𝑓 , 𝑔 ∈ X (2.1)

for some 𝜅 ≥ 1 independent of f and g, and moreover (X, ‖·‖) is complete. The modulus of concavity
of the quasi-norm is the smallest constant 𝜅 ≥ 1 in equation (2.1). Given 0 < 𝑝 ≤ 1, a p-Banach space
will be a quasi-Banach space whose quasi-norm is p-subadditive, that is,

‖ 𝑓 + 𝑔‖ 𝑝 ≤ ‖ 𝑓 ‖ 𝑝 + ‖𝑔‖ 𝑝 , 𝑓 , 𝑔 ∈ X.

Any p-Banach space has modulus of concavity at most 21/𝑝−1. Conversely, by the Aoki–Rolewicz
theorem [12, 42], any quasi-Banach space with modulus of concavity at most 21/𝑝−1 is p-Banach under
an equivalent quasi-norm. So, we will suppose that all quasi-Banach spaces are p-Banach spaces for
some 0 < 𝑝 ≤ 1. As a consequence of this assumption, all quasi-norms will be continuous.

The linear space of all eventually null sequences will be denoted by 𝑐00, and 𝑐0 will be the Banach
space consisting of all null sequences. Let 0 < 𝑞 < ∞ and 𝒘 = (𝑤𝑛)

∞
𝑛=1 be a weight, that is, a sequence of

nonnegative scalars with 𝑤1 > 0. Let (𝑠𝑚)∞𝑚=1 be the primitive weight of 𝒘. We will denote by 𝑑1,𝑞 (𝒘)
the Lorentz sequence space consisting of all 𝑓 ∈ 𝑐0 whose nonincreasing rearrangement (𝑎𝑛)∞𝑛=1 satisfies

‖ 𝑓 ‖𝑑1,𝑞 (𝒘) =

(
∞∑
𝑛=1
𝑎𝑞𝑛𝑠

𝑞−1
𝑛 𝑤𝑛

)1/𝑞

< ∞.

If 𝑞 = ∞, the corresponding weak Lorentz space 𝑑1,∞(𝒘) is defined by means of the quasi-norm

‖ 𝑓 ‖𝑑1,∞ (𝒘) = sup
𝑛∈N
𝑎𝑛𝑠𝑛.

If 𝝈 = (𝑠𝑚)
∞
𝑚=1 is doubling, that is, there exists a constant C such that 𝑠2𝑚 ≤ 𝐶𝑠𝑚 for all𝑚 ∈ N, 𝑑1,𝑞 (𝒘)

is a quasi-Banach space. Moreover, if 𝝈 is doubling, the unit vector system is a 1-symmetric basis of
its closed linear span, and, if 𝑞 < ∞, the aforementioned closed linear span is 𝑑1,𝑞 (𝒘). Regardless of
the value of q, the fundamental function of the unit vector system of 𝑑1,𝑞 (𝒘) is of the same order as
(𝑠𝑚)

∞
𝑚=1. We refer the reader to [4, Section 9.2] for a concise introduction to Lorentz sequence spaces.

The norm of an operator T from a quasi-Banach spaceX into a quasi-Banach spaceYwill be denoted
by ‖𝑇 ‖X→Y or simply ‖𝑇 ‖ if the spaces are clear from context. A sequence (𝒙𝑛)

∞
𝑛=1 in a quasi-Banach

space X is said to be seminormalized if

0 < inf
𝑛∈N

‖𝒙𝑛‖ ≤ sup
𝑛∈N

‖𝒙𝑛‖ < ∞.

We will only deal with biorthogonal systems (𝒙𝑛, 𝒙
∗
𝑛)

∞
𝑛=1 for which the democracy and the uncondi-

tionality parameters of X = (𝒙𝑛)
∞
𝑛=1 are finite. Note that

𝒌1 [X ,X] = sup
𝑛∈N

‖𝒙𝑛‖
��𝒙∗𝑛��,
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and that, if 𝒌1 < ∞, then 𝒌𝑚 < ∞ for all 𝑚 ∈ N. In turn, taking into account that

𝝁1 [X ,X] =
sup𝑛‖𝒙𝑛‖
inf𝑛‖𝒙𝑛‖

,

we infer that, if 𝝁1 and 𝒌1 are both finite, then 𝝁𝑚 < ∞ for all 𝑚 ∈ N. Indeed, if X is a p-Banach space
and |𝐴| = |𝐵 | ≤ 𝑚,

‖1𝐴‖

‖1𝐵 ‖
≤ 𝑚1/𝑝 sup𝑛∈𝐴‖𝒙𝑛‖

inf𝑛∈𝐵 ‖𝒙𝑛‖
inf
𝑛∈𝐵

‖𝒙𝑛‖
��𝒙∗𝑛��

‖1𝐵 ‖ ‖𝒙∗𝑛‖
≤ 𝑚1/𝑝𝝁1𝒌1.

Finally, we note that max{𝝁1, 𝒌1} < ∞ if and only if

𝐶 [X ] := sup
𝑛∈N

max{‖𝒙𝑛‖,
��𝒙∗𝑛��} < ∞, (2.2)

in which case both X and X ∗ = (𝒙∗𝑛)
∞
𝑛=1 are seminormalized.

Given a basis X = (𝒙𝑛)
∞
𝑛=1 of a quasi-Banach space X, 𝑓 ∈ X and 𝑓 ∗ ∈ X∗, we define sequences

𝜀( 𝑓 ) and 𝜀( 𝑓 ∗) in EN by

𝜀( 𝑓 ) = (𝜀𝑛 ( 𝑓 ))
∞
𝑛=1 = (sign(𝒙∗𝑛 ( 𝑓 )))∞𝑛=1,

𝜀( 𝑓 ∗) = (𝜀𝑛 ( 𝑓
∗))∞𝑛=1 = (sign( 𝑓 ∗(𝒙𝑛))∞𝑛=1,

where sign(0) = 1 and sign(𝑎) = 𝑎/|𝑎 | if 𝑎 ≠ 0.
We say that a set of integers A is a greedy set of 𝑓 ∈ X (relative to the basis X ) if𝒙∗𝑛 ( 𝑓 ) ≥ 𝒙∗𝑘 ( 𝑓 ), 𝑛 ∈ 𝐴, 𝑘 ∈ N \ 𝐴,

in which case 𝑆𝐴( 𝑓 ) is called a greedy sum of order 𝑚 := |𝐴| of f. The greedy sums of a function f
need not be unique. In this regard, the thresholding greedy algorithm (G𝑚 ( 𝑓 ))

∞
𝑚=1 is a natural way to

construct for each m a greedy sum of f. Indeed, we can use the natural ordering ofN to recursively define
for each 𝑓 ∈ X and 𝑚 ∈ N a greedy set 𝐴𝑚( 𝑓 ) of cardinality m as follows. Assuming that 𝐴𝑚−1( 𝑓 ) is
defined, we put

𝑘 (𝐴, 𝑚) = min{𝑘 ∈ N \ 𝐴𝑚−1( 𝑓 ) :
𝒙∗𝑘 ( 𝑓 ) = max𝑛∉𝐴𝑚−1 ( 𝑓 )

𝒙∗𝑛 ( 𝑓 )},
and 𝐴𝑚( 𝑓 ) = 𝐴𝑚−1( 𝑓 ) ∪ {𝑘 (𝐴, 𝑚)}. With this agreement, we have

G𝑚 [X ,X] ( 𝑓 ) := G𝑚( 𝑓 ) = 𝑆𝐴𝑚 ( 𝑓 ) ( 𝑓 ), 𝑓 ∈ X, 𝑚 ∈ N.

The continuity of the quasi-norm combined with a standard perturbation technique yield that the mth
Lebesgue constant 𝑳𝑚 of the basis X is the smallest constant C such that

‖ 𝑓 − 𝑆𝐴( 𝑓 )‖ ≤ 𝐶𝜎𝑚( 𝑓 ), 𝑓 ∈ X, 𝐴 greedy set of 𝑓 , |𝐴| ≤ 𝑚.

Thus, we infer that the sequence (𝑳𝑚)
∞
𝑚=1 is nonincreasing. Standard approximation arguments also

give that we can equivalently define 𝑳𝑚, 𝒌𝑚 and 𝒌𝒄𝑚 by restricting us to finitely supported functions.
Using this, it is easy to deduce that (𝒌𝑚)∞𝑚=1, and (𝒌𝒄𝑚)

∞
𝑚=1 are also nondecreasing.

Given two sequences of parameters (𝛼𝑚)
∞
𝑚=1 and (𝛽𝑚)

∞
𝑚=1 related to bases of quasi-Banach spaces,

the symbol 𝛼𝑚 � 𝐶𝛽𝑚 will mean that for every 0 < 𝑝 ≤ 1 there is a constant C such that 𝛼𝑚 [X ,X] ≤
𝐶𝛽𝑚 [X ,X] for all 𝑚 ∈ N and for all bases X of a p-Banach space X.
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3. Lower and upper bounds for the Lebesgue constants

Inequalities (1.2) are a quantitative reformulation of Konyagin and Temlyakov’s characterization of
greedy bases. Since the function on the right of equation (1.2) does not depend linearly on the uncondi-
tionality and democracy parameters, a natural question raised by Temlyakov [47] is to find parameters
related to the unconditionality and the democracy of the basis whose maximum value grows as the
Lebesgue constant. This section is geared towards the introduction of a new breed of parameters with
the aim to provide a satisfactory answer to Temlyakov’s aforementioned question. For that, we will
adopt a view point that regards certain Lebesgue-type parameters as quantifiers of the different degrees
of symmetry that can be found in a basis.

3.1. Towards new parameters in greedy approximation

Recall that a basis X = (𝒙𝑛)
∞
𝑛=1 of X is symmetric if it is equivalent to all its permutations, that is, there

is a constant 𝐶 ≥ 1 such that

1
𝐶

����� ∞∑
𝑛=1
𝑎𝑛 𝒙𝑛

����� ≤

����� ∞∑
𝑛=1
𝑎𝑛 𝒙 𝜋 (𝑛)

����� ≤ 𝐶

����� ∞∑
𝑛=1
𝑎𝑛 𝒙𝑛

����� (3.1)

for all (𝑎𝑛)∞𝑛=1 ∈ 𝑐00 and all permutations 𝜋 on N. Democracy is the weakest symmetry condition that a
basis can have, where we demand to a basis to verify equation (3.1) when all coefficients 𝑎𝑛 of 𝑓 ∈ X
are equal (without loss of generality) to 1.

Symmetric bases are in particular unconditional, which permits improving the previous inequality
to have

1
𝐶

����� ∞∑
𝑛=1
𝑎𝑛 𝒙𝑛

����� ≤

����� ∞∑
𝑛=1
𝜀𝑛 𝑎𝑛 𝒙 𝜋 (𝑛)

����� ≤ 𝐶

����� ∞∑
𝑛=1
𝑎𝑛 𝒙𝑛

����� (3.2)

for all (𝜀𝑛)∞𝑛=1 ∈ EN, where E denotes the subset of F consisting of all scalars of modulus 1, for a possibly
larger constant C. If a basis X = (𝒙𝑛)

∞
𝑛=1 of X satisfies equation (3.2) when all coefficients 𝑎𝑛 are 1

it is called superdemocratic. To quantify the superdemocracy of X , we use the mth superdemocracy
parameter,

𝝁𝒔
𝑚 = 𝝁𝒔

𝑚 [X ,X] = sup

{ ��1𝜀,𝐴

����1𝛿,𝐵

�� : |𝐴| = |𝐵 | ≤ 𝑚, 𝜀 ∈ E𝐴, 𝛿 ∈ E𝐵

}
,

where

1𝜀,𝐴 = 1𝐴[X ,X] =
∑
𝑛∈𝐴

𝜀𝑛 𝒙𝑛

so that X is superdemocratic if sup𝑚 𝝁𝒔
𝑚 < ∞.

Although the parameters (𝝁𝒔
𝑚)

∞
𝑚=1 are one step up in the scale of symmetry, in practice they do not

provide asymptotically better estimates than (𝝁𝑚)
∞
𝑚=1 for (𝑳𝑚)

∞
𝑚=1. Indeed, with a smaller constant 𝐶1

and a larger constant 𝐶2, we have

1
𝐶2

max
{
𝒌𝑚, 𝝁

𝒔
𝑚

}
≤ 𝑳𝑚 ≤ 𝐶1𝒌𝑚 𝝁𝒔

𝑚, 𝑚 ∈ N

(cf. [13, Proposition 1.1]).
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Another condition related to symmetry which has been successfully implemented in the theory is the
so-called symmetry for largest coefficients. Let

supp( 𝑓 ) = {𝑛 ∈ N : 𝒙∗𝑛 ( 𝑓 ) ≠ 0}

denote the support of 𝑓 ∈ X with respect to the basis X . We define

𝝂𝑚 = 𝝂𝑚 [X ,X] = sup
��1𝜀,𝐴 + 𝑓

����1𝛿,𝐵 + 𝑓
�� ,

the supremum being taken over all finite subsets A, B of N with |𝐴| = |𝐵 | ≤ 𝑚, all signs 𝜀 ∈ E𝐴 and
𝛿 ∈ E𝐵 and all 𝑓 ∈ X with ‖ 𝑓 ‖∞ ≤ 1 and supp( 𝑓 ) ∩ (𝐴 ∪ 𝐵) = ∅. A basis X is symmetric for largest
coefficients (SLC for short) if sup𝑚 𝝂𝑚 < ∞. Imposing the extra assumption 𝐴∩ 𝐵 = ∅ in the definition,
we obtain the ‘disjoint’ counterpart of the SLC parameters, herein denoted by 𝝂𝒅𝑚 = 𝝂𝒅𝑚 [X ,X].

Bases with sup𝑚 𝝂𝑚 = 1 were first considered in [10], where they were called bases with Property (A).
The parameters that quantify the symmetry for largest coefficients of a basis appear naturally when
looking for estimates for the Lebesgue constants that are close to one (see [10, 22, 20, 7]). In fact, if we
put

𝐴𝑝 = (2𝑝 − 1)1/𝑝 , 0 < 𝑝 ≤ 1,

and X is a p-Banach space,

max
{
𝒌𝒄𝑚, 𝝂

𝒅
𝑚

}
≤ 𝑳𝑚 ≤ 𝐴2

𝑝𝒌
𝒄
2𝑚𝝂

𝒅
𝑚, 𝑚 ∈ N, (3.3)

(see [13, Proposition 1.1] and [4, Theorem 7.2]).
Thus, since 𝝂𝒅𝑚 ≤ 𝝂𝑚 ≤ (𝝂𝒅𝑚)

2, in the case when X is a Banach space, 𝑪𝑔 = 1 if and only if
𝒌𝒄𝑚 = 𝝂𝑚 = 1 for all 𝑚 ∈ N. Taking into account that for some constant C,

𝝂𝑚 ≤ 𝐶𝝂𝒅𝑚, 𝑚 ∈ N,

(see Proposition 8.1 below), equation (3.3) yields

1
𝐶1

max{𝒌𝑚, 𝝂𝑚} ≤ 𝑳𝑚 ≤ 𝐶2𝒌𝑚 𝝂𝑚, 𝑚 ∈ N,

for some constants𝐶1 and𝐶2. Thus, again, the attempt to obtain better asymptotic estimates for (𝑳𝑚)
∞
𝑚=1

using parameters larger than (𝝁𝑚)
∞
𝑚=1 is futile.

The vestiges of symmetry found in some bases can also be measured qualitatively by means of the
upper and lower democracy functions and using the concept of dominance between bases.

The upper superdemocracy function, also known as fundamental function, of a basis X of a quasi-
Banach space X is defined as

𝝋𝒖 (𝑚) = 𝝋𝒖 [X ,X] (𝑚) = sup
{��1𝜀,𝐴

�� : |𝐴| ≤ 𝑚, 𝜀 ∈ E𝐴
}
, 𝑚 ∈ N, (3.4)

while the lower superdemocracy function of X is

𝝋𝒍 (𝑚) = 𝝋𝒍 [X ,X] (𝑚) = inf
{��1𝜀,𝐴

�� : |𝐴| = 𝑚, 𝜀 ∈ E𝐴
}
, 𝑚 ∈ N.

A basis Y = (𝒚𝑛)
∞
𝑛=1 of a quasi-Banach space Y is said to dominate a basis X = (𝒙𝑛)

∞
𝑛=1 of a quasi-

Banach space X if there is a bounded linear map 𝑆 : X → Y such that 𝑆(𝒙𝑛) = 𝒚𝑛 for all 𝑛 ∈ N. If
‖𝑆‖ ≤ 𝐷, we will say that Y 𝐷-dominates X .

Roughly speaking, we are interested in bases that can be ‘squeezed’ (using domination) between two
symmetric bases with equivalent fundamental functions.
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Definition 3.1. A basis X of a quasi-Banach space X is said to be squeeze-symmetric if there are quasi-
Banach spaces X1 and X2 with symmetric bases X1 and X2 respectively such that

(a) 𝝋𝒖 [X1,X1] ≤ 𝝋𝒍 [X2,X2],
(b) X1 dominates X and
(c) X dominates X2.

