GAP SERIES ON GROUPS AND SPHERES

DANIEL RIDER

Introduction. Let G be a compact abelian group and E a subset of its dual group Γ. A function $f \in L^{1}(G)$ is called an E-function if $\tilde{f}(\gamma)=0$ for all $\gamma \notin E$ where

$$
\tilde{f}(\gamma)=\int_{G} f(x) \gamma(-x) d x, \quad \gamma \in \Gamma ;
$$

$d x$ is the Haar measure on G. A trigonometric polynomial that is also an E-function is called an E-polynomial.

Definition. E is a Sidon set if there is a finite constant B depending on E such that

$$
\begin{equation*}
\sum_{\gamma \in \Gamma}|\tilde{f}(\gamma)| \leqslant B\|f\|_{\infty} \quad \text { for every E-polynomial } f . \tag{1}
\end{equation*}
$$

In §1 we discuss the sufficient arithmetic condition considered by Stečkin (7), Hewitt and Zuckerman (3), and Rudin (6), which assures that E is a Sidon set. The hypotheses and conclusion are slightly improved. In particular it is shown that the characteristic function of such a Sidon set may be uniformly approximated by Fourier-Stieltjes transforms. This enables us to prove that the union of such a Sidon set and any other Sidon set is again a Sidon set.

Section 2 deals with the analogous question on spheres. S_{2} will denote the surface of the unit sphere in Euclidean 3-space. If a function f on S_{2} is integrable with respect to ordinary Lebesgue measure, then f is associated with a series of surface spherical harmonic polynomials:

$$
\begin{equation*}
S[f](x)=\sum_{n=0}^{\infty} \tilde{f}_{n}(x) \quad \text { (1, Chapter 11). } \tag{2}
\end{equation*}
$$

If E is a subset of the natural numbers, then f is an E-function provided $\tilde{f}_{n}=0$ for all $n \notin E . f$ is a polynomial if $\tilde{f}_{n}=0$ except for finitely many n. If f satisfies both, it is an E-polynomial. It is shown that there is no infinite set E and finite constant B such that

$$
\sum_{n=0}^{\infty}\left\|\tilde{f}_{n}\right\|_{\infty} \leqslant B\|f\|_{\infty} \quad \text { for every } E \text {-polynomial } f
$$

We also show that there is no infinite-dimensional closed rotation-invariant subspace of $L^{1}\left(S_{2}\right)$ contained in $L^{2}\left(S_{2}\right)$.

If X is a locally compact space, $M(X)$ will be the space of all complex-valued regular Borel measures on X with finite total variation. For $\mu \in M(X),\|\mu\|$ denotes the total variation of μ.

Received December 28, 1964.

1. Sidon sets for compact abelian groups.

1.1. The following two theorems concerning analytic properties of Sidon sets are well known (5, pp. 121, 123).

Theorem 1.1. Let E be a subset of the discrete group Γ. The following are equivalent:
(a) E is a Sidon set.
(b) Every bounded E-function has an absolutely convergent Fourier series.
(c) Every continuous E-function has an absolutely convergent Fourier series.
(d) For every bounded function ϕ on E there is a measure $\mu \in M(G)$ such that $\tilde{\mu}(\gamma)=\phi(\gamma)$ for all $\gamma \in E$.
(e) For every function ϕ on E that vanishes at infinity there is a function $f \in L^{1}(G)$ such that $\tilde{f}(\gamma)=\phi(\gamma)$ for all $\gamma \in E$.

Theorem 1.2. A set E in the discrete group Γ is a Sidon set if to every function ϕ on E with $\phi(\gamma)= \pm 1$ there is a measure $\mu \in M(G)$ with

$$
\begin{equation*}
\sup _{\gamma \in E}|\tilde{\mu}(\gamma)-\phi(\gamma)|<1 \tag{3}
\end{equation*}
$$

A set E is a Sidon set if and only if every countable subset of E is a Sidon set. Thus we can restrict ourselves to countable groups Γ.

