From square of b take 4ac;
Square root extract, and b subtract ;
Divide by $2 a$; you've x alway.
Another mnemonic for the same values, due to Mr N. D. Beatson Bell, is

When you have written $-b$,
The double sign put down;
Then $b^{2}-4 a c$
With square-root mark you crown;
Beneath it all a line you trace,
Beneath which line $2 a$ you place.
The value of the co-efficient of refraction of light in two important cases is got from the following:-

When rays dis pass from air to glass,
The value of μ is three by two;
But when they pass from air to water,
The value of μ is one by thrse-quarter(s)!

Eighth Meeting, June 12th, 1885.

Thomas Muir, Esq., LL.D., F.R.S.E., in the Chair.

Summation of certain Series.
 By Professor Tait.
 [Abstract.*]

The attempt to enumerate the possible distinct forms of knots of any order, though unsuccessful as yet, has led me to a number of curious results, some of which may perhaps be new. The general character of the methods employed will be obvious from an inspection of a few simple cases, and any one who has some practice in algebra may extend the results indefinitely.

[^0]Take, for instance, the series

$$
r^{m}-n(r+s)^{m}+\frac{n \cdot \overline{n-1}}{1.2^{-}}(r+2 s)^{m}-d c .
$$

where the coefficients are the terms of $(1-1)^{n}$, and the other factors are the $m^{\text {th }}$ powers of the terms of an arithmetical series : $-m$ being a positive integer. The well-known properties of exponential series give us an easy method of summing all expressions of this form. For we have
which may be written in the form

$$
\begin{aligned}
& \left.(p-q) x+\frac{p^{2}-q^{2}}{2!} x^{2}+\frac{p^{3}-q^{3}}{3!} x^{3}+\& \mathrm{cc}\right)^{n} \\
& \quad=\Sigma \frac{1}{m!}\left(\bar{n}^{m}-n(n p+q-p)^{m}+\frac{n \cdot \overline{n-1}}{1.2}(n p+2 q-p)^{m}-\& \mathrm{cc}\right)
\end{aligned}
$$

Make $n p=r, q-p=s$; and p and q are known.
The required sum is then the coefficient of x^{m} in the expansion of

$$
\left.\left.m!(p-q) x+\frac{p^{2}-q^{2}}{2!} x^{2}+\ldots \ldots\right)\right)^{n}
$$

It vanishes therefore, so long as $m \angle n$; and for $m=n$ its value is

$$
m!(p-q)^{m}=(-)^{m} m!s^{m} .
$$

When the coefficients in the given series are the alternate terms of ($1-1)^{n}$, we have only to treat, as above, the expression

$$
\left(\epsilon^{p x}+\epsilon^{a x}\right)^{n} \pm\left(\epsilon^{p x}-\epsilon^{q^{a x}}\right)^{n} .
$$

Such results may be varied ad libitum, by introducing two or more quantities in place of x, and comparing coefficients of like terms :-e.e.g., as in finding, by the two methods of expansion, the term in $x^{n} y^{\prime \prime}$ of the quantity

$$
\left(\epsilon^{p x}-\epsilon^{9 y}\right)^{n} .
$$

But it suffices to have called attention to processes which can give endless varieties of results, some of which may have useful applications.

[^0]: * This Abstract is part of the paper read in June, entitled "On the detection of amphicheiral knots, with special reference to the mathematical processes involved." I have unfortunately mislaid the MS.-P.G.T.