Squeeze-symmetry guarantees in a certain sense the optimality of the compression algorithms with
respect to the basis (see [24]). For an approach to squeeze-symmetric bases from this angle, we refer
the reader to [1, 55, 17]. Squeeze-symmetry also serves in some situations as a tool to derive other
properties of the bases like being quasi-greedy for instance (see [34, 18, 13, 14, 6, 56]).

Although it was not originally given this name, squeeze-symmetry was introduced in [4] to highlight
a feature that had been implicit in greedy approximation with respect to bases since the early stages of
the theory. The techniques developed in [4, Section 9] show that squeeze-symmetric bases are closely
related to embeddings involving Lorentz sequence spaces. Before providing a precise formulation of
this connection, we recall that if a basis X = (𝒙𝑛)

∞
𝑛=1 of X is 1-symmetric, that is, equation (3.2) holds

with 𝐶1 = 𝐶2 = 1, then 𝝋𝒖 [X ,X] = 𝝋𝒍 [X ,X]. Note also that every symmetric basis is 1-symmetric
under a suitable renorming of the space; thus, there is no real restriction in assuming that all symmetric
bases are 1-symmetric.

Recall that a weight 𝝈 = (𝑠𝑚)
∞
𝑚=1 is the primitive weight of a weight 𝒘 = (𝑤𝑛)

∞
𝑛=1, in which case we

say that 𝒘 is the discrete derivative of 𝝈, if 𝑠𝑚 =
∑𝑚

𝑛=1 𝑤𝑛 for all 𝑚 ∈ N.

Theorem 3.2 (see [4, Equation (9.4), Lemma 9.3 and Theorem 9.12]). Let X be a quasi-Banach
space with a basis X . Let 𝒘 be the discrete derivative of the fundamental function of X . Then, X is
squeeze-symmetric if and only if the coefficient transform defines a bounded linear operator from X
into 𝑑1,∞(𝒘). Quantitatively, if we set Γ = inf 𝐷1𝐷2, where the infimum is taken over all 1-symmetric
bases X1 and X2 of quasi-Banach spaces X1 and X2 such that X1 𝐷1-dominates X , X 𝐷2-dominates
X2, and 𝝋𝒖 [X1,X1] ≤ 𝝋𝒖 [X2,X2], then there are constants 𝐶1 and 𝐶2 depending only on the modulus
of concavity of X such that

1
𝐶2

Γ ≤ ‖F ‖X→𝑑1,∞ (𝒘) ≤ 𝐶2Γ.

Theorem 3.2 serves as motivation to define a new kind of Lebesgue constants associated with an
arbitrary basis X , which will eventually be key in solving Temlyakov’s problem.

For each 𝑓 ∈ X, let (𝒂𝑚( 𝑓 ))∞𝑚=1 be the nonincreasing rearrangement of |F ( 𝑓 ) |. Note that, if we put

𝝍𝑚 = 𝝍𝑚 [X ,X] = sup
𝑓 ∈X\{0}

𝒂𝑚( 𝑓 )

‖ 𝑓 ‖
, 𝑚 ∈ N, (3.5)

then the norm of the coefficient transform as an operator from X into 𝑑1,∞(𝒘) is sup𝑚 𝝍𝑚𝝋𝒖 (𝑚). So,
for 𝑚 ∈ N, we define the mth squeeze-symmetry parameter of X ,

𝝀𝑚 = 𝝀𝑚 [X ,X] = 𝝍𝑚 [X ,X]𝝋𝒖 [X ,X] (𝑚).

We can also approach the definition of the squeeze-symmetry parameters from a functional angle. If
for 𝐴 ⊆ N finite, we denote by F𝐴 the projection of the coefficient transform onto A,

F𝐴 : X→ FN, 𝑓 ↦→ F ( 𝑓 )𝜒𝐴,

then

𝝀𝑚 [X ,X] = sup{‖F𝐴‖X→𝑑1,∞ (𝒘) : |𝐴| ≤ 𝑚}.
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Using that (𝒂𝑚 ( 𝑓 ))∞𝑚=1 is nonincreasing for all 𝑓 ∈ X yields the properties of (𝝀𝑚)∞𝑚=1 gathered in
the following lemma for further reference.
Lemma 3.3. LetX = (𝒙𝑛)

∞
𝑛=1 be a basis of a quasi-Banach spaceXwith coordinate functionals (𝒙∗𝑛)∞𝑛=1,

and let 𝑚 ∈ N.
(i) 1/𝝍𝑚 is the infimum value of ‖ 𝑓 ‖, where f runs over all functions in X with{𝑛 ∈ N :

𝒙∗𝑛 ( 𝑓 ) ≥ 1}
 ≥ 𝑚.

(ii) 𝝀𝑚 [X ,X] is the smallest constant C such that 𝑡
��1𝜀,𝐴

�� ≤ 𝐶‖ 𝑓 ‖ whenever 𝑡 ∈ [0,∞), 𝑓 ∈ X,
𝐴 ⊆ N and 𝜀 ∈ E𝐴 satisfy

|𝐴| ≤ min{𝑚,
{𝑛 ∈ N :

𝒙∗𝑛 ( 𝑓 ) ≥ 𝑡}}.
(iii) 𝝀𝑚 [X ,X] is the smallest constant C such that

min
𝑛∈𝐵

𝒙∗𝑛 ( 𝑓 ) ��1𝜀,𝐴

�� ≤ 𝐶‖ 𝑓 ‖

whenever 𝐴 ⊆ N, 𝜀 ∈ E𝐴 and B is a greedy set of 𝑓 ∈ X with |𝐴| = |𝐵 | ≤ 𝑚.
In particular, the sequence (𝝍𝑚)

∞
𝑚=1 is nonincreasing and (𝝀𝑚)

∞
𝑚=1 is nondecreasing.

Although the parameters 𝝀𝑚 could appear to be nonintuitive at first glance, it should be understood
that they capture a very natural feature of a basis, namely, the inverse of 𝝀𝑚 is the optimal constant which
bounds below the norm of vectors whose coefficients are greater than 1/𝝋𝒖 (𝑚) on a set of cardinality m.
In other words, 𝝀𝑚 is the inverse of the distance from the origin to such set of vectors.

3.2. Optimal estimates in terms of the squeeze-symmetry parameters

We get started with a lemma which connects some important constants that we will need by using the
p-convexitity techniques developed in [4, Section 2]. The symbol 𝚼 stands for 2 if F = R, and for 4 if
F = C.
Lemma 3.4. Let 0 < 𝑝 ≤ 1, and let X be a basis of a p-Banach space X. Given 𝐴 ⊆ N finite, 𝑓 ∈ X
and 𝛿 = (𝛿𝑛)𝑛∈𝐴 ∈ E𝐴, we put

𝐾 [𝐴, 𝑓 ] = sup{‖ 𝑓 +
∑

𝑛∈𝐴 𝑎𝑛 𝒙𝑛‖ : |𝑎𝑛 | ≤ 1},
𝐿 [𝐴, 𝑓 ] = sup{

��1𝜀,𝐴 + 𝑓
�� : 𝜀 ∈ E𝐴},

𝑀 [𝛿, 𝐴, 𝑓 ] = sup{‖ 𝑓 +
∑

𝑛∈𝐴 𝑎𝑛 𝛿𝑛 𝒙𝑛‖ : 0 ≤ 𝑎𝑛 ≤ 1}, and
𝑁 [𝛿, 𝐴, 𝑓 ] = sup{

��1𝛿,𝐵 + 𝑓
�� : 𝐵 ⊆ 𝐴}.

Set 𝐶𝑝 = 𝚼1/𝑝 if 𝑓 = 0 and 𝐶𝑝 = (1 + 𝚼)1/𝑝 otherwise. Then:

𝐾 [𝐴, 𝑓 ] ≤ min{𝐶𝑝 𝑀 [𝛿, 𝐴, 𝑓 ], 𝐴𝑝 𝐿 [𝐴, 𝑓 ]} and
𝑀 [𝛿, 𝐴, 𝑓 ] ≤ 𝐴𝑝 𝑁 [𝛿, 𝐴, 𝑓 ] .

Proof. In the case when F = C, set 𝛾 𝑗 = 𝑖 𝑗 for 𝑗 = 1, 2, 3, 4. In the case when F = R, set 𝛾 𝑗 = (−1) 𝑗
for 𝑗 = 1, 2. Given (𝑎𝑛)𝑛∈𝐴 ∈ F𝐴 with |𝑎𝑛 | ≤ 1, there are (𝑎 𝑗 ,𝑛)𝑛∈𝐴 ∈ F𝐴, 𝑗 ∈ N, 1 ≤ 𝑗 ≤ 𝚼, in [0, 1]
such that 𝑎𝑛 =

∑4
𝑗=1 𝛾 𝑗𝑎 𝑗 ,𝑛. The identity

𝑔 := 𝑓 +
∑
𝑛∈𝐴

𝑎𝑛 𝒙𝑛 = 𝑓 +
𝚼∑
𝑗=1
𝛾 𝑗

(
𝑓 +

∑
𝑛∈𝐴

𝑎 𝑗 ,𝑛 𝒙𝑛

)
gives ‖𝑔‖ ≤ 𝐶𝑝𝑀 [𝛿, 𝐴, 𝑓 ]. The other inequalities follow readily from [4, Corollary 2.3]. �
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With all the previous ingredients, we are now in a position to provide a satisfactory answer to
Temlyakov’s question by means of the squeeze-symmetry parameters.

Theorem 3.5. Let X be a basis of a quasi-Banach space X. There are constants 𝐶1 and 𝐶2 (depending
only on the modulus of concavity of X) such that

1
𝐶1

𝑳𝑚 [X ,X] ≤ max{𝝀𝑚 [X ,X], 𝒌𝑚 [X ,X]} ≤ 𝐶2 𝑳𝑚 [X ,X], 𝑚 ∈ N.

Proof. Let us first note that by equation (1.1), we can replace 𝒌𝑚 with 𝒌𝒄𝑚. The inequality

𝒌𝒄𝑚 ≤ 𝑳𝑚, 𝑚 ∈ N, (3.6)

can be deduced from the fact that, given 𝑓 ∈ X and 𝐴 ⊆ N finite, there is ℎ ∈ span(𝒙𝑛 : 𝑛 ∈ 𝐴) such
that A is a greedy set of 𝑓 + ℎ (see [29]). Thus, to complete the proof it suffices to show that

𝑳𝑚 ≤ 𝐶1 max{𝝀𝑚, 𝒌𝒄𝑚} (3.7)

and

𝝀𝑚 ≤ 𝐶2 max{𝒌𝒄𝑚, 𝑳𝑚} (3.8)

for all 𝑚 ∈ N and some constants 𝐶1 and 𝐶2.
To show equation (3.7), assume that X is a p-Banach space, 0 < 𝑝 ≤ 1. Let A be a greedy set of

𝑓 ∈ X with |𝐴| = 𝑚 < ∞, and pick 𝑧 =
∑

𝑛∈𝐵 𝑎𝑛 𝒙𝑛 with |𝐵 | = |𝐴|. Notice that

max
𝑛∈𝐵\𝐴

𝒙∗𝑛 ( 𝑓 ) ≤ min
𝑛∈𝐴\𝐵

𝒙∗𝑛 ( 𝑓 ) = min
𝑛∈𝐴\𝐵

𝒙∗𝑛 ( 𝑓 − 𝑧).
Set 𝑘 = |𝐵 \ 𝐴| = |𝐴 \ 𝐵 |. On one hand, by Lemma 3.3(ii) and Lemma 3.4,��𝑆𝐵\𝐴( 𝑓 )�� ≤ 𝐴𝑝𝝀𝑚‖ 𝑓 − 𝑧‖.

On the other hand, since |𝐴 ∪ 𝐵 | = 𝑚 + 𝑘 ,��( 𝑓 − 𝑧) − 𝑆𝐴∪𝐵) ( 𝑓 − 𝑧)�� ≤ 𝒌𝒄𝑚+𝑘 ‖ 𝑓 − 𝑧‖ ≤ 𝒌𝒄2𝑚‖ 𝑓 − 𝑧‖.

Since

𝑓 − 𝑆𝐴( 𝑓 ) = ( 𝑓 − 𝑧) − 𝑆𝐴∪𝐵 ( 𝑓 − 𝑧) + 𝑆𝐵\𝐴( 𝑓 ),

combining both inequalities gives

‖ 𝑓 − 𝑆𝐴( 𝑓 )‖
𝑝 ≤

(
(𝒌𝒄2𝑚)

𝑝 + (𝐴𝑝𝝀𝑚)
𝑝 ) ‖ 𝑓 ‖ 𝑝

≤
(
1 + 2(𝒌𝑚) 𝑝 + (𝐴𝑝𝝀𝑚)

𝑝 ) ‖ 𝑓 ‖ 𝑝 .
Let us now prove inequality (3.8). In order to apply Lemma 3.3(iii), we pick 𝐴 ⊆ N, 𝑓 ∈ X and B

greedy set of f with |𝐴| = |𝐵 | ≤ 𝑚. Set 𝑡 = min𝑛∈𝐵
𝒙∗𝑛 ( 𝑓 ), and pick (𝑎𝑛)𝑛∈𝐴∪𝐵 in [0, 𝑡]. Let us put

𝑦 =
∑
𝑛∈𝐵

𝑎𝑛 𝜀𝑛 ( 𝑓 ) 𝒙𝑛, 𝑧 =
∑

𝑛∈𝐴\𝐵

𝑎𝑛 𝜀𝑛 ( 𝑓 ) 𝒙𝑛

and 𝑔 = 𝑓 − 𝑧. On the one hand, since |𝐴 \ 𝐵 | ≤ |𝐵 |, B is a greedy set of g and 𝑔−𝑆𝐵 (𝑔) = 𝑓 −𝑆𝐵 ( 𝑓 )− 𝑧,
we have

‖ 𝑓 − 𝑆𝐵 ( 𝑓 ) − 𝑧‖ ≤ 𝑳𝑚‖𝑔 + 𝑧‖ = 𝑳𝑚‖ 𝑓 ‖.
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On the other hand, since
𝒙∗𝑛 ( 𝑓 − 𝑦) ≤ 𝒙∗𝑛 ( 𝑓 ) and sign(𝒙∗𝑛 ( 𝑓 − 𝑦)) = sign(𝒙∗𝑛 ( 𝑓 )) for all 𝑛 ∈ 𝐵,

applying [4, Corollary 2.3] yields

‖ 𝑓 − 𝑆𝐵 ( 𝑓 ) + 𝑦‖ = ‖ 𝑓 − 𝑆𝐵 ( 𝑓 − 𝑦)‖ ≤ 𝐴𝑝𝒌
𝒄
𝑚‖ 𝑓 ‖.

Combining both estimates, we obtain

‖𝑦 − 𝑧‖ ≤
(
(𝐴𝑝 (𝒌

𝒄
𝑚)

𝑝 + (𝑳𝑚)
𝑝 )1/𝑝

‖ 𝑓 ‖.

Hence, by Lemma 3.4, ����� ∑
𝑛∈𝐴∪𝐵

𝑏𝑛 𝒙𝑛

����� ≤ 𝚼1/𝑝 ((𝐴𝑝 𝒌𝒄𝑚)
𝑝 + (𝑳𝑚)

𝑝 )1/𝑝
‖ 𝑓 ‖.

Applying this inequality with 𝑏𝑛 = 0 for all 𝑛 ∈ 𝐵 \ 𝐴 and |𝑏𝑛 | = 1 for all 𝑛 ∈ 𝐴, we are done. �

4. Almost greedy Lebesgue constants

In greedy approximation with respect to bases, it is also of interest to compare the error ‖ 𝑓 − G𝑚 ( 𝑓 )‖
with the best error in the approximation of f by m-term coordinate projections. Thus, given a basis X
of a quasi-Banach space X, for 𝑚 ∈ N we put

�̃�𝑚 [X ,X] ( 𝑓 ) := �̃�𝑚( 𝑓 ) = inf{‖ 𝑓 − 𝑆𝐴( 𝑓 )‖ : |𝐴| = 𝑚}

and define the mth almost greedy constant as

𝑳𝒂
𝑚 = 𝑳𝒂

𝑚 [X ,X] = sup
{
‖ 𝑓 − G𝑚 ( 𝑓 )‖

�̃�𝑚( 𝑓 )
: 𝑓 ∈ X \ Σ𝑚

}
.

By definition [19], the basis X is almost greedy if and only if sup𝑚 𝑳𝒂
𝑚 < ∞. Roughly speaking, if

the Lebesgue constants 𝑳𝑚 measure how far a basis is from being greedy, it could be said that the
parameters 𝑳𝒂

𝑚 quantify how far a basis is from being almost greedy. In this section, we estimate the
size of these parameters in terms of the squeeze-symmetry parameters and the so-called quasi-greedy
parameters, which in turn measure how far a basis is from being quasi-greedy.

Similarly to the Lebesgue constant 𝑳𝑚, the almost greedy constant 𝑳𝒂
𝑚 is the optimal constant C

such that

‖ 𝑓 − 𝑆𝐴( 𝑓 )‖ ≤ 𝐶�̃�𝑘 ( 𝑓 ), 𝐴 greedy set of 𝑓 , 𝑘 ≤ |𝐴| ≤ 𝑚, (4.1)

(see [2, Lemma 2.2] and [4, Lemma 6.1]), and this implies that the sequence (𝑳𝒂
𝑚)

∞
𝑚=1 is nonincreasing.