Definition 1.3. Let $E \subset \Gamma$ and $\gamma_{1}, \gamma_{2}, \ldots$ be an enumeration of the elements of $E . R_{s}(E, \gamma)$ is the number of representations of γ in the form

$$
\begin{equation*}
\gamma= \pm \gamma_{n_{1}} \pm \gamma_{n_{2}} \pm \ldots \pm \gamma_{n_{s}}, \quad n_{1}<n_{2}<\ldots<n_{s} \tag{4}
\end{equation*}
$$

0 will denote the trivial character.
Rudin (5, p. 124) proves the following
Theorem 1.4. Let $E \subset \Gamma$ satisfy the following:
(a) If $\gamma \in E$ and $2 \gamma \neq 0$, then $-\gamma \notin E$.
(b) There is a finite constant B and a decomposition of E into a finite union of disjoint sets $E_{1}, E_{2}, \ldots, E_{t}$, such that

$$
\begin{equation*}
R_{s}\left(E_{j}, \gamma\right) \leqslant B^{s} \quad(1 \leqslant j \leqslant t ; s=1,2,3, \ldots) \tag{5}
\end{equation*}
$$

for all $\gamma \in E$ and for $\gamma=0$. Then E is a Sidon set.
Stečkin, (7, p. 394) proves this for the circle T, provided (5) holds for all $\gamma \in Z$, the integers. Hewitt and Zuckerman (3) have shown it when $B=1$.

It is possible to omit (a) from the hypotheses, to weaken (b), and to strengthen the conclusion.

Theorem 1.5. Let $E \subset \Gamma$ and $0<B<\infty$ be such that

$$
\begin{equation*}
R_{s}(E, 0) \leqslant B^{s} \quad(s=1,2, \ldots) \tag{6}
\end{equation*}
$$

If $\phi(\gamma)= \pm 1$ on $E \cup(-E)$, then for every $\epsilon>0$ there exists $\nu \in M(G)$ such that

$$
\begin{array}{ll}
|\tilde{\nu}(\gamma)|<\epsilon & (\gamma \notin E \cup(-E)) \tag{7}\\
|\tilde{\nu}(\gamma)-\phi(\gamma)|<\epsilon & (\gamma \in E \cup(-E))
\end{array}
$$

We shall show that (6) implies that there is a finite constant B_{1} such that

$$
\begin{equation*}
R_{s}(E, \gamma) \leqslant B_{1}^{s} \quad(s=1,2, \ldots) \quad \text { for all } \gamma \in \Gamma \tag{8}
\end{equation*}
$$

It follows from Theorem 1.2 and the conclusion of Theorem 1.5 that if E satisfies (6), then $E \cup(-E)$ is a Sidon set. It also is an immediate consequence that if E is the finite union of sets each of which satisfies (6), then $E \cup(-E)$ is a Sidon set. It is not known if every Sidon set is of this type. It is not even known if the union of two Sidon sets is always a Sidon set. However, it follows from (7) that if E is a set as in Theorem 1.5, then there are measures in $M(G)$ whose Fourier-Stieltjes transforms uniformly approximate the characteristic function of E in Γ.

This will allow us to prove
Theorem 1.6. If F is a Sidon set and E is a Sidon set of the type of 1.5 , then $E \cup F$ is a Sidon set.