The mth quasi-greedy constant 𝒈𝑚 and its complemented counterpart 𝒈𝒄𝑚 are defined by

𝒈𝑚 = sup
1≤𝑘≤𝑚

‖G𝑘 ‖, 𝒈𝒄𝑚 = sup
1≤𝑘≤𝑚

‖IdX − G𝑘 ‖.

Similarly to the unconditionality parameters, in the case when X is a p-Banach space, these parameters
are related by the inequalities

(𝒈𝑚)
𝑝 ≤ 1 + (𝒈𝒄𝑚)

𝑝 and (𝒈𝒄𝑚)
𝑝 ≤ 1 + (𝒈𝑚)

𝑝 .

A perturbation technique similar to the one used when dealing with the Lebesgue and the almost greedy
constants gives that 𝒈𝒄𝑚 is the smallest constant C such that

‖ 𝑓 − 𝑆𝐴( 𝑓 )‖ ≤ 𝐶‖ 𝑓 ‖, 𝐴 greedy set of 𝑓 , |𝐴| ≤ 𝑚,

https://doi.org/10.1017/fms.2022.102 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.102


Forum of Mathematics, Sigma 13

and the quasi-greedy constant 𝒈𝑚 is the smallest constant C such that

‖𝑆𝐴( 𝑓 )‖ ≤ 𝐶‖ 𝑓 ‖, 𝐴 greedy set of 𝑓 , |𝐴| ≤ 𝑚. (4.2)

Since a basis is almost greedy if and only if it is quasi-greedy and democratic (see [19, Theorem 3.3]
and [4, Theorem 6.3]), it seems natural to look for democracy-like parameters which, when combined
with the quasi-greediness parameters, provide optimal bounds for the growth of the almost greedy
constants. For this purpose, we define the disjoint squeeze-symmetry parameter 𝝀𝒅𝑚 = 𝝀𝒅𝑚 [X ,X] as the
smallest constant C such that

min
𝑛∈𝐵

𝒙∗𝑛 ( 𝑓 ) ��1𝜀,𝐴

�� ≤ 𝐶‖ 𝑓 ‖

whenever 𝐴 ⊆ N, 𝜀 ∈ E𝐴 and B greedy set of 𝑓 ∈ X satisfy 𝐴 ∩ supp( 𝑓 ) = ∅ and |𝐴| = |𝐵 | ≤ 𝑚. The
following estimates imply that a basis is squeeze-symmetric if and only if sup𝑚 𝝀𝒅𝑚 < ∞.

Lemma 4.1. Let X be a basis of a quasi-Banach space X. Then

𝝀𝒅𝑚 [X ,X] ≤ 𝝀𝑚 [X ,X] ≤ (𝝀𝒅𝑚 [X ,X])2.

Proof. Lemma 3.3 (iii) yields the left-hand side inequality. Let A and B be disjoint sets with
|𝐴| = |𝐵 | = 𝑚. Then ��1𝜀,𝐴

�� ≤ 𝝀𝒅𝑚
��1𝛿,𝐵

��
for all 𝜀 ∈ E𝐴 and 𝛿 ∈ E𝐵. Since we can restrict ourselves to finitely supported vectors, combining this
fact with Lemma 3.3 (iii) yields the right-hand side inequality. �

Theorem 4.2. Let X be a basis of a quasi-Banach space X. There are constants 𝐶1 and 𝐶2 depending
only on the modulus of concavity of X such that

1
𝐶1

𝑳𝒂
𝑚 [X ,X] ≤ max{𝝀𝒅𝑚 [X ,X], 𝒈𝑚 [X ,X]} ≤ 𝐶2𝑳

𝒂
𝑚 [X ,X], 𝑚 ∈ N.

Proof. Assume that X is a p-Banach space, 0 < 𝑝 ≤ 1. Inequality (4.1) yields 𝒈𝒄𝑚 ≤ 𝑳𝒂
𝑚 (see [13,

Proposition 1.1]). To conclude the proof of the right side estimate, we pick 𝐴 ⊆ N, 𝜀 ∈ E𝐴, 𝑓 ∈ X and
B greedy set of f with |𝐴| = |𝐵 | ≤ 𝑚 and 𝐴∩ supp( 𝑓 ) = ∅. Set 𝑡 = min𝑛∈𝐵

𝒙∗𝑛 ( 𝑓 ). Taking into account
that B is a greedy set of 𝑔 := 𝑓 + 𝑡1𝜀,𝐴 and that 𝑡1𝜀,𝐴 = 𝑔 − 𝑆𝐵 (𝑔) − ( 𝑓 − 𝑆𝐵 ( 𝑓 )), we obtain

𝑡
��1𝜀,𝐴

��𝑝 ≤ ‖𝑔 − 𝑆𝐵 ( 𝑓 )‖
𝑝 + ‖ 𝑓 − 𝑆𝐵 ( 𝑓 )‖

𝑝

≤ (𝑳𝒂
𝑚)

𝑝 ‖𝑔 − 𝑆𝐴(𝑔)‖
𝑝 + (𝒈𝒄𝑚)

𝑝 ‖ 𝑓 ‖ 𝑝

= ((𝑳𝒂
𝑚)

𝑝 + (𝒈𝒄𝑚)
𝑝)‖ 𝑓 ‖ 𝑝 .

To prove the left side estimate, we pick a greedy set A of 𝑓 ∈ X and 𝐵 ⊆ N with |𝐴| = |𝐵 | = 𝑚.
Notice that |𝐴 \ 𝐵 | = |𝐵 \ 𝐴| ≤ 𝑚, that 𝐴 \ 𝐵 is a greedy set of 𝑔 := 𝑓 − 𝑆𝐵 ( 𝑓 ), that

𝑔 − 𝑆𝐴\𝐵 (𝑔) = 𝑓 − 𝑆𝐴∪𝐵 ( 𝑓 ) and 𝑓 − 𝑆𝐴( 𝑓 ) = 𝑓 − 𝑆𝐴∪𝐵 ( 𝑓 ) + 𝑆𝐵\𝐴( 𝑓 )

and that

max
𝑛∈𝐴\𝐵

𝒙∗𝑛 ( 𝑓 ) ≤ min
𝑛∈𝐵\𝐴

𝒙∗𝑛 (𝑔).
https://doi.org/10.1017/fms.2022.102 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.102


14 F. Albiac, J. L. Ansorena and P. M. Berná

Hence, applying Lemma 3.4 we obtain

‖ 𝑓 − 𝑆𝐴( 𝑓 )‖
𝑝 = ‖ 𝑓 − 𝑆𝐴∪𝐵 ( 𝑓 )‖

𝑝 +
��𝑆𝐵\𝐴( 𝑓 )��𝑝 ≤ 𝐶 𝑝 ‖𝑔‖ 𝑝 ,

where 𝐶 𝑝 = (𝒈𝒄𝑚)
𝑝 + (𝐴𝑝𝝀

𝒅
𝑚)

𝑝. Consequently, 𝑳𝒂
𝑚 ≤ 𝐶. �

5. Lebesgue-type inequalities for truncation quasi-greedy bases

Democracy and unconditionality are a priori independent properties of each other, so we can regard
them as the disjoint components of greedy bases. In the same way, quasi-greediness is a weakened
form of unconditionality which complements democracy to give almost greedy bases. The overlapping
between squeeze-symmetry and unconditionality can also be identified. For that, let us first introduce
the corresponding unconditionality-like property.

Given a basis X is a quasi-Banach space X, and 𝐴 ⊆ N finite, we consider the nonlinear operator

R𝐴( 𝑓 ) = R𝐴[X ,X] ( 𝑓 ) = min
𝑛∈𝐴

𝒙∗𝑛 ( 𝑓 )1𝜀 ( 𝑓 ) ,𝐴, 𝑓 ∈ X.

Now, for 𝑚 ∈ N, we define the mth restricted truncation operator of the basis X as

R𝑚 : X→ X, 𝑓 ↦→ R𝐴𝑚 ( 𝑓 ) ( 𝑓 )

and the mth-truncation quasi-greedy parameter as

𝒓𝑚 = 𝒓𝑚 [X ,X] = sup
1≤𝑘≤𝑚

‖R𝑘 ‖.

Those bases for which the restricted truncations operators are uniformly bounded, that is, sup𝑚 𝒓𝑚 < ∞,
will be called truncation quasi-greedy. A standard approximation argument gives

𝒓𝑚 = sup
{
‖R𝐴( 𝑓 )‖

‖ 𝑓 ‖
: 𝐴 greedy set of 𝑓 ∈ X \ {0}, |𝐴| ≤ 𝑚

}
.

Hence, (𝒓𝑚)∞𝑚=1 is nondecreasing.
Quasi-greedy bases are truncation quasi-greedy. This result, and the quantitative estimates associated

with it, deserve a detailed explanation. If X is a Banach space, for 𝑚 ∈ N,

𝒓𝑚 [X ,X] ≤ 𝒈𝑚 [X ,X] (5.1)

(see the proofs of [55, Theorem 3], [19, Lemma 2.2] or [2, Theorem 2.4]). However, the argument
that shows inequality (5.1) does not transfer to nonlocally convex quasi-Banach spaces. The authors
circumvented in [4] the use of convexity at the cost of getting worse estimates. In fact, ifX is a p-Banach
space, 0 < 𝑝 < 1, the proof of [4, Theorem 4.8] gives

𝒓𝑚 ≤ 𝒈𝑚𝜂𝑝 (𝒈𝑚), 𝑚 ∈ N,

where 𝜂𝑝 is the function defined in [4, Equation (4.5)]. Hence, (see [4, Remark 4.9]) there is a constant
C (independent of p) such that

𝒓𝑚 [X ,X] ≤ 𝐶 (𝒈𝑚 [X ,X])1+1/𝑝 , 𝑚 ∈ N, 0 < 𝑝 < 1, X 𝑝-Banach. (5.2)

With an eye to relating the truncation quasi-greedy and democracy parameters with the squeeze-
symmetry parameters, we write down a general lemma that will be useful in applications.

Lemma 5.1. Let 0 < 𝑝, 𝑞 ≤ 1. Assume that a basis Y of a q-Banach space Y 𝐶-dominates a basis X
of a p-Banach space X. Then
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𝝀𝑚 [X ,X] ≤ 𝚼1/𝑝+1/𝑞𝐴𝑝𝐴𝑞𝐶𝜃𝑚𝒓𝑚 [Y ,Y], 𝑚 ∈ N,

where

𝜃𝑚 = sup
1≤ |𝐴 |= |𝐵 | ≤𝑚

‖1𝐴[X ,X]‖
‖1𝐵 [Y ,Y]‖

.

Proof. Let 𝐴 ⊆ N, 𝜀 ∈ E𝐴, 𝑓 ∈ X finitely supported and B a greedy set of f with |𝐴| = |𝐵 | ≤ 𝑚. Set
𝑡 = min𝑛∈𝐵

𝒙∗𝑛 ( 𝑓 ). Applying Lemma 3.4 we obtain�����∑
𝑛∈𝐵

𝑎𝑛 𝒚𝑛

����� ≤ 𝚼1/𝑞𝐴𝑞 𝒓𝑚 [Y ,Y]‖𝑆( 𝑓 )‖, |𝑎𝑛 | ≤ 𝑡.

Hence,

𝑡‖1𝐸 [X ,X]‖ ≤ 𝚼1/𝑞𝐴𝑞𝐶𝜃𝑚𝒓𝑚 [Y ,Y]‖ 𝑓 ‖, 𝐸 ⊆ 𝐴.

We get the desired inequality by applying again Lemma 3.4. �

The quantitative estimates we obtain in Proposition 5.2 imply that a basis is squeeze-symmetric if
and only if it is truncation quasi-greedy and democratic (see [4, Proposition 9.4 and Corollary 9.15]).
Proposition 5.2. Let X be a basis of a p-Banach space, 0 < 𝑝 ≤ 1. Then, for all 𝑚 ∈ N,

𝝁𝑚 ≤ 𝝀𝒅𝑚 and 𝒓𝑚 ≤ 𝝀𝑚 ≤ 𝚼2/𝑝𝐴2
𝑝 𝒓𝑚𝝁𝑚. (5.3)

Proof. Using Lemma 5.1 with X = Y and X = Y yields the right-hand side of the second inequality.
The other two inequalities are straightforward. �

Proposition 5.2 yields in particular that the squeeze-symmetry parameters and the democracy param-
eters of truncation quasi-greedy bases are of the same order. Thus, combining that with Theorem 3.5
gives the following improvement of Theorem 1.1.
Theorem 5.3. LetX be an truncation quasi-greedy basis of a quasi-Banach spaceX. There are constants
𝐶1 and 𝐶2 depending on the modulus of concavity of X and the truncation quasi-greedy constant of X
such that

1
𝐶1

𝑳𝑚 ≤ max{𝒌𝑚, 𝝁𝑚} ≤ 𝐶2𝑳𝑚, 𝑚 ∈ N.

We close this section with the almost greedy counterpart of Theorem 5.3.
Theorem 5.4. Let X be a truncation quasi-greedy basis of a quasi-Banach spaceX. There are constants
𝐶1 and 𝐶2 depending on the modulus of concavity of X and the truncation quasi-greedy constant of X
such that

1
𝐶1

𝑳𝒂
𝑚 ≤ max{𝒈𝑚, 𝝁𝑚} ≤ 𝐶2𝑳

𝒂
𝑚, 𝑚 ∈ N.

Proof. It follows by combining Theorem 4.2 with Proposition 5.2. �

6. Squeeze-symmetry versus unconditionality

Proposition 5.2 shows that squeeze-symmetry and unconditionality are intertwined. This overlapping
can be regarded from a different angle since squeezing a basis X between two symmetric bases yields
estimates for the unconditionality parameters of X . To give a precise formulation of this analysis, we
introduce some additional terminology.
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Given two bases X = (𝒙𝑛)
∞
𝑛=1 and Y = (𝒚𝑛)

∞
𝑛=1 of quasi-Banach spaces X and Y, 𝜹𝑚 [X ,Y] will

denote for each 𝑚 ∈ N the smallest constant C such that�����∑
𝑛∈𝐴

𝒚∗𝑛 ( 𝑓 ) 𝒙𝑛

����� ≤ 𝐶‖ 𝑓 ‖, |𝐴| = 𝑚, 𝑓 ∈ Y.

Notice that 𝒌𝑚 [X ,X] = 𝜹𝑚 [X ,X ].
Thanks to these parameters, we can give an alternative reinterpretation of the fundamental function

of a basis X . In fact, if X is a p-Banach space, by Lemma 3.4,

𝝋𝒖 [X ,X] (𝑚) ≤ 𝜹𝑚 [X , ℓ∞] ≤ 𝐴𝑝 𝝋𝒖 [X ,X] (𝑚), 𝑚 ∈ N. (6.1)

Here and subsequently, whenever the unit vector system B = (𝒆𝑛)
∞
𝑛=1 is a basis of a quasi-Banach

space Y, we will write 𝜹𝑚 [X ,Y] instead of 𝜹𝑚 [X ,B]; we will proceed analogously when X is the unit
vector system of X.

In the case when the bases X and Y are 1-symmetric or, more generally, 1-subsymmetric (see [11]),
𝜹𝑚 [X ,Y] is the smallest constant C such that����� 𝑚∑

𝑛=1
𝑎𝑛 𝒚𝑛

����� ≤ 𝐶

����� 𝑚∑
𝑛=1
𝑎𝑛 𝒙𝑛

�����, 𝑎𝑛 ≥ 0.

Lemma 6.1. Let X , X1 and X2 be bases of a quasi-Banach spaces X, X1 and X2 respectively. Suppose
that X = (𝒙𝑛)

∞
𝑛=1 𝐷-dominates X2. For each 𝐴 ⊆ N finite, let 𝑇𝐴 : X1 → X be the operator given by

𝑇𝐴( 𝑓 ) =
∑
𝑛∈𝐴

𝑎𝑛 𝒙𝑛, (𝑎𝑛)
∞
𝑛=1 = F [X1,X1] ( 𝑓 ).

Set 𝜁𝑚 = sup |𝐴 | ≤𝑚‖𝑇𝐴‖. Then, for 𝑚 ∈ N,

𝒌𝑚 [X ,X] ≤ 𝐷𝜁𝑚𝜹𝑚 [X1,X2], and
𝝀𝑚 [X ,X] ≤ 𝐷𝜁𝑚𝝀𝑚 [X1,X1] 𝜹𝑚 [X1,X2] .

Proof. We will only prove the second inequality because it is more general. Given 𝑓 ∈ X, let 𝑔 ∈ X1 be
such that F (𝑔) = F ( 𝑓 )𝜒𝐴, and let ℎ ∈ X2 be such that F (ℎ) = F ( 𝑓 ). We have

‖𝑔‖ ≤ 𝜹𝑚 [X1,X2]‖ℎ‖, ‖ℎ‖ ≤ 𝐷𝜹𝑚 [X1,X2]‖ 𝑓 ‖

and, since 𝑆𝐴( 𝑓 ) = 𝑇𝐴(𝑔),

‖𝑆𝐴( 𝑓 )‖ ≤ 𝜁𝑚‖𝑔‖.

Finally, if A is a greedy set of f and |𝐵 | = |𝐴|,

‖1𝐴[X ,X]‖ ≤ 𝜁𝑚‖1𝐴[X1,X1]‖ ≤ 𝝀𝑚 [X1,X1] ‖𝑇𝐴(𝑔)‖. �

Despite the fact that we stated Lemma 6.1 in wide generality, in practice we will only apply it in the
case when X1 and X2 are 1-symmetric, in which case 𝝀𝑚 [X1,X1] = 1 and therefore the parameters 𝜹𝑚
are easy to compute. We also point out that the best-case scenario occurs when X1 dominates X so that
sup𝑚 𝜁𝑚 < ∞. With an eye to applying Lemma 6.1 to estimating Lebesgue constants, we record the
parameters 𝜹𝑚 in some important situations.

𝜹𝑚 [ℓ𝑝 , ℓ𝑞] = 𝑚
1/𝑝−1/𝑞 , 𝑚 ∈ N, 𝑝 ≤ 𝑞. (6.2)
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Given a nondecreasing weight 𝝈 = (𝑠𝑚)
∞
𝑚=1, we set

𝐻𝑚 [𝝈] =
𝑚∑
𝑛=1

𝑠𝑛 − 𝑠𝑛−1
𝑠𝑛

.

If 𝒘 is a weight whose primitive weight 𝝈 is doubling, then for any 0 < 𝑝 < ∞,

𝜹𝑚 [𝑑1, 𝑝 (𝒘), 𝑑1,∞(𝒘)] = (𝐻𝑚 [𝝈])
1/𝑝, 𝑚 ∈ N. (6.3)

Remark 6.2. A weight 𝝈 = (𝑠𝑚)
∞
𝑚=1 is said to have the upper regularity property (URP for short) if

there is 𝑟 ∈ N such that

𝑠𝑟𝑚 ≤
1
2
𝑟𝑠𝑚, 𝑚 ∈ N,

and is said to have the lower regularity property (LRP for short) if there is 𝑟 ∈ N such that

𝑠𝑟𝑚 ≥ 2𝑠𝑚, 𝑚 ∈ N.

The weight 𝝈 has the LRP if and only if 𝝈∗ = (𝑚/𝑠𝑚)
∞
𝑚=1 has the URP. Moreover, if 𝝈 has the URP,

there is a constant C such that
𝑚∑
𝑛=1

1
𝑠𝑛

≤ 𝐶
𝑚

𝑠𝑚
, 𝑚 ∈ N,

(see [19, Section 4]). Hence, if 𝝈 has the LRP, there is a constant C such that
𝑚∑
𝑛=1

𝑠𝑛
𝑛

≤ 𝐶𝑠𝑚 =
𝑚∑
𝑛=1
𝑠𝑛 − 𝑠𝑛−1, 𝑚 ∈ N.

Using that 1/𝑠𝑛 is nonincreasing, we infer that

𝐻𝑚 :=
𝑚∑
𝑛=1

1
𝑛
=

𝑚∑
𝑛=1

𝑠𝑛
𝑛

1
𝑠𝑛

≤ 𝐶𝐻𝑚 [𝝈], 𝑚 ∈ N.

The reverse inequality holds for general doubling weights. Indeed, since inf𝑛 𝑠𝑛/𝑠𝑛+1 > 0, for every
𝛼 > 0 there is a constant 𝐶1 such that

𝑠𝑛 − 𝑠𝑛−1
𝑠𝑛

≤ 𝐶1
𝑠𝛼𝑛 − 𝑠𝛼𝑛−1
𝑠𝛼𝑛

, 𝑛 ∈ N.

Moreover, for 𝛼 small enough,

𝐶2 := sup
𝑛≤𝑚

𝑛

𝑚

𝑠𝛼𝑚
𝑠𝛼𝑛
< ∞.

Therefore,

𝑠𝛼𝑚 ≤ 𝐶2

𝑚∑
𝑛=1

𝑠𝛼𝑛
𝑛
, 𝑚 ∈ N.

Summing up,

𝐻𝑚 [𝝈] ≤ 𝐶1

𝑚∑
𝑛=1

𝑠𝛼𝑛 − 𝑠𝛼𝑛−1
𝑠𝛼𝑛

≤ 𝐶1𝐶2𝐻𝑚, 𝑚 ∈ N.
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7. The thresholding greedy algorithm, greedy parameters and duality

An important research topic in approximation theory using bases is the study of the duality properties of
the TGA. This section is motivated by the attempt to make headway in the following general question:
If a basis X enjoys some greedy-like property, what can be said about its dual basis X ∗ in this regard?
To that end, we need to introduce the bidemocracy parameters of X ,

𝑩𝑚 [X ,X] =
1
𝑚
𝝋𝒖 [X ,X] (𝑚)𝝋𝒖 [X ∗,X∗] (𝑚), 𝑚 ∈ N.

The basis X is bidemocratic [19] if and only if sup𝑚 𝑩𝑚 < ∞ (see, e.g., [4, Lemma 5.5]).
Proposition 7.1. Let X be a basis of a quasi-Banach space X. Then

max{𝝀𝑚 [X ,X], 𝝀𝑚 [X ∗,X∗]} ≤ 𝑩𝑚 [X ,X], 𝑚 ∈ N.

Proof. Let 𝑓 ∈ X, 𝑓 ∗ ∈ X∗ and 𝐵 ⊆ N with |𝐵 | = 𝑚. We have

‖ 𝑓 ∗‖ ≥
𝑓 ∗(1

𝜀 ( 𝑓 ∗) ,𝐵
[X ,X])

𝝋𝒖 [X ,X] (𝑚)
=

∑
𝑛∈𝐵 | 𝑓

∗(𝒙𝑛) |

𝝋𝒖 [X ,X] (𝑚)
, and

‖ 𝑓 ‖ =
‖ 𝑓 ‖

���1𝜀 ( 𝑓 ) ,𝐵
[X ∗,X∗]

������1𝜀 ( 𝑓 ) ,𝐵
[X ∗,X∗]

��� ≥
1
𝜀 ( 𝑓 ) ,𝐵

[X ∗,X∗] ( 𝑓 )

𝝋𝒖 [X ∗,X∗] (𝑚)
=

∑
𝑛∈𝐵

𝒙∗𝑛 ( 𝑓 )
𝝋𝒖 [X ∗,X∗] (𝑚)

.

Thus, if
{𝑛 :

𝒙∗𝑛 ( 𝑓 ) ≥ 1}
 ≥ 𝑚 and |{𝑛 : | 𝑓 ∗(𝒙𝑛) | ≥ 1}| ≥ 𝑚, we deduce that

‖ 𝑓 ‖ ≥
𝑚

𝝋𝒖 [X ∗,X∗] (𝑚)
, ‖ 𝑓 ∗‖ ≥

𝑚

𝝋𝒖 [X ,X] (𝑚)
.

We conclude the proof by applying Lemma 3.3 (i). �

Proposition 7.1 is a quantitative version of [4, Proposition 5.7]. When combined with Theorem 3.5
and Theorem 4.2, it leads to linear estimates for the Lebesgue constants in terms of the bidemocracy
parameters.
Theorem 7.2. Let X be a basis of a quasi-Banach space X. Then there are constants C and D such
that, for all 𝑚 ∈ N,

𝑳𝑚 ≤ 𝐶max{𝒌𝑚, 𝑩𝑚}, (7.1)

and

𝑳𝒂
𝑚 ≤ 𝐷max{𝒈𝑚, 𝑩𝑚}.

Inequality (7.1) was proved in the locally convex setting in [3, Theorem 2.3 and Theorem 1.3] with
the purpose of finding bounds for the growth of the greedy constant of the 𝐿𝑝-normalized Haar system
as p either increases to ∞ or decreases to 1.

Since the unconditionality parameters are defined in terms of linear operators, they dualize as
expected, that is,

𝒌𝑚 [X ∗,X∗] ≤ 𝒌𝑚 [X ,X], 𝑚 ∈ N.

The reverse inequality also holds in the case when X is a Banach space. Consequently, by Theorem 3.5,
for 𝑚 ∈ N,

𝑳𝑚 [X ∗,X∗] ≤ 𝐶max{𝝀𝑚 [X ∗,X∗], 𝝀𝑚 [X ,X], 𝒌𝑚 [X ,X]}, (7.2)
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where the constant C depends only on the modulus of concavity of X. Our next goal is to obtain duality
results for the almost greedy and quasi-greedy parameters.

Proposition 7.3. Let X be a basis of a quasi-Banach space X. Then for 𝑚 ∈ N,

𝒈𝒄𝑚 [X ∗,X∗] ≤ 𝒈𝑚 [X ,X] + 𝝀𝑚 [X ,X] + 𝝀𝑚 [X ∗,X∗] and
𝒈𝑚 [X ∗,X∗] ≤ 𝒈𝒄𝑚 [X ,X] + 𝝀𝑚 [X ,X] + 𝝀𝑚 [X ∗,X∗] .

Proof. Given 𝐷 ⊆ N, put 𝑆𝐷 = 𝑆𝐷 [X ,X]. Let A be a greedy set of 𝑓 ∗ ∈ X∗, and let B be a greedy set
of 𝑓 ∈ X. Assume that |𝐴| = |𝐵 | ≤ 𝑚. Then

𝑆∗𝐵 ( 𝑓 ∗)(𝑆𝐴𝑐 ( 𝑓 ))
 =  ∑

𝑛∈𝐵\𝐴

𝑓 ∗(𝒙𝑛) 𝒙
∗
𝑛 ( 𝑓 )


≤ min

𝑛∈𝐴
| 𝑓 ∗(𝒙𝑛) |

∑
𝑛∈𝐵\𝐴

𝒙∗𝑛 ( 𝑓 )
= min

𝑛∈𝐴
| 𝑓 ∗(𝒙𝑛) |

��1𝜀 ( 𝑓 ) ,𝐵\𝐴[X ∗,X∗] ( 𝑓 )
��

≤ min
𝑛∈𝐴

| 𝑓 ∗(𝒙𝑛) |
��1𝜀,𝐵\𝐴[X ∗,X∗]

�� ‖ 𝑓 ‖
≤ 𝝀𝑚 [X ∗,X∗] ‖ 𝑓 ∗‖ ‖ 𝑓 ‖.

Similarly, switching the roles of X and X ∗, we obtain𝑆∗𝐴( 𝑓 ∗)(𝑆𝐵𝑐 ( 𝑓 ))
 ≤ 𝝀𝑚 [X ,X]‖ 𝑓 ∗‖ ‖ 𝑓 ‖.

Applying these inequalities to the identities

𝑆∗𝐴𝑐 ( 𝑓
∗)( 𝑓 ) = 𝑓 ∗(𝑆𝐵𝑐 ( 𝑓 )) + 𝑆∗𝐴𝑐 ( 𝑓

∗)(𝑆𝐵 ( 𝑓 )) − 𝑆
∗
𝐴( 𝑓

∗)(𝑆𝐵𝑐 ( 𝑓 )),

𝑆∗𝐴( 𝑓
∗)( 𝑓 ) = 𝑓 ∗(𝑆𝐵 ( 𝑓 )) − 𝑆

∗
𝐴𝑐 ( 𝑓

∗)(𝑆𝐵 ( 𝑓 )) + 𝑆
∗
𝐴( 𝑓

∗)(𝑆𝐵𝑐 ( 𝑓 ))

leads to the desired inequalities. �

Proposition 7.4. Let X be a basis of a quasi-Banach space X. There is a constant C, depending only
on the modulus of concavity of X, such that

𝑳𝒂
𝑚 [X ∗,X∗] ≤ 𝐶max{𝝀𝑚 [X ∗,X∗], 𝝀𝑚 [X ,X], 𝒈𝑚 [X ,X]}, 𝑚 ∈ N.

Proof. Just combine Theorem 4.2 with Proposition 7.3. �

We make a stop en route to gather some consequences of combining Theorem 3.5, Theorem 4.2,
Proposition 7.1, Proposition 7.3, Proposition 7.4 and inequality (7.2).

Theorem 7.5. Let X be a basis of a quasi-Banach space X. There are constants 𝐶1, 𝐶2 and 𝐶3,
depending only on the modulus of concavity of X, such that

𝒈𝑚 [X ∗,X∗] ≤ 𝐶1 max{𝑩𝑚 [X ,X], 𝒈𝑚 [X ,X]},
𝑳𝒂
𝑚 [X ∗,X∗] ≤ 𝐶2 max{𝑩𝑚 [X ,X], 𝑳𝒂

𝑚 [X ,X]}, and
𝑳𝑚 [X ∗,X∗] ≤ 𝐶3 max{𝑩𝑚 [X ,X], 𝑳𝑚 [X ,X]}.

(7.3)

Note that equation (7.3) is a quantitative version of [19, Theorem 5.4] (see also [4, Corollary 6.8]).
Inequality (7.2), Proposition 7.3 and Proposition 7.4 justify the quest to find upper estimates for the

squeeze-symmetry parameters of the dual basis. We tackle this problem with the help of the bidemocracy
paremeters.
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Given a nondecreasing sequence 𝝈 = (𝑠𝑚)
∞
𝑚=1, we set

𝑅𝑚 [𝝈] =
𝑠𝑚
𝑚

𝑚∑
𝑛=1

1
𝑠𝑛
, 𝑚 ∈ N.

If 𝝈 has the URP, sup𝑚 𝑅𝑚 [𝝈] < ∞. Thus, the sequence (𝑅𝑚 [𝝈])
∞
𝑚=1 could be said to measure the

regularity of 𝝈. Note that, in the case when the dual weight 𝝈∗ is also nondecreasing,

𝑅𝑚 [𝝈] ≤ 𝐻𝑚, 𝑚 ∈ N.

Theorem 7.6. Let 0 < 𝑝 ≤ 1, and let 𝝈 be the fundamental function of a basis X = (𝒙𝑛)
∞
𝑛=1 of a

p-Banach space X. Then there are constants 𝐶1 and 𝐶2 depending only on p such that

𝑩𝑚 [X ,X] ≤ 𝐶1𝝀𝑚 [X ,X]𝑅𝑚 [𝝈], and

𝒌𝑚 [X ,X] ≤ 𝐶2𝝀𝑚 [X ,X] (𝐻𝑚 [𝝈])
1/𝑝, 𝑚 ∈ N.

Proof. Let 𝐴 ⊆ Nwith |𝐴| ≤ 𝑚. Dualizing the operator F𝐴 and taking into consideration [15, Theorem
2.4.14], we obtain that the operator

𝑇𝐴 : 𝑑1,1 (1/𝝈) → X∗, (𝑎𝑛)
∞
𝑛=1 ↦→

∑
𝑛∈𝐴

𝑎𝑛 𝒙
∗
𝑛

satisfies ‖𝑇𝐴‖ ≤ 𝝀𝑚. In particular,��1𝜀,𝐴[X ∗,X∗]
�� ≤ 𝝀𝑚

𝑚∑
𝑛=1

1
𝑠𝑛
, 𝜀 ∈ E𝐴.

This yields the estimate for the bidemocracy parameters. Now, by [4, Theorem 9.12], the unit vector
system of 𝑑1, 𝑝 (𝒘) dominates X . Appealing to Lemma 6.1 and to the identity (6.3), we obtain the
estimate for the unconditionality parameters. �

To finish this section, we will obtain estimates for the squeeze-symmetry parameters in some particular
situations that occur naturally in applications. Let us introduce a mild condition on bases.

Definition 7.7. We say that a basis has the upper gliding hump property for constant coefficients if there
is a constant C such that for every A and 𝐷 ⊆ N finite there is 𝐵 ⊆ N with 𝐴 ∩ 𝐷 = ∅, |𝐵 | ≤ |𝐴| and
‖1𝐴‖ ≤ 𝐶‖1𝐵 ‖.

For instance, the trigonometric system in 𝐿1 (T) or, more generally, in any translation invariant quasi-
Banach space over T, has the upper gliding hump property for constant coefficients. Similarly, any
wavelet basis in a translation invariant quasi-Banach space over R𝑑 has the upper gliding hump property
for constant coefficients.

Lemma 7.8. Suppose that a basis X of a quasi-Banach space X has the upper gliding hump property
for constant coefficients. Then there is a constant C such that 𝝀𝑚 [X ,X] ≤ 𝐶𝝀𝒅𝑚 [X ,X] for all 𝑚 ∈ N.

Proof. Let C be as in Definition 7.7, and set 𝐶1 = ‖F ‖X→𝑐0 . Given 𝑓 ∈ X and 𝑡 > 0, let 𝐵 = {𝑛 ∈

N :
𝒙∗𝑛 ( 𝑓 ) ≥ 𝑡}, 𝑠 = max{𝑛 ∈ N \ 𝐵 :

𝒙∗𝑛 ( 𝑓 )}. Suppose that |𝐵 | ≥ 𝑚. Pick 𝐴 ⊆ N finite with |𝐴| ≤ |𝐵 |

and 𝜖 > 0. There is 0 < 𝜖1 < (𝑡 − 𝑠)/(2𝐶1) such that ‖𝑔‖ ≤ ‖ 𝑓 ‖ + 𝜖/(𝐶𝝀𝒅𝑚) whenever ‖ 𝑓 − 𝑔‖ ≤ 𝜖1.
Use density to choose 𝑔 ∈ X with finite support. Then B is a greedy set of g. Moreover, there is 𝐷 ⊆ N

with |𝐷 | ≤ |𝐴|, 𝐷 ∩ supp(𝑔) = ∅ and ‖1𝐴‖ ≤ 𝐶‖1𝐷 ‖. Therefore,

𝑡‖1𝐴‖ ≤ 𝐶𝝀𝒅𝑚‖𝑔‖ ≤ 𝐶𝝀𝒅𝑚‖ 𝑓 ‖ + 𝜖 .