1.2. Proofs.

Lemma 1.7. Let $E \subset \Gamma$ and $1 \leqslant B<\infty$ be such that

$$
R^{s}(E, 0) \leqslant B^{s}(s=1,2, \ldots)
$$

Assume $\gamma \in E$ and $2 \gamma \neq 0$ implies $-\gamma \notin E$. Then

$$
\begin{equation*}
\sum_{s=1}^{\infty}(2 B)^{-s} R_{s}(E, \gamma) \leqslant 2 \quad \text { for all } \gamma \in \Gamma \tag{9}
\end{equation*}
$$

It follows from (9) that

$$
R_{s}(E, \gamma) \leqslant 2(2 B)^{s} \quad(s=1,2, \ldots ; \gamma \in \Gamma)
$$

Proof. Let $\beta=(2 B)^{-1}$ and $\gamma_{1}, \gamma_{2}, \ldots$ be the elements of E. Let

$$
f_{k}(x)= \begin{cases}1+\beta \gamma_{k}(x)+\beta \overline{\gamma_{k}(x)} & \text { if } 2 \gamma_{k} \neq 0 \\ 1+\beta \gamma_{k}(x) & \text { if } 2 \gamma_{k}=0\end{cases}
$$

and form the Riesz products

$$
\begin{equation*}
P_{N}(x)=\prod_{k=1}^{N} f_{k}(x) \tag{10}
\end{equation*}
$$

Since $\beta \leqslant \frac{1}{2}$ and $\left|\gamma_{k}(x)\right|=1, P_{N}(x) \geqslant 0$. Expanding (10) we obtain

$$
P_{N}(x)=1+\sum_{\gamma \in \Gamma} C_{N}(\gamma) \gamma(x)
$$

where

$$
\left|C_{N}(\gamma)\right| \leqslant \sum_{s=1}^{N} \beta^{s} \sum 1
$$

the inner summation runs over all $\gamma_{n_{1}}, \gamma_{n_{2}}, \ldots, \gamma_{n_{s}}$ satisfying (4). In particular

$$
\left|C_{N}(0)\right| \leqslant \sum_{s=1}^{N} \beta^{s} R_{s}(E, 0) \leqslant \sum_{s=1}^{N}(\beta B)^{s} \leqslant 1 .
$$

Since $P_{N} \geqslant 0,\left\|P_{N}\right\|_{1}=1+C_{N}(0) \leqslant 2$. Thus

$$
\begin{equation*}
\left|\widetilde{P}_{N}(\gamma)\right| \leqslant 2 \quad \text { for all } \gamma \in \Gamma \tag{11}
\end{equation*}
$$

For $\gamma \neq 0, \widetilde{P}_{N}(\gamma)=C_{N}(\gamma)$. Fix γ and let $N \rightarrow \infty$. It is easily seen that

$$
\lim _{N \rightarrow \infty} C_{N}(\gamma)=\sum_{s=1}^{\infty} \beta^{s} R_{s}(E, \gamma) .
$$

Hence by (11),

$$
\sum_{s=1}^{\infty} \beta^{s} R_{s}(E, \gamma) \leqslant 2 \quad \text { for all } \gamma \in \Gamma
$$

Proof of Theorem 1.5. The proof follows closely that of Rudin (5, p. 125). Without loss of generality we may assume that $B \geqslant 1,0 \notin E$, and that $\gamma \in E, 2 \gamma \neq 0$ implies $-\gamma \notin E$.

By assumption, $R_{s}(E, 0) \leqslant B^{s}(s=1,2, \ldots)$ so that by Lemma 1.7 we may assume (for a different B)

$$
\begin{equation*}
R_{s}(E, \gamma) \leqslant B^{s} \quad(\gamma \in \Gamma ; s=1,2, \ldots) \tag{12}
\end{equation*}
$$

Let ϕ be a function on $E \cup(-E)$ such that $\phi(\gamma)= \pm 1$. Write $E=E^{1} \cup E^{2}$ where

$$
E^{1}=\{\gamma: \gamma \in E \text { and } \phi(\gamma)=\phi(-\gamma)\}
$$

and

$$
E^{2}=\{\gamma: \gamma \in E \text { and } \phi(\gamma)=-\phi(-\gamma)\}
$$

Let $\beta=\left(K B^{2}\right)^{-1}$ for some $K \geqslant 2$ and define

$$
g(\gamma)= \begin{cases}\beta \phi(\gamma) & \text { if } \gamma \in E^{1} \tag{13}\\ i \beta \phi(\gamma) & \text { if } \gamma \in E^{2}\end{cases}
$$

Let $\gamma_{1}, \gamma_{2}, \ldots$ be the elements of $E_{j}(j=1,2)$ and put

$$
f_{k}(x)= \begin{cases}1+g\left(\gamma_{k}\right) \gamma_{k}(x)+\overline{g\left(\gamma_{k}\right)}\left(-\gamma_{k}\right)(x) & \text { if } 2 \gamma_{k} \neq 0 \tag{14}\\ 1+g\left(\gamma_{k}\right) \gamma_{k}(x) & \text { if } 2 \gamma_{k}=0\end{cases}
$$

Form the Riesz products

$$
P_{N}(x)=\prod_{k=1}^{N} f_{k}(x)
$$

Then as in (5, p. 125) a subsequence of $\left\{P_{N}\right\}$ converges weakly to a positive measure $\mu_{j} \in M(G)$ with the following properties:
(a) $\left|\left|\mu_{j} \| \leqslant \sup \right| \widetilde{P}_{N}(0)\right| \leqslant 1+\sum_{2}^{\infty} \beta^{s} R_{s}(E, 0)$.
(b) $\left|\tilde{\mu}_{j}\left(\gamma_{k}\right)-g\left(\gamma_{k}\right)\right| \leqslant \sup _{N}\left|\tilde{P}_{N}\left(\gamma_{k}\right)-g\left(\gamma_{k}\right)\right|$

$$
\leqslant \sum_{2}^{\infty} \beta^{s} R_{s}\left(E, \gamma_{k}\right) \quad \text { if } \gamma_{k} \in E^{j}
$$

(c) $\left|\tilde{\mu}_{j}\left(-\gamma_{k}\right)-g\left(\gamma_{k}\right)\right| \leqslant \sum_{2}^{\infty} \beta^{s} R_{s}\left(E, \gamma_{k}\right) \quad$ if $\gamma_{k} \in E^{j}$.
(d) $\left|\tilde{\mu}_{j}(\gamma)\right| \leqslant \sum_{2}^{\infty} \beta^{s} R_{s}(E, \gamma) \quad$ if $\gamma \notin E^{j} \cup\left(-E^{j}\right) \cup\{0\}$.

But by (12)

$$
\sum_{2}^{\infty} \beta^{s} R_{s}(E, \gamma) \leqslant \sum_{2}^{\infty}(\beta B)^{s}=\frac{(\beta B)^{2}}{1-\beta B}<\left(K(K-1) B^{2}\right)^{-1}
$$

so that if $\mu=\mu_{1}-i \mu_{2}$, then by (13)

$$
|\tilde{\mu}(\gamma)-\beta \phi(\gamma)| \leqslant 2\left(B^{2} K(K-1)\right)^{-1} \quad \text { if } \gamma \in E \cup(-E)
$$

and

$$
|\tilde{\mu}(\gamma)| \leqslant 2\left(B^{2} K(K-1)\right)^{-1} \quad \text { if } \gamma \notin E \cup(-E) \cup\{0\}
$$

Let $\nu=\mu / \beta$. Then

$$
\begin{array}{ll}
|\tilde{\nu}(\gamma)-\phi(\gamma)| \leqslant 2(K-1)^{-1} & \text { if } \gamma \in E \cup(-E), \tag{15}\\
|\tilde{\nu}(\gamma)| \leqslant 2(K-1)^{-1} & \text { if } \gamma \notin E \cup(-E) \cup\{0\} .
\end{array}
$$

Given $\epsilon>0$, choose K so large that $2(K-1)^{-1}<\epsilon$; then by adding a constant multiple of Haar measure to ν, we obtain the desired measure.