Since 𝜖 is arbitrary, applying Lemma 3.4 puts an end to the proof. �
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Proposition 7.9. Let X = (𝒙𝑛)
∞
𝑛=1 be a basis of a p-Banach space X, 0 < 𝑝 ≤ 1. Suppose that X has

the upper gliding hump property for constant coefficients. Then, there is a constant C depending only
on p such that 𝑳𝑚 ≤ 𝐶𝑳𝒂

𝑚(log𝑚)1/𝑝 for all 𝑚 ≥ 2.

Proof. Just combine Lemma 7.8, Theorem 7.6, Theorem 3.5 and Theorem 4.2. �

Given a basis X of a quasi-Banach space X, the identity

|𝐴| = 1𝜀,𝐴[X ∗,X∗] (1𝜀,𝐴[X ,X]), 𝐴 ⊆ N, 𝜀 ∈ E𝐴

yields

𝑚 ≤ 𝝋𝒍 [X ,X] (𝑚)𝝋𝒖 [X ∗,X∗] (𝑚), 𝑚 ∈ N.

To quantify the optimality of this inequality, we introduce the parameters

𝑩𝒘
𝑚 [X ,X] =

1
𝑚
𝝋𝒍 [X ,X] (𝑚)𝝋𝒖 [X ∗,X∗] (𝑚), 𝑚 ∈ N.

Since there are quite a few bases that satisfy the condition sup𝑚 𝑩𝒘
𝑚 < ∞, called property (𝑫∗) in [14],

the following elementary lemma could be of interest.

Lemma 7.10. Let X = (𝒙𝑛)
∞
𝑛=1 be a basis of a quasi-Banach space X. Then,

𝝀𝑚 [X ,X] ≤ 𝑩𝒘
𝑚 [X ,X] 𝝁𝒔

𝑚 [X ,X], 𝑚 ∈ N.

Proof. Let B be a greedy set of cardinality m of 𝑓 ∈ X. Set 𝑡 = min𝑛∈𝐵
𝒙∗𝑛 ( 𝑓 ). Let A and D be subsets

of N of cardinality m, and let 𝜀 ∈ E𝐴 and 𝛿 ∈ E𝐷 . Then,

𝑡
��1𝜀,𝐴[X ,X]

�� = 𝑡𝑚��1𝜀,𝐴[X ,X]
�� ��1𝛿,𝐷 [X ,X]

�� ���1𝜀 ( 𝑓 ) ,𝐵
[X ∗,X∗]

���
𝑚
��1𝛿,𝐷 [X ,X]

�� ���1𝜀 ( 𝑓 ) ,𝐵
[X ∗,X∗]

���
≤ 𝝁𝒔

𝑚

��1𝛿,𝐷 [X ,X]
��𝝋𝒖 [X ∗,X∗] (𝑚)

𝑚

1𝜀 ( 𝑓 ) ,𝐵
[X ∗,X∗] ( 𝑓 )

���1𝜀 ( 𝑓 ) ,𝐵
[X ∗,X∗]

���
≤ 𝝁𝒔

𝑚

��1𝛿,𝐷 [X ,X]
��𝝋𝒖 [X ∗,X∗] (𝑚)

𝑚
‖ 𝑓 ‖.

Taking the infimum on D and 𝛿, we obtain the desired inequality. �

Let us record an easy criterium for property (𝑫∗).

Lemma 7.11. Let X a basis of a quasi-Banach space X which dominates a symmetric basis X1 of a
Banach space X1. Suppose that there is a sequence (𝐴𝑚)

∞
𝑚=1 in N with |𝐴𝑚 | = 𝑚 for all 𝑚 ∈ N, and

sup
𝑚

��1𝐴𝑚 [X ,X]
��

𝝋𝒖 [X1,X1] (𝑚)
< ∞.

Then X has property (𝑫∗).

Proof. Just dualize the operator from X into X1 provided by the domination hypothesis, and use that
any symmetric basis of a locally convex space is bidemocratic (see [36, Proposition 3.a.6]). �

For instance, in the case when max{𝑝, 𝑞} ≥ 1, the unit vector system of the mix-norm spaces ℓ𝑝 ⊕ ℓ𝑞 ,
(
⊕∞

𝑛=1 ℓ
𝑛
𝑞 )ℓ𝑝 and ℓ𝑝 (ℓ𝑞) fulfils the above criterium. The trigonometric system in 𝐿𝑝 (T), 1 < 𝑝 ≤ ∞,

also does.
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Remark 7.12. If a basis is democratic, its squeeze-symmetry parameters and the truncation quasi-
greedy parameters are of the same order. If a basis is either truncation quasi-greedy or has property
(𝑫∗), then its squeeze-symmetry parameters and the superdemocracy parameters are of the same order.
Hence, the combination of Theorem 3.5, Theorem 4.2, Proposition 7.1, Proposition 7.3, Proposition
7.4, equation (7.2) and Theorem 7.6 overrides [14, Corollaries 7.2, 7.5 and 7.6].

8. The spectrum of Lebesgue-type parameters associated with democratic bases

In greedy approximation theory, democracy can be regarded as an atomic property of bases, in the sense
that it cannot be broken into (or it implies) other properties of interest in the theory. When combined
with other (especially, unconditionality-like) properties of bases, democracy gives rise to a spectrum of
molecular, more complex types of bases, such as greedy, almost greedy and squeeze-symmetric bases.

Let us define other unconditionality-like properties of interest in approximation theory. If we restrict
inequality (4.2) defining the quasi-greedy parameters only to functions f such that |F ( 𝑓 ) | is constant on
A, we will denote by 𝒒𝑚 the corresponding parameter and will call it the mth quasi-greedy parameter for
largest coefficients, or mth quasi-greedy bases for large coefficients (QGLC) parameter for short. Finally,
the mth unconditionality parameter for constant coefficients, or mth UCC parameter for short, denoted
𝒖𝑚, is defined by imposing condition (4.2) only to functions f with |F ( 𝑓 ) | constant and |supp( 𝑓 ) | ≤ 𝑚.
A basis is quasi-greedy for largest coefficients (resp., unconditional for constant coefficients) if the
corresponding sequence of parameters is uniformly bounded.

Superdemocratic bases share with unconditional bases the feature of being unconditional for constant
coefficients. And, the other way around, a basis is superdemocratic if and only if it is simultaneously
democratic and UCC (see [18]). Similarly, a basis is SLC if and only if it is democratic and QGLC (see
[4, Proposition 5.3]). The following diagram summarizes the hierarchy of all the bases we deal with
in this paper. A dashed arrow means that when a property on the right-hand side column amalgamates
with democracy it is transformed in the corresponding property on its left.

Greedy ��

��

Unconditional�� � � � � � � �� � � � � � �

��
Almost greedy ��

��

Quasi-greedy�� � � � � � �� � � � � �

��
Squeeze-symmetric ��

��

Truncation quasi-greedy�� � � �� � �

��
SLC ��

��

QGLC�� � � � � � � � � �� � � � � � � � �

��
superdemocratic �� UCC�� � � � � � � �� � � � � � �

(�)

Quantitatively, each implication in equation (�) follows as a result of an estimate between the
Lebesgue-type parameters associated with each property. Let us write down the relations between
any two parameters associated with the properties from the right column of equation (�), that is, the
unconditionality-like parameters. Any basis of a p-Banach space, 0 < 𝑝 ≤ 1, satisfies

𝒖𝑚 ≤ 𝒒𝑚 ≤ min{𝒓𝑚, 𝒈𝑚}, max{𝐴−1
𝑝 𝒓𝑚, 𝒈𝑚} ≤ 𝒌𝑚, (8.1)

and inequalities (5.1) and (5.2) complete the picture. As far as the relations between parameters associ-
ated with properties from the left column of equation (�) is concerned, it is clear that
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𝝁𝑚 ≤ 𝝁𝒔
𝑚 ≤ 𝝂𝑚, and that (8.2)

𝝂𝒅𝑚 ≤ 𝑳𝒂
𝑚 ≤ 𝑳𝑚, 𝑚 ∈ N. (8.3)

Inequalities (8.2) and (8.3) will be connected using the equivalence between the SLC parameters and
the disjoint SLC parameters provided by the following proposition.

Proposition 8.1. Let X be a basis of a p-Banach space X, 0 < 𝑝 ≤ 1. Then

𝝂𝑚 [X ,X] ≤ 21/𝑝−1(1 + 𝚼)1/𝑝𝐴𝑝𝝂
𝒅
𝑚 [X ,X], 𝑚 ∈ N. (8.4)

Proof. Let 𝐵 ⊆ N with |𝐵 | ≤ 𝑚, 𝛿 ∈ E𝐵 and 𝑓 ∈ X be finitely supported with 𝐵 ∩ supp( 𝑓 ) = ∅.
Pick an arbitrary extension of 𝛿 to EN, which we still denote by 𝛿. Given 𝐷 ⊆ N with |𝐷 | ≤ |𝐵 | and
𝐷 ∩ supp( 𝑓 ) = ∅, we pick 𝐸 ⊆ N \ (𝐵∪𝐷 ∪ supp( 𝑓 )) with |𝐸 | = |𝐵 | − |𝐷 |. Set 𝑔 = 1𝛿,𝐷∩𝐵 + 𝑓 . Since
the sets 𝐷 \ 𝐵, E, 𝐵 \ 𝐷 and supp(𝑔) are pairwise disjoint, and |𝐷 \ 𝐵 | + |𝐸 | = |𝐷 \ 𝐵 |,��1𝛿,𝐷 + 𝑓

��𝑝 ≤ 2−𝑝 (
��1𝛿,𝐷 + 1𝛿,𝐸 + 𝑓

��𝑝 + ��1𝛿,𝐷 − 1𝛿,𝐸 + 𝑓
��𝑝)

= 2−𝑝 (
��1𝛿,𝐷\𝐵 + 1𝛿,𝐸 + 𝑔

��𝑝 +
��1𝛿,𝐷\𝐵 − 1𝛿,𝐸 + 𝑔

��𝑝)
≤ 21−𝑝 (𝝂𝒅𝑚)

𝑝
��1𝛿,𝐵\𝐷 + 𝑔

��𝑝
= 21−𝑝 (𝝂𝒅𝑚)

𝑝
��1𝛿,𝐵 + 𝑓

��𝑝 .
Therefore, applying Lemma 3.4 gives the desired inequality. �

Next, we compare the SLC parameters and the squeeze-symmetry parameters. To that end, we will
use the relation between the QGLC and the truncation quasi-greedy parameters.

Proposition 8.2. Let X be a basis of a p-Banach space X, 0 < 𝑝 ≤ 1. Then,

𝝂𝑚 [X ,X] ≤ 21/𝑝𝝀𝑚 [X ,X], 𝑚 ∈ N. (8.5)

Proof. Applying the p-triangle law gives (𝝂𝑚)
𝑝 ≤ (𝝀𝑚)

𝑝 + (𝒒𝑚)
𝑝 . Combining this inequality with

equations (8.1) and (5.3), we are done. �

Combining equations (8.2), (8.3), (8.4) and (8.5) yields

𝝁𝑚 � 𝝁𝒔
𝑚 � 𝝂𝑚 � min{𝝀𝑚, 𝑳𝒂

𝑚} ≤ max{𝝀𝑚, 𝑳𝒂
𝑚} � 𝑳𝑚. (8.6)

The only pathway for connecting with implications the squeeze-symmetry parameters and the almost
greediness parameters seems to be through the corresponding unconditionality-like properties. Indeed,
combining equations (5.3), (8.3), (5.1) and (5.2) yields, for every basis X of a p-Banach space X,

𝝀𝑚 [X ,X] ≤ 𝐶 (𝑳𝒂
𝑚 [X ,X])𝛼,

where

𝛼 =

{
2 if 𝑝 = 1,
2 + 1/𝑝 if 𝑝 < 1,

and the constant C depends only on p. Thus, the question is whether this asymptotic estimate can be
improved.

Question 8.3. Given 0 < 𝑝 ≤ 1, is there a constant C such that 𝝀𝑚 ≤ 𝐶𝑳𝒂
𝑚 for every basis of a p-Banach

space?
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Note that an (unlikely) positive answer to Question 8.3 would allow replacing (𝝀𝒅𝑚)
∞
𝑚=1 with (𝝀𝑚)

∞
𝑚=1

in Theorem 4.2. It would also provide an alternative proof to the estimate 𝝀𝑚 � 𝑳𝑚 (see Theorem 3.5).
In the same line of thought, we wonder about the relation between the squeeze-symmetry parameters
and their disjoint counterpart, as well as where to place the latter in inequality (8.6).

Question 8.4. By Lemma 4.1, 𝝀𝑚 � (𝝀𝒅𝑚)
2. Hence, by equation (8.6), 𝝂𝑚 � (𝝀𝒅𝑚)

2, 𝝁𝒔
𝑚 � (𝝀𝒅𝑚)

2 and
𝝁𝑚 � (𝝀𝒅𝑚)

2. Can any of these asymptotic estimates be improved?

To finish this section, we see the quantitative estimates associated with each row in equation (�).
Inequalities (1.2) and (5.3) do the job for the first and the third rows, respectively. As far as the fifth row
is concerned, it readily follows from [4, Lemma 2.2] that

max{𝝁𝑚, 𝒖𝑚} � 𝝁𝒔
𝑚 � 𝝁𝑚𝒖𝑚, 𝑚 ∈ N. (8.7)

The following result takes care of the estimates involving the parameters in the fourth row.

Proposition 8.5. Let X be a basis of a quasi-Banach spaceX. There are constants𝐶1 and𝐶2 depending
only on the modulus of concavity of X such that

1
𝐶2

max{𝝁𝑚, 𝒒𝑚} ≤ 𝝂𝑚 ≤ 𝐶1𝝁𝑚𝒒𝑚, 𝑚 ∈ N.

Proof. Assume that X is a p-Banach space. Let 𝑓 ∈ X with ‖F ( 𝑓 )‖∞ ≤ 1, let 𝐴 ⊆ N with
𝐴 ∩ supp( 𝑓 ) = ∅ and |𝐴| ≤ 𝑚 and let 𝜀 = (𝜀𝑛)𝑛∈𝐴 ∈ E𝐴. We have��1𝜀,𝐴

��𝑝 ≤ 2−𝑝 (
��1𝜀,𝐴 + 𝑓

�� + ��1𝜀,𝐴 − 𝑓
��) ≤ 21−𝑝𝝂𝑚

��1𝜀,𝐴 + 𝑓
��𝑝 .

This yields 𝒒𝑚 ≤ 21/𝑝−1𝝂𝑚. Thus, by equation (8.2), the proof of the left side inequality is over.
For every 𝐷 ⊆ 𝐴, ��1𝜀,𝐷

�� ≤ 𝒒𝑚
��1𝜀,𝐴 + 𝑓

��.
Therefore, by Lemma 3.4,�����∑

𝑛∈𝐴

𝑎𝑛 𝒙𝑛

����� ≤ 𝚼1/𝑝𝐴𝑝𝒒𝑚
��1𝜀,𝐴 + 𝑓

��, |𝑎𝑛 | ≤ 1.

Consequently, for any 𝐸 ⊆ N with |𝐸 | ≤ |𝐴|,

‖1𝐸 + 𝑓 ‖ 𝑝 ≤ ‖1𝐸 ‖
𝑝 +

��1𝜀,𝐴

��𝑝 + ��1𝜀,𝐴 + 𝑓
��𝑝

≤
(
1 + (𝒒𝑚)

𝑝 + 𝚼𝐴𝑝
𝑝 (𝝁𝑚)

𝑝 (𝒒𝑚)
𝑝 )��1𝜀,𝐴 + 𝑓

��𝑝 .
Applying again Lemma 3.4 puts an end to the proof. �

Finally, we tackle the quantitative estimates for the parameters in the second row of equation (�).
Combining Theorem 4.2 with inequalities (5.1), (5.2) and (5.3) gives

max{𝝁𝑚, 𝒈𝑚} � 𝑳𝒂
𝑚 � 𝝁𝑚(𝒈𝑚)

𝛽 , where 𝛽 =

{
1 if 𝑝 = 1,
1 + 1/𝑝 if 𝑝 < 1.

Notice that the relations between the Lebesgue constants involved in the properties from the second row
follow the same pattern as the relations of the parameters of the other rows in the diagram (�) only in
the locally convex setting.
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9. Examples

Before we study the applicability of our estimates to important examples in Analysis, we need to
introduce another type of democracy functions.