Proof of Theorem 1.6. Let F be any Sidon set and E a Sidon set as in Theorem 1.5. We may assume that $E=E \cup(-E), E \cap F=\emptyset$, and $0 \notin E \cup F$. Given $\epsilon>0$, the theorem above shows that there is a measure $\mu_{\epsilon} \in M(G)$ such that

$$
\begin{equation*}
\sup _{\gamma \in \Gamma}\left|\tilde{\mu}_{\epsilon}(\gamma)-\phi(\gamma)\right|<\epsilon \tag{16}
\end{equation*}
$$

where ϕ is the characteristic function of E.
Let b be a function on $E \cup F$ such that $b(\gamma)= \pm 1$. By Theorem 1.2 (d), there is $\mu_{1} \in M(G)$ such that $\tilde{\mu}_{1}(\gamma)=b(\gamma)$ for all $\gamma \in F$. Similarly, there is $\mu_{2} \in M(G)$ such that

$$
\tilde{\mu}_{2}(\gamma)=-\mu_{1}(\gamma)+b(\gamma)
$$

for all $\gamma \in E$. Let $\mu=\mu_{1}+\mu_{2} * \mu_{\epsilon}$ where

$$
\begin{equation*}
\epsilon<\frac{1}{2} \min \left[\left\|\mu_{2}\right\|^{-1},\left(\left\|\mu_{1}\right\|+1\right)^{-1}\right] . \tag{17}
\end{equation*}
$$

Then
(18) $|\tilde{\mu}(\gamma)-b(\gamma)|=\left|\mu_{2} * \mu_{\epsilon}(\gamma)\right| \leqslant\left\|\mu_{2}\right\| \epsilon<\frac{1}{2} \quad$ for $\gamma \in F$
and

$$
\begin{align*}
|\tilde{\mu}(\gamma)-b(\gamma)| & =\left|\tilde{\mu}_{1}(\gamma)-b(\gamma)+\left(-\tilde{\mu}_{1}(\gamma)+b(\gamma)\right) \tilde{\mu}_{\epsilon}(\gamma)\right| \tag{19}\\
& \leqslant\left|1-\tilde{\mu}_{\epsilon}(\gamma)\right|\left|\tilde{\mu}_{1}(\gamma)-b(\gamma)\right|<\frac{1}{2} \quad \text { for } \gamma \in E .
\end{align*}
$$

By Theorem 1.2, $E \cup F$ is a Sidon set.
1.3. Remarks. The following gives an equivalent statement for the hypotheses of Theorem 1.5. If there is $\gamma^{*} \in E$ such that $R_{s}\left(E, \gamma^{*}\right) \leqslant B^{s}$, $s=1,2,3, \ldots$, then $R_{s}(E, 0) \leqslant 3 B^{s+1}, s=1,2, \ldots$ For suppose

$$
\begin{equation*}
0=\sum_{1}^{s} \pm \gamma_{n_{k}}, \quad \gamma_{n_{k}} \in E ; n_{1}<n_{2}<\ldots<n_{s} \tag{20}
\end{equation*}
$$

Then there are two possibilities. If $\pm \gamma^{*}$ appears in the sum in (20), then we have a way of writing

$$
\pm \gamma^{*}=\sum_{1}^{s-1} \pm \gamma_{n_{k}}, \quad n_{1}<n_{2}<\ldots<n_{s-1}
$$

There are at most $2 R_{s-1}\left(E, \gamma^{*}\right)$ of these. If $\pm \gamma^{*}$ does not appear in (20), then by adding γ^{*} to each side we have a way of writing

$$
\gamma^{*}=\sum_{1}^{s+1} \pm \gamma_{n_{k}}, \quad n_{1}<n_{2}<\ldots<n_{k}
$$

There are at most $R_{s+1}\left(E, \gamma^{*}\right)$ of these. Thus

$$
\begin{aligned}
R_{s}(E, 0) & \leqslant 2 R_{s-1}\left(E, \gamma^{*}\right)+R_{s+1}\left(E, \gamma^{*}\right) \\
& \leqslant 2 B^{s-1}+B^{s+1} \leqslant 3 B^{s+1}
\end{aligned}
$$

In the same way it can be shown that the condition for Theorem 1.5 is invariant when E is translated by an element of Γ (3, p. 7).

2. Sidon sets for S_{2}.

2.1. If $f \in L^{1}\left(S_{2}\right)$, then f is associated with a series of harmonic polynomials

$$
\begin{equation*}
S[f] x=\sum_{n=0}^{\infty} \tilde{f}_{n}(x) \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{f}_{n}(x)=(2 n+1) \int_{S_{2}} P_{n}(\langle x, y\rangle) f(y) d y . \tag{22}
\end{equation*}
$$

P_{n} are the Legendre polynomials given by

$$
\begin{equation*}
\left(1-2 v \cos \theta+v^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty} v^{n} P_{n}(\cos \theta) \tag{23}
\end{equation*}
$$

$\langle x, y\rangle$ is the scalar product of x and y as vectors in E_{3}.

Define \mathfrak{P}_{n} to be the set of all such \tilde{f}_{n}. It is well known that \mathfrak{P}_{n} contains the function $f(x)=P_{n}\left(\left\langle x, y_{0}\right\rangle\right)$ for each y_{0} in S_{2} and that $\mathfrak{\Re}_{n}$ is the smallest rotationinvariant subspace of $L^{2}\left(S_{2}\right)$ containing $P_{n}\left(\left\langle x, y_{0}\right\rangle\right)$. Also if $f \in \mathfrak{P}_{n}$, then

$$
\begin{equation*}
f(x)=(2 n+1) \int_{S_{2}} P_{n}(\langle x, y\rangle) f(y) d y . \tag{24}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
P_{n}(\langle x, z\rangle)=(2 n+1) \int_{S_{2}} P_{n}(\langle x, y\rangle) P_{n}(\langle z, y\rangle) d y \tag{25}
\end{equation*}
$$

If $x \in S_{2}, x^{\prime}$ will denote the point antipodal to x, i.e. $\left\langle x, x^{\prime}\right\rangle=-1$.
The question may be asked: Does there exist an infinite set of integers E and a finite constant B such that if f is an E-polynomial on S_{2}, then

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\|\tilde{f}_{n}\right\|_{\infty} \leqslant B\|f\|_{\infty} ? \tag{26}
\end{equation*}
$$

The answer is negative. For assume that (26) holds for every E-polynomial and let f be a bounded E-function. Let $\sigma_{N}{ }^{2}(f ; x)$ be the second Cesàro means of

$$
S(f)=\sum_{n=0}^{\infty} \tilde{f}_{n}
$$

Then

$$
\begin{equation*}
\sigma_{N}^{2}(f ; x)=\sum_{n=0}^{N} \tilde{f}_{n}(x) a(N ; n)=\int_{S_{2}} f(y) K_{N}(\langle x, y\rangle) d y \tag{27}
\end{equation*}
$$

where $a(N ; n) \rightarrow 1$ as $N \rightarrow \infty, K_{N} \geqslant 0$, and

$$
\int_{S_{2}} K_{N}(\langle x, y\rangle) d y=1
$$

(cf. 2, p. 81). Thus $\left\|\sigma_{N}{ }^{2}(f)\right\|_{\infty} \leqslant\|f\|_{\infty}$. But $\sigma_{N}{ }^{2}(f)$ is an E-polynomial so that by (26)

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left\|{\sigma_{N}}^{2}(f)_{n}\right\|_{\infty} \leqslant B\left\|\sigma_{N}^{2}(f)\right\|_{\infty} \leqslant B\|f\|_{\infty} \tag{28}
\end{equation*}
$$

Letting $N \rightarrow \infty$, we see from (27) and (28) that (26) must hold for all bounded E-functions. This is impossible by

Theorem 2.1. Suppose E is an infinite set of integers. Then there is a bounded E-function f on S_{2} such that $\left\|\tilde{f}_{n_{k}}\right\|_{\infty}=1$ for an infinite number of $n_{k} \in E$. Further more, f can be chosen so that it is continuous except at two points.