Let X be a basis of a quasi-Banach space X. Lemma 3.4 implies that if we modify definition (3.4)
by taking the supremum only over sets 𝐴 with |𝐴| = 𝑚, we obtain a function equivalent to the upper
democracy function; and the same occurs if we restrict ourselves to 𝜀 = 1. In contrast, the function

𝝋[X ,X] (𝑚) = sup
|𝐴 |=𝑚

‖1𝐴[X ,X]‖, 𝑚 ∈ N,

can be much smaller than 𝝋𝒖 [X ,X], whereas the nondecreasing function

𝝋[X ,X] (𝑚) = sup
1≤𝑘≤𝑚

inf
|𝐴 |=𝑘

‖1𝐴[X ,X]‖, 𝑚 ∈ N,

can be much larger than 𝝋𝒍 [X ,X] (see [57]). Lemma 3.4 also gives the inequality

𝝋𝒖 [X ,X] (𝑚) ≤ Υ1/𝑝𝝁𝑚 [X ,X] 𝝋[X ,X] (𝑚), 𝑚 ∈ N, (9.1)

for any basis X of a p-Banach space X, 0 < 𝑝 ≤ 1.
Given 𝑝 ∈ [1,∞], we will denote by 𝑝′ its conjugate exponent, determined by the identity 1/𝑝′ =

1 − 1/𝑝. We also set 𝑝∗ = max{𝑝, 𝑝′}.

9.1. Orthogonal systems as bases of 𝐿𝑝

Let (Ω, Σ, 𝜇) be a finite measure space, and let X = (𝒙𝑛)
∞
𝑛=1 be an orthogonal basis of 𝐿2 (𝜇). Given

1 ≤ 𝑝 ≤ ∞ such that X ⊆ 𝐿𝑝∗ (𝜇), X is also a basis of 𝐿𝑝 (𝜇) (a basis of its closed linear span if 𝑟 = ∞).

Lemma 9.1. Let X be an orthonormal basis of 𝐿2 (𝜇), where (Ω,Σ, 𝜇) is a finite measure space. Let
1 ≤ 𝑞 < 2 < 𝑝 ≤ ∞, and suppose that the unit vector system of ℓ𝑞 dominates X regarded as a sequence
in 𝐿𝑝 (𝜇). Given 0 ≤ 𝜆 ≤ 1, we define 𝑝+𝜆 ∈ [2, 𝑝], 𝑝−𝜆 ∈ [𝑝′, 2], 𝑞+𝜆 ∈ [𝑞, 2] and 𝑞−𝜆 ∈ [2, 𝑞′] by

1
𝑝+𝜆

= (1 − 𝜆)
1
𝑝
+
𝜆

2
, 𝑝−𝜆 = (𝑝+𝜆)

′,
1
𝑞+𝜆

= (1 − 𝜆)
1
𝑞
+
𝜆

2
, 𝑞−𝜆 = (𝑞+𝜆)

′.

Then there is a constant C such that, for all 𝜆 ∈ [0, 1] and 𝜀 = ±1,

max{𝒌𝑚 [X , 𝐿𝑝𝜀
𝜆
(𝜇)], 𝝀𝑚 [X , 𝐿𝑝𝜀

𝜆
(𝜇)]} ≤ 𝐶𝑚 (1−𝜆) (1/𝑞−1/2) , 𝑚 ∈ N.

Proof. We denote by X(𝑟 ) the system X regarded as a basic sequence in 𝐿𝑟 (𝜇), 1 ≤ 𝑟 ≤ ∞. By Riesz–
Thorin’s interpolation theorem (see, e.g., [31]), the unit vector system of ℓ𝑞+

𝜆
dominates X(𝑝+

𝜆)
. In turn,

since 𝐿𝑝+
𝜆
(𝜇) is continuously included in 𝐿2 (𝜇), X(𝑝+

𝜆)
dominates the unit vector system of ℓ2. By

duality, the unit vector system of ℓ2 dominates X(𝑝−
𝜆 )

, which, in turn, dominates the unit vector system
of ℓ𝑞−

𝜆
. Applying Lemma 6.1, and taking into account equation (6.2), yields the desired result. �

For uniformly bounded orthogonal systems, we obtain the following.

Lemma 9.2. Let (Ω, Σ, 𝜇) be a finite measure space and X = (𝒙𝑛)
∞
𝑛=1 be an orthonormal basis of 𝐿2(𝜇)

with sup𝑛‖𝒙𝑛‖∞ < ∞. There is a constant C such that, for all 1 ≤ 𝑝 ≤ ∞,

1
𝐶

max{𝒌𝑚 [X , 𝐿𝑝 (𝜇)], 𝝀𝑚 [X , 𝐿𝑝 (𝜇)]} ≤ Φ𝑝 (𝑚) := 𝑚 |1/𝑝−1/2 | , 𝑚 ∈ N.

Proof. Just apply Lemma 9.1, taking into account that the unit vector system of ℓ1 dominates X(∞) . �

Let us obtain lower estimates for the parameters.
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Lemma 9.3. Let X be an orthogonal basis of 𝐿2 (𝜇), where (Ω,Σ, 𝜇) is a finite measure space. Let
1 ≤ 𝑝 ≤ ∞ be such that X ⊆ 𝐿𝑝∗ (𝜇).

(i) If 1 ≤ 𝑝 ≤ 2, there is a constant C such that

𝒖𝑚 [X , 𝐿𝑝 (𝜇)] ≥
1
𝐶

𝑚1/2

𝝋𝒍 [X , 𝐿𝑝 (𝜇)] (𝑚)
and

𝝁𝑚 [X , 𝐿𝑝 (𝜇)] ≥
1
𝐶

𝑚1/2

𝝋[X , 𝐿𝑝 (𝜇)] (𝑚)
, 𝑚 ∈ N.

Moreover, X has the upper gliding hump property for constant coefficients.
(ii) If 2 ≤ 𝑝 < ∞, there is a constant C such that

𝒖𝑚 [X , 𝐿𝑝 (𝜇)] ≥
1
𝐶

𝝋𝒖 [X , 𝐿𝑝 (𝜇)] (𝑚)

𝑚1/2 and

𝝁𝑚 [X , 𝐿𝑝 (𝜇)] ≥
1
𝐶

𝝋[X , 𝐿𝑝 (𝜇)] (𝑚)

𝑚1/2 , 𝑚 ∈ N.

(iii) There is a constant C such that

𝒖𝑚 [X , 𝐿∞(𝜇)] ≥
1
𝐶

𝑚

𝝋𝒍 [X , 𝐿∞(𝜇)] (𝑚)
, 𝑚 ∈ N.

Proof. If 1 ≤ 𝑝 < ∞, by Kahane–Khintchine’s inequalities and [5, Proposition 2.4], there is a constant
𝐶1 such that

1
𝐶1

|𝐴|1/2 ≤ Ave
𝜀∈E𝐴

��1𝜀,𝐴

��
𝑝
≤ 𝐶1 |𝐴|

1/2, 𝐴 ⊆ N.

Combining these inequalities with Lemma 3.4 yields (i) and the estimate for 𝒖𝑚 in (ii). In the case when
2 < 𝑝 < ∞, by [33, Corollary 7], X has a subsequence equivalent to the unit vector system of ℓ2. We
infer that the estimate for 𝝁𝑚 in (ii) holds. If 𝑝 = ∞, since 𝑐 = inf𝑛‖𝒙𝑛‖1 > 0 (see, e.g., [5, Lemma 2.7]),∫

Ω

(∑
𝑛∈𝐴

|𝑥𝑛 |

)
𝑑𝜇 ≥ 𝑐 |𝐴|,

whence sup𝜀∈E𝐴
��1𝜀,𝐴

��
∞
≥ 𝑐 |𝐴|, for all 𝐴 ⊆ N finite. We deduce that (iii) holds. �

9.2. The trigonometric system over T𝑑

Temlyakov [46, Theorem 2.1 and Remark 2] established the growth of the Lebesgue constants of the
trigonometric system in 𝐿𝑝 . Later on, Wojtaszczyk [55, Corollary (a)] and Blasco et al. [14, Proposition
8.6] revisited this result. Our discussion here uses Theorem 3.5 and, more specifically, the estimates
obtained in Sections 9.1. Note that Lemmas 9.2 and 9.3 apply, in particular, to the trigonometric system
T 𝑑 over T𝑑 := R𝑑/Z𝑑 .

Using Shapiro’s polynomials, we obtain for each 𝑚 ∈ N a set 𝐴𝑚 of cardinality m with
��1𝜀,𝐴𝑚

��
∞
≤

5𝑚1/2 for a suitable 𝜀 ∈ E𝐴𝑚 (see [43]). Hence, there is a constant 𝐶1 such that

𝒖𝑚 [T 𝑑 , 𝐿∞(T𝑑)] ≥
1
𝐶1

|𝑚 |1/2, 𝑚 ∈ N.
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In the case when 1 < 𝑝 < ∞, Dirichlet’s kernel (see e.g. [31]) shows the existence of a constant 𝐶2 such
that, for the same sets 𝐴𝑚,

𝑚1−1/𝑝/𝐶2 ≤
��1𝐴𝑚

��
𝑝
≤ 𝐶2𝑚

1−1/𝑝 .

Therefore, for each 1 < 𝑝 < ∞ there is a constant 𝐶3 such that

min{𝝁𝑚 [T 𝑑 , 𝐿𝑝 (T
𝑑)], 𝒖𝑚 [T 𝑑 , 𝐿𝑝 (T

𝑑)]} ≥
1
𝐶3

Φ𝑝 (𝑚), 𝑚 ∈ N.

In the case when 𝑝 = 1, we have ��1𝐴𝑚

��
1 ≤ 𝐶4 log𝑚

for all 𝑚 ≥ 2 and a suitable constant 𝐶4. Thus, the same argument gives

𝐶5 min{𝝁𝑚 [T 𝑑 , 𝐿1 (T
𝑑)], 𝒖𝑚 [T 𝑑 , 𝐿1 (T

𝑑)]} ≥ Ψ(𝑚) :=
𝑚1/2

log𝑚
, 𝑚 ≥ 2,

for a suitable constant 𝐶5. This estimate is optimal. Indeed, applying induction on d and using Fubini’s
theorem, we infer from [38, Theorem 2.1] that there is a constant 𝐶6 such that��1𝜀,𝐴[T 𝑑 , 𝐿1 (T

𝑑)]
��

1 ≥
1
𝐶6

log(|𝐴|), 𝐴 ⊆ N, 𝜀 ∈ E𝐴.

Therefore, using the aforementioned bounded linear map from ℓ2 into 𝐿1 (T
𝑑),

𝝁𝒔
𝑚 [T 𝑑 , 𝐿1 (T

𝑑)] ≤ 𝐶6Ψ(𝑚), 𝑚 ≥ 2.

To obtain sharp estimates for the squeeze-symmetry parameters and the unconditionality parameters in
the case 𝑝 = 1, we invoke the De La Vallée–Pousin’s kernel, which yields, for each 𝑚 ∈ N and 𝑠 > 1, a
function 𝑣𝑚,𝑠 with

��𝑣𝑚,𝑠

��
1 ≤ 1 + 𝑠 and

𝜒𝐴𝑚 ≤ F (𝑣𝑚,𝑠) ≤ 1,

(see, e.g., [39]). Since there exists a constant 𝐶7 such that, for each 𝑚 ∈ N there is 𝜀 ∈ E𝐴𝑚 with
𝑚1/2 ≤ 𝐶7

��1𝜀,𝐴𝑚

��
1, applying Lemma 3.4, we obtain

𝐶7 min{𝝀𝒅𝑚 [T 𝑑 , 𝐿1 (T
𝑑)],𝚼𝒒𝑚 [T 𝑑 , 𝐿1 (T

𝑑)]} ≥ 𝑚1/2, 𝑚 ∈ N.

Summing up, the democracy, superdemocracy, SLC, disjoint squeeze-symmetry, squeeze-symmetry,
almost greediness, Lebesgue, unconditionality, quasi-greediness, truncation quasi-greedy, QGLC and
UCC parameters of the trigonometric system in 𝐿𝑝 (T

𝑑) grow as (Φ𝑝 (𝑚))
∞
𝑚=1 for all 1 ≤ 𝑝 ≤ ∞ with

the following exceptions in the case 𝑝 = 1: The democracy, superdemocracy and the UCC parameters
of the trigonometric system in 𝐿1 (T

𝑑) grow as (Ψ(𝑚))∞𝑚=2, and in the case 𝑝 = ∞, T 𝑑 is democratic in
𝐿∞(T𝑑).

9.3. The trigonometric system in Hardy spaces

Fix 0 < 𝑝 < 1. If for 𝑛 ∈ N ∪ {0} we set

𝜏𝑛 (𝜃) = 𝑒
2𝜋𝑖𝜃 , −1/2 ≤ 𝜃 ≤ 1/2,
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the sequence T = (𝜏𝑛)
∞
𝑛=0 is a basis of 𝐻𝑝 (T) whose biorthogonal functionals are the members of the

sequence (𝜏𝑛)
∞
𝑛=0 under the natural dual mapping. Since 𝐻2 (T) ⊆ 𝐻𝑝 (T), the unit vector system of ℓ2

dominates T regarded as basis of 𝐻𝑝 (T). In turn, since the dual basis is uniformly bounded (see [25]),
T dominates the unit vector system of 𝑐0. We infer from Lemma 6.1 that there is a constant C such that

max{𝒌𝑚 [T , 𝐻𝑝 (T)], 𝝀𝑚 [T , 𝐻𝑝 (T)]} ≤ 𝐶𝑚
1/2, 𝑚 ∈ N.

This estimates are optimal. Indeed, the Dirichlet kernel
∑𝑛−1

𝑘=0 𝜏𝑘 , 𝑛 ∈ N, is uniformly bounded in 𝐻𝑝 (T),
and Khintchine’s inequalities yield a constant 𝐶1 such that

1
𝐶1

|𝐴|𝑝/2 ≤ Ave
𝜀∈E𝐴

��1𝜀,𝐴

��𝑝
𝐻𝑝

≤ 𝐶1 |𝐴|
𝑝/2, 𝐴 ⊆ N.

Therefore, for some constant 𝐶2,

min{𝝁𝑚 [T , 𝐻𝑝 (T)], 𝒖𝑚 [T , 𝐻𝑝 (T)]} ≥
1
𝐶2
𝑚1/2, 𝑚 ∈ N.

9.4. Jacobi polynomials

Given scalars 𝛼, 𝛽 > −1, the Jacobi polynomials

J (𝛼, 𝛽) = (𝑝
(𝛼,𝛽)
𝑛 )∞𝑛=0

appear as the orthonormal polynomials associated with the measure 𝜇𝛼,𝛽 given by

𝑑𝜇𝛼,𝛽 (𝑥) = (1 − 𝑥)𝛼 (1 + 𝑥)𝛽𝜒(−1,1) (𝑥) 𝑑𝑥.

In the case when 𝛾0 := min{𝛼, 𝛽} > −1/2, we set 𝛾 = max{𝛼, 𝛽} and

𝑝 = 𝑝(𝛼, 𝛽) =
4(𝛾 + 1)
2𝛾 + 3

, 𝑝 = 𝑝(𝛼, 𝛽) =
4(𝛾 + 1)
2𝛾 + 1

.

Notice that 𝑝 and 𝑝 are conjugate exponents. Given 𝑝 ∈ (𝑝, 𝑝), we define 𝑞(𝑝, 𝛼, 𝛽) ∈ (1,∞) by

1
𝑞(𝑝, 𝛼, 𝛽)

= 𝜆,

where 𝜆 ∈ [0, 1] is such that

𝑝 = (1 − 𝜆)𝑝(𝛼, 𝛽) + 𝜆𝑝(𝛼, 𝛽).

A routine computation yields

1
𝑞(𝑝, 𝛼, 𝛽)

=
2𝛾 + 3

2
−

2(𝛾 + 1)
𝑝

, 𝑝(𝛼, 𝛽) < 𝑝 < 𝑝(𝛼, 𝛽).

We also define 𝑟 = 𝑟 (𝑝, 𝛼, 𝛽) by

1
𝑟 (𝑝, 𝛼, 𝛽)

=
2𝛾0 + 3

2
−

2(𝛾0 + 1)
𝑝

, 𝑝(𝛼, 𝛽) < 𝑝 < 𝑝(𝛼, 𝛽).

Theorem 9.4. Let 𝛼 and 𝛽 be such that min{𝛼, 𝛽} > −1/2. Given 𝑝 ∈ (𝑝(𝛼, 𝛽), 𝑝(𝛼, 𝛽)), set 𝑞 =
𝑞(𝑝, 𝛼, 𝛽). In the case when 𝑝 ≤ 2, the unit vector system of ℓ𝑞 dominates J (𝛼, 𝛽) regarded as sequence
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in 𝐿𝑝 (𝜇𝛼,𝛽) and, in the case when 𝑝 ≥ 2, J (𝛼, 𝛽), regarded as sequence in 𝐿𝑝 (𝜇𝛼,𝛽), dominates the
unit vector system of ℓ𝑞 .