Proof. Choose a sequence of distinct points of S_{2} converging to some point $x_{0} \in S_{2}$; say x_{1}, x_{2}, \ldots Choose a neighbourhood U_{k} about x_{k} so small that if $U^{\prime}{ }_{k}$ is the set of points antipodal to U_{k}, then none of the U_{k} and $U^{\prime}{ }_{j}$ overlap. By (4, p. 311) we can choose $n_{k} \in E$ so large that

$$
\begin{equation*}
\left|P_{n_{k}}\left(\left\langle x, x_{k}\right\rangle\right)\right| \leqslant 2^{-k} \quad \text { for } x \notin U_{k} \cup U_{k}^{\prime} . \tag{29}
\end{equation*}
$$

Then

$$
\sum_{k=1}^{\infty} P_{n k}\left(\left\langle x, x_{k}\right\rangle\right)
$$

converges uniformly on compact sets of S_{2} that miss x_{0} and $x^{\prime}{ }_{0}$. Furthermore, since each $x \in S_{2}$ is in at most one $U_{k} \cup U^{\prime}{ }_{k}$, (29) implies that

$$
\begin{equation*}
\left|\sum_{k=1}^{\infty} P_{n_{k}}\left(\left\langle x, x_{k}\right\rangle\right)\right| \leqslant 1+\sum_{k=1}^{\infty} 2^{-k}=2 . \tag{30}
\end{equation*}
$$

Since $\left\|P_{n}\right\|_{\infty}=1$,

$$
f(x)=\sum_{k=1}^{\infty} P_{n_{k}}\left(\left\langle x, x_{k}\right\rangle\right)
$$

is the desired function.
A set of integers $\left\{n_{k}\right\}$ for which there is λ with

$$
\frac{n_{k+1}}{n_{k}}>\lambda>1 \quad(k=1,2,3, \ldots)
$$

is called a Hadamard set. If E is a Hadamard set, it is not possible to find a continuous function satisfying the conclusion of Theorem 2.1.

Theorem 2.2. If E is a Hadamard set, then every continuous E-function has a uniformly convergent Laplace series. That is, if f is an E-function, then

$$
\sum_{n=0}^{N} \tilde{f}_{n}(x) \rightarrow f(x)
$$

uniformly as $N \rightarrow \infty$.
In particular $\left\|\tilde{f}_{n}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$, for such a function.
Proof. Gronwall (4, p. 351) proves that the first Cesàro means of the Laplace series of a continuous function f on S_{2} converges to f uniformly. By a theorem of Kolmogoroff (8, p. 79), a uniformly Cesàro summable series with its support on a Hadamard set has uniformly convergent partial sums.

It is always possible to find a continuous E-function such that $\sum\left\|f_{n}\right\|_{\infty}=\infty$. We need only consider

$$
f(x)=\sum \frac{1}{k} \cdot P_{n_{k}}\left(\left\langle x, x_{k}\right\rangle\right)
$$

where $\left\{n_{k}\right\}$ and $\left\{x_{k}\right\}$ are as in the proof of Theorem 2.1.
2.2. If E is a subset of the discrete abelian group Γ and E is a Sidon set, then every E-function $f \in L^{1}(G)$ is also in $L^{p}(G)(1 \leqslant p<\infty)$ (cf. 5, p. 128). Since every infinite compact abelian group G has Sidon sets (5, p. 126), this shows that there are infinite-dimensional closed translation-invariant subspaces of $L^{1}(G)$ contained in $L^{2}(G)$. Hewitt and Zuckerman (3, p. 15) consider this problem (without the condition of being translation-invariant) when G is not necessarily abelian.