Proof. This result could be derived from [53]. Here, we present an alternative proof. Using
Marcinkiewicz’s interpolation theorem (see, e.g., [31]) and duality, it suffices to prove that the unit
vector system of ℓ1 dominates (𝑝

(𝛼,𝛽)
𝑛 )∞𝑛=0 regarded as a sequence in X := 𝐿𝑝,∞(𝜇𝛼,𝛽). Since X is lo-

cally convex, we must prove that sup𝑛
���𝑝 (𝛼,𝛽)𝑛

���
𝑝,∞

< ∞. This can be deduced from classical estimates
for Jacobi polynomials (see [5, Theorem 3.2 and Lemma 3.3]) or from the fact that the partial sums of
Jacobi–Fourier series (𝐽𝑛)∞𝑛=1 are uniformly bounded when regarded as operators from 𝐿𝑝,1(𝜇𝛼,𝛽) into
𝐿𝑝,∞(𝜇𝛼,𝛽) (see [32]). Indeed, taking into account that the dual of 𝐿𝑝,1 (𝜇𝛼,𝛽) is 𝐿𝑝,∞(𝜇𝛼,𝛽) under the
natural dual pairing, the uniform boundedness of the operators (𝐽𝑛 − 𝐽𝑛−1)

∞
𝑛=0 yields

sup
𝑛∈N

���𝑝 (𝛼,𝛽)𝑛

���
𝑝,∞

���𝑝 (𝛼,𝛽)𝑛

���
𝑝,∞
< ∞.

Since 𝐿𝑝,∞(𝜇𝛼,𝛽) ⊆ 𝐿1 (𝜇𝛼,𝛽) and inf𝑛
���𝑝 (𝛼,𝛽)𝑛

���
1
> 0 (see, e.g., [5, Equation (3.4)]), we are done. �

Theorem 9.5. Let 𝛼 and 𝛽 be such that min{𝛼, 𝛽} > −1/2. Given 𝑝 ∈ [2, 𝑝(𝛼, 𝛽)), set 𝑞 = 𝑞(𝑝, 𝛼, 𝛽)
and 𝑟 = 𝑟 (𝑝, 𝛼, 𝛽). Then:

(i) If 𝑝 ≥ 2, there is a constant 𝐶1 such that

𝝋[J (𝛼, 𝛽), 𝐿𝑝 (𝜇𝛼,𝛽)] (𝑚) ≥
1
𝐶1
𝑚1/𝑞 , 𝑚 ∈ N,

(ii) If 𝑝 ≤ 2, there is a constant 𝐶2 such that

𝝋𝒍 [J (𝛼, 𝛽), 𝐿𝑝 (𝜇𝛼,𝛽)] (𝑚) ≤ 𝐶2𝑚
1/𝑟 , 𝑚 ∈ N.

Proof. It follows by combining [5, Proposition 3.8], Lemma 3.4 and the fact that J (𝛼, 𝛽) is a Schauder
basis of 𝐿𝑝 (𝜇𝛼,𝛽) (see [41]). �

Theorem 9.6. Let 𝛼 and 𝛽 be such that min{𝛼, 𝛽} > −1/2. Set 𝛾0 = min{𝛼, 𝛽} and 𝛾 = max{𝛼, 𝛽}.

(i) If 𝑝 ∈ [2, 𝑝(𝛼, 𝛽)), the democracy, superdemocracy, SLC, disjoint squeeze-symmetry, squeeze-
symmetry, almost greediness, Lebesgue, unconditionality, quasi-greediness, truncation quasi-
greedy, QGLC and UCC parameters of J (𝛼, 𝛽) regarded as a basis of 𝐿𝑝 (𝜇𝛼,𝛽) grow as

Φ(𝑚) = 𝑚 (1+𝛾) |1−2/𝑝 | , 𝑚 ∈ N.

(ii) If 𝑝 ∈ (𝑝, 2], the Lebesgue constants and the unconditionality parameters of J (𝛼, 𝛽) regarded as
a basis of 𝐿𝑝 (𝜇𝛼,𝛽) grow as the sequence (Φ(𝑚))∞𝑚=1; the almost greedy constants, the squeeze-
symmetry and the disjoint squeeze-symmetry parameters grow at least as

Φ(𝑚)

log𝑚
, 𝑚 ≥ 2

and the superdemocracy, SLC, quasi-greediness, truncation quasi-greedy, QGLC and UCC param-
eters grow as least as

𝑚 (1+𝛾0) |1−2/𝑝 | , 𝑚 ∈ N.

Proof. Just combine Theorems 9.5 and 9.4, Lemmas 9.1 and 9.3 and Proposition 7.9. �
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9.5. Lindenstrauss dual bases

Let 𝛿 = (𝑑𝑛)
∞
𝑛=1 be a nondecreasing sequence in N with 𝑑𝑛 ≥ 2 for all 𝑛 ∈ N. Set

𝜎(𝑘) = 2 +

𝑘−1∑
𝑗=1
𝑑 𝑗 , 𝑘 ∈ N.

Let Γ : N→ N ∪ {0} be the left inverse of the function defined by 𝑛 ↦→ 𝜎 (𝑛) (1), 𝑛 ∈ N ∪ {0}. In [8], it
was constructed an almost greedy basis X𝛿 of a subspace X𝛿 of ℓ1 with

1
4
(1 + Γ(𝑚)) ≤ 𝒌𝑚 [X𝛿 ,X𝛿] ≤ 2(1 + Γ(𝑚)), 𝑚 ∈ N.

In the case when 𝑑𝑛 = 2 for 𝑛 ∈ N, the resulting space is the classical Lindesntrauss space, say X,
built in [35]. Moreover, X𝛿 is isomporphic to X regardless the choice of 𝛿. The dual space of X𝛿 is
isomorphic to ℓ∞, and the dual basis X ∗

𝛿 spans a space isomorphic to 𝑐0. In [8], it is also proved that for
each increasing concave function 𝜙 : [0,∞) → [0,∞) with 𝜙(0) = 0, we can choose 𝛿 so that Γ grows
as (𝜙(log(𝑚)))∞𝑚=2. By [8, Proposition 4.4 and Lemma 7.3],

𝑩𝑚 [X𝛿 ,X𝛿] ≤ 2(1 + Γ(𝑚)), 𝑚 ∈ N.

Thus, by equation (7.2) and Proposition 7.1, there is a constant C such that 𝑳𝑚 [X ∗
𝛿 ,X

∗
𝛿] ≤ 𝐶Γ(𝑚) for

all 𝑚 ≥ 2.
As far as lower bounds is concerned, combining [8, Lemma 7.1 and Lemma 7.2] yields

𝝁𝑚 [X ∗
𝛿 ,X

∗
𝛿] ≥

1
2
Γ(𝑚), 𝑚 ∈ N,

and the proof of [8, Lemma 7.1] gives

𝒖𝑚 [X ∗
𝛿 ,X

∗
𝛿] ≥

1
8
Γ(𝑚), 𝑚 ∈ N.

9.6. Bases with large greedy-like parameters

The unconditionality constants of truncation quasi-greedy bases grow slowly. Indeed, ifX is a p-Banach
space, 0 < 𝑝 ≤ 1,

𝒌𝑚 ≤ 𝐶 (log𝑚)1/𝑝 , 𝑚 ≥ 2, (9.2)

(see [18, Lemma 8.2], [29, Theorem 5.1] and [8, Theorem 5.1]). Hence, if X is quasi-greedy and
democratic there is a constant C such that

𝑳𝑚 ≤ 𝐶 (log𝑚)1/𝑝 , 𝑚 ≥ 2.

In general, the unconditionality parameters of a basis X = (𝒙𝑛)
∞
𝑛=1 of a p-Banach space X can grow

much faster. Notice that X satisfies equation (2.2), then

max{𝒌𝑚 [X ,X], 𝝀𝑚 [X ,X]} ≤ (𝐶 [X ])2𝑚1/𝑝 , 𝑚 ∈ N.

Consequently, there is a constant C such that 𝑳𝑚 [X ,X] ≤ 𝐶𝑚1/𝑝 for all 𝑚 ∈ N. There are bases for
which 𝒌𝑚 ≈ 𝑚1/𝑝 so that this estimate is optimal. Take, for instance, the difference basis D = (𝒅𝑛)

∞
𝑛=1

in ℓ𝑝 given by

𝒅𝑛 = 𝒆𝑛 − 𝒆𝑛−1, 𝑛 ∈ N,
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where (𝒆𝑛)
∞
𝑛=1 is the unit vector system and 𝒆0 = 0. For 0 < 𝑝 ≤ 1, D is a Schauder basis of ℓ𝑝 whose

dual basis is (naturally identified with) the summing basis S = (𝒔𝑛)
∞
𝑛=1 of 𝑐0 given by

𝒔𝑛 =
𝑛∑

𝑘=1
𝒆𝑘 , 𝑛 ∈ N.

Since
��∑𝑚

𝑛=1 𝒅𝑛
��
𝑝
= 1 and

��∑𝑚
𝑛=1 𝒅2𝑛

��
𝑝
= (2𝑚)1/𝑝 for all 𝑚 ∈ N, we have

𝝁𝑚 [D, ℓ𝑝] ≥ (2𝑚)1/𝑝 , 𝑚 ∈ N,

and

𝒖𝑚 [D, ℓ𝑝] ≥ 𝑚1/𝑝 , 𝑚 ∈ N.

As for the dual basis, we have����� 𝑚∑
𝑛=1

𝒔𝑛

�����
∞

= 𝑚, and

����� 𝑚∑
𝑛=1

(−1)𝑛𝒔𝑛

�����
∞

= 1,

whence 𝒖𝑚 [S , 𝑐0] ≥ 𝑚, for all 𝑚 ∈ N. Notice that the summing basis of 𝑐0 is democratic.
Another classical basis with large greedy-like parameters is the 𝐿1-normalized Haar system H. It is

essentially known that

𝝁𝑚 [H, 𝐿1([0, 1])] ≥ 𝑚, 𝑚 ∈ N,

and

𝒖2𝑚 [H, 𝐿1 ([0, 1]) ≥ 𝑚/4, 𝑚 ∈ N

(see [21]). Nonetheless, certain subbases of H are quasi-greedy basic sequences in 𝐿1 ([0, 1]) [21, 30].

9.7. Tsirelson’s space

The space T ∗ constructed by Tsirelson [52] to prove the existence of a Banach space that contains no
copy of ℓ𝑝 or 𝑐0 is the dual of the Tsirelson space T defined by Figiel and Johnson [26]. The unit vector
system B = (𝒆𝑛)

∞
𝑛=1 is a greedy basis of T whose fundamental function is equivalent to the fundamental

function of the unit vector system of ℓ1 (see [22]). Although T contains no copy of ℓ1, its unit vector
system contains finite subbases uniformly equivalent to the unit vector system of ℓ𝑛1 for all 𝑛 ∈ N (see
[16, Proposition I.2]). Thus, the unit vector system of the original Tsirelson space T ∗ contains finite
subbases uniformly equivalent to the unit vector system of ℓ𝑛∞ for all 𝑛 ∈ N. In particular, 𝝋[B, T ∗] is
bounded. With an eye to studying the TGA with respect to the canonical basis of the original Tsirelson
space T ∗ we give a general lemma.

Lemma 9.7. Let X be a basis of a quasi-Banach space X. Suppose that 𝝋[X ∗,X∗] is bounded and that
X ∗∗ is equivalent to X . Then

𝑩𝑚 [X ,X] ≈ 𝑳𝒂
𝑚 [X ∗,X∗] ≈ 𝝀𝑚 [X ∗,X∗] ≈ 𝝀𝒅𝑚 [X ∗,X∗] ≈ 𝝋𝒖 [X ∗,X∗]

≈ 𝝁𝑚 [X ∗,X∗] ≈ 𝜹𝑚 [X ∗, 𝑐0] ≈ 𝜹𝑚 [ℓ1,X ] .

Proof. The equivalence 𝜹𝑚 [X ∗, 𝑐0] ≈ 𝜹𝑚 [ℓ1,X ] follows by duality. The inequality

𝑩𝑚 [X ,X] ≤ 𝝋𝒖 [X ∗,X∗] (𝑚) sup
𝑛
‖𝒙𝑛‖
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holds for any basis of any Banach space. Combining Lemma 3.3, Propositions 5.2 and 7.1 and inequalities
(6.1) and (9.1) concludes the proof. �

Loosely speaking, Lemma 9.7 says that, for bases close to canonical ℓ1-basis, the squeeze-symmetry
parameters of their dual basis measure how far the basis is from the unit vector system of ℓ1. We note
that this applies in particular to the Lindenstrauss bases we considered in §9.5.

By Theorem 7.6, the dual basis X ∗ of any squeeze-symmetric basis X of as quasi-Banach space
X satisfies 𝑳𝑚 [X ∗,X∗] = 𝑂 (log𝑚). For the canonical basis of the original Tsirelson space (which is
not greedy), this general estimate is far from being optimal. To write down a precise statement of this
estimate, we recursively define log(𝑘) : (𝑒𝑘−1,∞) → (0,∞) by log(1) = log and

log(𝑘) = log(𝑘−1) ◦ log .

Since B is an unconditional basis of T ∗, applying Lemma 9.7 to the canonical basis of T yields
𝑳𝑚 [B, T ∗] ≈ 𝜹𝑚 [ℓ1, T ]. Moreover, by [16, Proposition I.9.3],

𝜹𝑚 [ℓ1, T ] ≈ sup

{
𝑚∑
𝑛=1

|𝑎𝑛 | :

����� 𝑚∑
𝑛=1
𝑎𝑛𝒆𝑛

�����
T

≤ 1

}
, 𝑚 ∈ N.

Then, by [16, Proposition IV.b.3],

lim
𝑚

𝑳𝑚 [B, T ∗]

log(𝑘) (𝑚)
= 0

for all 𝑘 ∈ N.

9.8. The dual basis of the Haar system in BV(R𝑑)

Given 𝑑 ∈ N, 𝑑 ≥ 2, let 𝒟 denote the set consisting of all dyadic cubes in the Euclidean space R𝑑 . If
𝑄 ∈ 𝒟 there is a unique 𝑘 = 𝑘 (𝑄) ∈ Z such that |𝑄 | = 2−𝑘𝑑 . Given 𝑃 ∈ 𝒟 and 𝑘 ∈ Z, we define

ℛ[𝑃, 𝑘] = {𝑄 ∈ 𝒟 : 𝑄 ⊆ 𝑃, 𝑘 (𝑄) = 𝑘}.

Of course, ℛ[𝑃, 𝑘] = ∅ for all 𝑘 < 𝑘 (𝑃). Set also

𝒟[𝑃, 𝑘] =
𝑘−1⋃

𝑗=𝑘 (𝑃)

ℛ[𝑃, 𝑗], 𝑘 > 𝑘 (𝑃).

Given an interval 𝐽 ⊆ R, we denote by 𝐽𝑙 its left half and by 𝐽𝑟 its right half, and we set ℎ0
𝐼 = 𝜒𝐼 and

ℎ1
𝐽 = −𝜒𝐽𝑙 + 𝜒𝐽𝑟 . For 𝜃 = (𝜃𝑖)

𝑑
𝑖=1 ∈ Θ𝑑 := {0, 1}𝑑 \ {0} and 𝑄 ∈

∏𝑑
𝑖=1 𝐽𝑖 ∈ 𝒟 put

ℎ𝑄,𝜃 = |𝑄 | (1−𝑑)/𝑑
𝑑∏
𝑗=1
ℎ𝜃𝑖𝐽𝑖 , ℎ∗𝑄,𝜃 = |𝑄 |−1/𝑑

𝑑∏
𝑖=1
ℎ𝜃𝑖𝐽𝑖 ,

and we denote by X be the subspace of BV(R𝑑) spanned by

H = (ℎ𝑄,𝜃 )(𝑄,𝜃) ∈𝒟×Θ𝑑
.

Let Ave( 𝑓 ;𝑄) denote average value of 𝑓 ∈ 𝐿1 (R
𝑑) over the cube Q. For every 𝑓 ∈ BV(R𝑑), 𝑃 ∈ 𝒟

and 𝑘 ∈ Z, 𝑘 > 𝑘 (𝑃), we have
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𝑇𝑃,𝑘 ( 𝑓 ) :=
∑

𝑄∈𝒟[𝑃,𝑘 ]

∑
𝜃 ∈Θ𝑑

ℎ𝑄,𝜃

∫
R𝑑
𝑓 (𝑥) ℎ∗𝑄,𝜃 (𝑥) 𝑑𝑥

= −Ave( 𝑓 ; 𝑃)𝜒𝑃 +
∑

𝑄∈ℛ[𝑃,𝑘 ]

Ave( 𝑓 ;𝑄)𝜒𝑄 .

Hence, if 𝜋 : N→ 𝒟 × Θ𝑑 is a bijection such that the sets

𝜋−1 ({𝑝} × Θ𝑑) and 𝜋−1 (ℛ[𝑃, 𝑘 (𝑃) + 1] × Θ𝑑)

are integer intervals for every 𝑃 ∈ 𝒟, applying [56, Corollary 12] gives that (ℎ𝜋 (𝑛) )∞𝑛=1 is a seminor-
malized Schauder basis of X. By [17, Theorem 8.1 and Remark 8.1], H is a squeeze-symmetric basis
whose fundamental function is of the same order as (𝑚)∞𝑚=1. By [56, Theorem 10], H is a quasi-greedy
basis of X. Pick a sequence (𝑄 𝑗 )

∞
𝑗=1 of pairwise disjoint dyadic cubes such that 𝑘 (𝑄 𝑗+1) = 1 + 𝑘 (𝑄 𝑗 ),

and pick an arbitrary sequence (𝜃 𝑗 )
∞
𝑗=1 in Θ𝑑 . By [18, Corollary 8.6], (ℎ𝑄 𝑗 , 𝜃 𝑗 )

∞
𝑗=1 is equivalent to the

unit vector system of ℓ1. By Lemma 9.7 and Theorem 7.6, the dual basis

H∗ = (ℎ∗𝑄,𝜃 )(𝑄,𝜃) ∈𝒟×Θ𝑑

of H satisfies

𝑳𝒂
𝑚 [H∗,X∗] ≈ 𝝀𝑚 [H∗,X∗] ≈ 𝝀𝒅𝑚 [H∗,X∗] ≈ 𝝁𝑚 [H∗,X∗]

and 𝑳𝑚 [H∗,X∗] = 𝑂 (log𝑚). We will prove that

𝑳𝑚 [H∗,X∗] ≈ 𝑳𝒂
𝑚 [H∗,X∗] ≈ 𝒈𝑚 [H∗,X∗] ≈ log𝑚.

To that end, it suffices to show that log𝑚 = 𝑂 (𝝋𝒖 [H∗,X∗] (𝑚)) and log𝑚 = 𝑂 (𝒖[H∗,X∗] (𝑚)).
For each 𝑘 ∈ N, we define 𝑓 ∗𝑘 ∈ (BV(R𝑑))∗ by

𝑓 ∗𝑘 ( 𝑓 ) =
𝜕

𝜕𝑥1

(
𝑇[0,1]𝑑 ,𝑘 ( 𝑓 )

) ( [1
3
,∞

)
× R𝑑−1

)
.

It is clear that
�� 𝑓 ∗𝑘 �� =

�� 𝑓 ∗𝑘 |X�� for all 𝑘 ∈ N, and sup𝑘

�� 𝑓 ∗𝑘 �� < ∞. Note that for each 𝑗 ∈ N ∪ {0} there
is a unique dyadic interval 𝐼 𝑗 with

𝐼 𝑗  = 2− 𝑗 and 1/3 ∈ 𝐼 𝑗 . Let 𝐴𝑘 (resp. 𝐵𝑘 ) be the subset of 𝒟 × Θ𝑑

defined by (𝑄, 𝜃) ∈ 𝐴𝑘 (resp. (𝑄, 𝜃) ∈ 𝐵𝑘 ) if and only if 𝜃 = (1, 0, . . . , 0), 𝑄 =
∏𝑑

𝑖=1 𝐽𝑖 ⊆ [0, 1)𝑑 and
𝐽1 = 𝐼 𝑗 for some even (resp. odd) integer 𝑗 ∈ [0, 𝑘 − 1]. A routine computation yields

𝑓 ∗𝑘 (ℎ𝑄,𝜃 ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if (𝑄, 𝜃) ∉ 𝐴𝑘 ∪ 𝐵𝑘 ,
1 if (𝑄, 𝜃) ∈ 𝐴𝑘 and
−1 if (𝑄, 𝜃) ∈ 𝐵𝑘

(cf. [29, Example 2]). In other words, 𝑓 ∗𝑘 |X = 1𝐴𝑘 [H∗,X∗] − 1𝐵𝑘 [H∗,X∗]. Set 𝑓 = 𝜒[0,1/3)×[0,1)𝑑−1 .
The arguments in [29, Example 2] also give

1𝐴𝑘 [H∗, (BV(R𝑑))∗] ( 𝑓 ) =
1
3
�𝑘�, 𝑘 ∈ N.

Since

|𝐴𝑘 ∪ 𝐵𝑘 | =
2(𝑑−1)𝑘 − 1

2𝑑−1 − 1
,

we are done. Note that this yields 𝒌𝑚 [H,X] = 𝒌𝑚 [H∗,X∗] ≈ log𝑚.
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9.9. The Franklin system as a basis of VMO

As in §9.8, we denote by 𝒟 the set consisting of all d-dimensional dyadic cubes, 𝑑 ∈ N. The homoge-
neous Triebel–Lizorkin sequence space 𝒇 𝑑𝑝,𝑞 of indices 𝑝, 𝑞 ∈ (0,∞) consists of all scalar sequences
𝑓 = (𝑎𝑄)𝑄∈𝒟 for which

‖ 𝑓 ‖ 𝒇 𝑑
𝑝,𝑞

=

������� !
∑
𝑄∈𝒟

|𝑄 |−𝑞/𝑝
𝑎𝑄 𝑞𝜒𝑄"#$

1/𝑞������
𝑝

< ∞.

By definition, the unit vector system B = (𝒆𝑄)𝑄∈𝒟 is a normalized unconditional basis of 𝒇 𝑑𝑝,𝑞 .
Moreover, it is a democratic (hence greedy) basis whose fundamental function is of the same order
as (𝑚1/𝑝)∞𝑚=1 (see [4, Section 11.3]). Let 𝒟0 denote the set consisting of all dyadic cubes contained
in [0, 1]𝑑 , and consider the subbasis B0 = (𝒆𝑄)𝑄∈𝒟0 of B. It is known that certain wavelet bases of
homogeneous (resp. inhomogenous) Triebel–Lizorkin function spaces 𝐹𝑠

𝑝,𝑞 (R
𝑑) (resp. 𝐹𝑠

𝑝,𝑞 (R
𝑑)) of

smoothness 𝑠 ∈ R are equivalent to B (resp. B0) regarded as a basis (resp. basic sequence) of 𝒇 𝑑𝑝,𝑞 (see
[28, Theorem 7.20] for the homogeneous case and [51, Theorem 3.5] for the inhomogenous case). In the
particular case that 𝑝 = 1, 𝑞 = 2 and 𝑑 = 1, B0 is equivalent to both the Franklin system in the Hardy
space 𝐻1 and the Haar system in the dyadic Hardy space 𝐻1 (𝛿) (see [37, 54]). Consequently, the dual
basis of B0 is equivalent to both the Franklin system regarded as a basis of VMO and the Haar system
regarded as a basic sequence in dyadic BMO.

Suppose that 1 < 𝑞 < ∞ and 𝑟 = 𝑞′. Consider the space 𝒇 𝑑∞,𝑟 consisting of all sequences 𝑓 = (𝑎𝜆)𝑄∈𝒟

satisfying the Carleson-type condition

‖ 𝑓 ‖ 𝒇 𝑑
∞,𝑟

= sup
𝑃∈𝒟

�   !
1
|𝑃 |

∑
𝑄∈𝒟
𝑄⊆𝑃

|𝑄 |
𝑎𝑄 2"###$

1/2

< ∞.

It is known that the dual space of 𝒇 𝑑1,𝑞 is 𝒇 𝑑∞,𝑟 under the natural pairing (see [27, Equation (5.2)]. Our
analysis of the unit vector system of 𝒇 𝑑∞,𝑟 relies on the following lemma.

Lemma 9.8. Let 𝑑 ∈ N. There is a constant C such that for every A ⊆ 𝒟 and 𝑃 ∈ 𝒟

𝐿(A, 𝑃) :=
∑
𝑄∈A
𝑄⊆𝑃

|𝑄 | ≤ 𝐶 |𝑃 | log(1 + |A|).

Moreover, for every 𝑃 ∈ 𝒟 and 𝑚 ∈ N there is A ⊆ 𝒟 with |A| = 𝑚 and log(1 + 𝑚) ≤ 𝐶 𝐿(A, 𝑃).

Proof. By homogeneity, we can assume that 𝑃 = [0, 1]𝑑 . Given 𝑘 ∈ N we set

A𝑘 = {𝑄 ∈ 𝒟 : 𝑄 ⊆ [0, 1]𝑑 , |𝑄 | ≥ 2−𝑘+1}.

We have 𝐿(A𝑘 , [0, 1]𝑑) = 𝑘 and

|A𝑘 | = 𝑚(𝑘) :=
2𝑑𝑘 − 1
2𝑑 − 1

, 𝑘 ∈ N.
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Given A ⊆ 𝒟, let 𝑘 ∈ N be such that𝑚(𝑘) ≤ |A| < 𝑚(𝑘 +1). Set A′ = {𝑄 ∈ A : |𝑄 | ≤ 2−𝑘𝑑}. We have

𝐿(A, [0, 1]𝑑) ≤ 𝐿(A𝑘 , [0, 1]𝑑) + 𝑆(A′, [0, 1]𝑑)
≤ 𝑘 + 2−𝑘𝑑 |A|

≤ 𝑘 + 2−𝑘𝑑𝑚(𝑘 + 1)

≤ 𝑘 +
2𝑑

2𝑑 − 1
.

Since sup𝑘 (𝑘 + (1 − 2−𝑑)−1)/log(1 +𝑚(𝑘)) < ∞, we are done. For the ‘moreover’ part, we pick 𝑘 ∈ N
such that 𝑚(𝑘) ≤ 𝑚 < 𝑚(𝑘 + 1) and A ⊇ A𝑘 with |A| = 𝑚. Then,

𝐿(A, [0, 1]𝑑) ≥ 𝐿(A𝑘 , [0, 1]𝑑) = 𝑘 ≥ 𝑐 log(1 + 𝑚),

where 𝑐 = inf𝑘 𝑘/log(𝑚(𝑘 + 1)) > 0. �

Finally, we are in a position to estimate the constants of the unit vector system of 𝒇 𝑑∞,𝑟 . If 𝒟1 ⊆ 𝒟

consists of pairwise disjoint dyadic cubes, then (𝒆𝑄)𝑄∈𝒟1 is, when regarded as a basic sequence in 𝒇 𝑑1,𝑞 ,
isometrically equivalent to the unit vector system of ℓ1. Therefore, we can apply Lemma 9.8 to obtain
that 𝝋𝒖 [B, 𝒇 𝑑∞,𝑟 ] and 𝝋𝒖 [B0, 𝒇

𝑑
∞,𝑟 ] grow as ((log𝑚)1/𝑟 )∞𝑚=2 Therefore, applying Lemma 9.7 gives that

𝑳𝑚 [B, 𝒇 𝑑∞,𝑟 ] ≈ 𝑳𝑚 [B0, 𝒇
𝑑
∞,𝑟 ] ≈ 𝑳𝒂

𝑚 [B, 𝒇 𝑑∞,𝑟 ] ≈ 𝑳𝒂
𝑚 [B0, 𝒇

𝑑
∞,𝑟 ]

≈ ((log𝑚)1/𝑟 )∞𝑚=2.

9.10. Direct sums of bases

Given bases X and Y of respective quasi-Banach spaces X and Y, its direct sum X ⊕ Y is a basis in
X⊕Ywhose dual basis is X ∗ ⊕Y∗, via the natural identification of the dual space ofX⊕YwithX∗ ⊕Y∗.

The growth of the unconditionality-like parameters of X ⊕ Y is linearly determined by the growth
of the unconditionality-like parameters of its summands X and Y . For instance,

𝒌𝑚 [X ⊕ Y ,X ⊕ Y] ≈ max{𝒌𝑚 [X ,X], 𝒌𝑚 [Y ,Y]}, (9.3)

𝒓𝑚 [X ⊕ Y ,X ⊕ Y] ≈ max{𝒓𝑚 [X ,X], 𝒓𝑚 [Y ,Y]} (9.4)

for𝑚 ∈ N. The behavior of the democracy-like parameters is more involved. Here, we study the squeeze-
symmetry parameters of direct sums of bases.

To that end, we notice that for any basis X of a quasi-Banach space X the parameters (𝝍𝑚)
∞
𝑚=1

defined in equation (3.5) satisfy

𝝍 �𝑚/2� � 𝝍𝑚, 𝑚 ∈ N.

Indeed, if 𝜅 is the modulus of concavity of X,

𝝍 �𝑚/2� =
𝝀 �𝑚/2�

𝝋𝒖 (�𝑚/2�)
≤

𝝀𝑚
𝝋𝒖 (�𝑚/2�)

≤
𝜅𝝀𝑚

𝝋𝒖 (𝑚)
= 𝜅𝝍𝑚.

Let us consider X ⊕ Y endowed with the maximum norm. We deduce from Lemma 3.3(i) that

𝝆𝑚 := max{𝝍𝑚 [X ,X],𝝍𝑚 [Y ,Y]} ≤ 𝝍𝑚 [X ⊕ Y ,X ⊕ Y] ≤ 𝝆 �𝑚/2�
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for all 𝑚 ∈ N. In turn, it is well known (see [29]) that

𝝋𝒖 (𝑚) := max{𝝋𝒖 [X ,X] (𝑚), 𝝋𝒖 [Y ,Y] (𝑚)} = 𝝋𝒖 [X ⊕ Y ,X ⊕ Y] (𝑚).

Hence, 𝝀𝑚 [X ⊕ Y ,X ⊕ Y] grows as

max{𝝋𝒖 [X ,X] (𝑚), 𝝋𝒖 [Y ,Y] (𝑚)} max
{

𝝀𝑚 [X ,X]
𝝋𝒖 [X ,X] (𝑚)

,
𝝀𝑚 [Y ,Y]

𝝋𝒖 [Y ,Y] (𝑚)

}
.

That is, if

𝝃𝑚 [X ,Y] = max
{
1,

𝝋𝒖 [Y ,Y] (𝑚)
𝝋𝒖 [X ,X] (𝑚)

}
𝝀𝑚 [X ,X],

then

𝝀𝑚 [X ⊕ Y ,X ⊕ Y] ≈ max{𝝃𝑚 [X ,Y], 𝝃𝑚 [Y ,X ]}, 𝑚 ∈ N. (9.5)

9.11. The Lebesgue constants do not grow linearly with the democracy parameters and the
unconditionality parameters

Let X and Y be bases of quasi-Banach spaces X and Y, respectively. Suppose that X and Y are
superdemocratic and that

ℎ =
𝝋𝒖 [X ,X]
𝝋𝒖 [Y ,Y]

is equivalent to a nondecreasing function. Then,

𝝁𝑚 [X ⊕ Y ,X ⊕ Y] ≈ 𝝁𝒔
𝑚 [X ⊕ Y ,X ⊕ Y] ≈ ℎ(𝑚), 𝑚 ∈ N.

Suppose also that Y is truncation quasi-greedy and that Y is r-Banach, 0 < 𝑟 ≤ 1. By equations (9.2)
and (9.3),

𝒌𝑚 [X ⊕ Y ,X ⊕ Y] � max{𝒌𝑚 [X ,X], log(1 + 𝑚)1/𝑟 }, 𝑚 ∈ N.

In turn, by equation (9.5) and Proposition 5.2,

𝝀𝑚 [X ⊕ Y ,X ⊕ Y] ≈ ℎ(𝑚)𝒓𝑚 [X ,X], 𝑚 ∈ N.

If the function h controls the growth of both the powers of the logarithmic function and the uncondi-
tionality parameters of X , then

𝑳𝑚 [X ⊕ Y ,X ⊕ Y] ≈ ℎ(𝑚)𝒓𝑚 [X ,X],
max{𝝁𝒔 [X ⊕ Y ,X ⊕ Y], 𝒌𝑚 [X ⊕ Y ,X ⊕ Y]} ≈ ℎ(𝑚)

for 𝑚 ∈ N. If X is not truncation quasi-greedy, then

𝑳𝑚 [X ⊕ Y ,X ⊕ Y] � max{𝝁𝒔
𝑚 [X ⊕ Y ,X ⊕ Y], 𝒌𝑚 [X ⊕ Y ,X ⊕ Y]}.

To look for bases where this situation occurs, we appeal to [4, Example 11.6]. The computations
therein show that the basis X constructed there for X = ℓ𝑝 ⊕ ℓ𝑞 , 0 < 𝑝 < 𝑞 ≤ ∞, is superdemocratic
and satisfies

𝝋𝒖 [X ,X] ≈ 𝑚1/𝑝 and 𝒒𝑚 [X ,X] � 𝑚1/𝑝−1/𝑞 𝑚 ∈ N.
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Besides, it is easily checked that X dominates the unit vector system of ℓ𝑞 and it is dominated by the
unit vector system of ℓ𝑝 . Therefore,

𝒌𝑚 [X ,X] � 𝑚1/𝑝−1/𝑞 , 𝑚 ∈ N.

Hence,

𝒒𝑚 [X ,X] ≈ 𝒓𝑚 [X ,X] ≈ 𝒌𝑚 [X ,X] ≈ 𝑚1/𝑝−1/𝑞 , 𝑚 ∈ N.

Now, it suffices to pick a squeeze-symmetric basis Y of a quasi-Banach space Y which satisfies

𝝋𝒖 [Y ,Y] ≈ 𝑚1/𝑠 , 𝑚 ∈ N,

for some 𝑠 ∈ (0,∞) with 1/𝑠 > 2/𝑝 − 1/𝑞. Take, for instance, the unit vector system of ℓ𝑠.
Note that the right-hand side estimate of equation (1.2) is optimal for the basis of ℓ𝑝 ⊕ ℓ𝑞 ⊕ ℓ𝑠 that

we have constructed.
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