We may consider the same problem on S_{2} : Does there exist an infinitedimensional closed rotation-invariant subspace of $L^{1}\left(S_{2}\right)$ that is contained in $L^{2}\left(S_{2}\right)$? The answer is negative.

We shall show that there exists a sequence $\left\{Y_{n}\right\}\left(Y_{n} \in \mathfrak{P}_{n}\right)$ such that

$$
\begin{equation*}
\frac{\left\|Y_{n}\right\|_{2}}{\left\|Y_{n}\right\|_{1}}>C . n^{1 / 4} \tag{31}
\end{equation*}
$$

for some positive constant C. If a closed rotation-invariant subspace X of $L^{1}\left(S_{2}\right)$ contains a function f with $\tilde{f}_{n} \neq 0$, then X contains all of \mathfrak{B}_{n} and hence Y_{n}. If $X \subset L^{2}\left(S_{2}\right)$, then $\left\|\|_{1}\right.$ and $\| \|_{2}$ are equivalent norms on X so that there is a finite constant B with

$$
\begin{equation*}
\|f\|_{2} \leqslant B\|f\|_{1} \quad \text { for all } f \in X \tag{32}
\end{equation*}
$$

If X is infinite-dimensional, it must contain infinitely many of the Y_{n}. Equations (31) and (32) then give a contradiction.

The Y_{n} are defined by

$$
\begin{equation*}
Y_{n}(\theta, \phi)=\cos n \phi(\sin \theta)^{n} . \tag{33}
\end{equation*}
$$

$Y_{n} \in \mathfrak{P}_{n}(4, \mathrm{pp} .95,122)$. It is easy to calculate

$$
\begin{align*}
\left\|Y_{n}\right\|_{2}^{2} & =\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{\pi}(\cos n \phi)^{2}(\sin \theta)^{2 n} \sin \theta d \theta d \phi \tag{34}\\
& =\frac{1}{4 \sqrt{ } \pi} \frac{\Gamma(n+1)}{\Gamma(n+3 / 2)}
\end{align*}
$$

and

$$
\begin{align*}
\left\|Y_{n}\right\|_{1} & =\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{\pi}|\cos n \phi|(\sin \theta)^{n} \sin \theta d \theta d \phi \tag{35}\\
& =(\pi)^{-(3 / 2)} \frac{\Gamma\left(\frac{1}{2} n+1\right)}{\Gamma\left(\frac{1}{2} n+3 / 2\right)} .
\end{align*}
$$

It is known that

$$
\frac{\Gamma(t) t^{\frac{1}{2}}}{\Gamma\left(t+\frac{1}{2}\right)} \rightarrow c \neq 0 \quad \text { as } t \rightarrow \infty .
$$

Thus (34) and (35) imply (31).
These results, appropriately modified, hold also for the surface of the unit sphere in Euclidean K space, $K>3$.

References

1. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions, Vol. I (New York, 1953).
2. L. Féjer, Über die Laplacesche Reihe, Math. Ann., 67 (1909), 76-109.
3. E. Hewitt and H. S. Zuckerman, Some theorems on lacunary Fourier series, with extensions to compact sroups, Trans. Amer. Math. Soc., 93 (1959), 1-19.
4. E. W. Hobson, The theory of spherical and ellipsoidal harmonics (New York, 1955).
5. W. Rudin, Fourier analysis on groups (New York, 1962).
6. -_Trigonometric series with gaps, J. Math. Mech., 9 (1960), 203-228.
7. S. B. Stečkin, On absclute convergence of Fourier series, Izv. Akad. Nauk SSSR, Ser. Mat., 20 (1956), 385-412.
8. A. Zygmund, Trigonometric series, 2nd ed., Vol. I (Cambridge, 1959).

University of Wisconsin and
Massachusetts Institute of Technology

