CALCULATING ASTRONOMICAL REFRACTION BY MEANS OF CONTINUED FRACTIONS
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0. Abstract: A continued fraction was derived for the summation of the
asymptotic expansion of astronomical refraction. Using simple approxi-
mations for the last denominator of the fraction, accurate formulae,
useful down to the horizon, were obtained. The method is not restricted
to any model of the atmosphere and can thus be used in calculations
based on actual aerological measurements. '

1. Introduction

The usual way to evaluate the integral of astronomical refraction is to
expand it into a series in powers of the tangent or secant of the zenith
distance (Newcomb 1906, Oterma 1960, Joshi and Mueller 1974 and enclosed
references). This series may, mathematically, have a non-zero radius of
convergence, or else it may be a totally divergent asymptotic series,
depending upon the model used for the upper atmosphere. However, for the
first coefficients of the series there are not, in practice, significant
differences in the numerical values, so that it always behaves like an
asymptotic expansion. Thus it can be used only up to a certain zenith
distance.

According to the theory of continued fractions the formal power series

of a continued fraction is usually an asymptotic expansion, and vice
versa. In this paper we shall investigate the use of a continued fraction
to sum the expansion of astronomical refraction.

2, Development of the refraction integral
2.1, Notations

is the index of refraction of the air
is the distance from the centre of the earth
is the apparent zenith distance

0s ¥ , 2 are the above quantities at the place of observation
o’ “o
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2
Y = (ru/rouo) -1
S = sinz
o
C = cosz
o

Az is the astronomical refraction

2.2, Expansion into a continued fraction

The usual asymptotic expansion of the integral of the refraction is

az = §3 (-1)"a ¢l 2.1)
n
n=0
where the coefficients a are the moment integrals
vo
d
ao=f ;—‘i = logug
1
uo (2.2)
. = 1x3x vsex(2n-1) n dy
n  2x4x *++x(2n) v u

1

Now, an asymptotic series of this type has what is called an S-fraction
expansion (Wall 1948, p. 200), i.e. a continued fraction expansion of

the form nS
Az =—'0-—];— (2.3)
C +_1......
by
* 5
Cc + 3
C+ ..o

A convenient algorithm for computing the partial numerators b, from the
coefficient a_ is the quotient-difference algorithm (Henrici, 1967). The
formulae needéd in this case are given in section 3.1. It is difficult
to investigate the mathematical convergence of this fraction, but as
was shown in an earlier paper (Mikkola 1978) this fraction greatly
resembles that of the error function and thus is very probably conver-
gent for C # 0, However, to get a formula that can also be used at the
horizon we first write fraction (2.3) in the recursive form

Az = aOS/gl(C)
(2.4)
B (C) = €+ by /gy, (O

and construct for g (C) an asymptotic approximation useful for large k
(say for k=n). If we put
©) (2.4)

q, = 8 (O)/g

n n+l

then
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8,(C) =C+ ann/gn(C) (2.5)

from which follows the formula

gn(c) = -;-(c + ‘/(c2 + Aann)) (2.6)

As shown by Mikkola, 1978, the terms b_ are appr9§imate1y of the form
bn = nB, where B is a number of the order 8 ~ 10 ~, Now it is not
difficult to see that for C>>0, O =1 +((B), and for C = 0, Q_ =

1 + O(1/n) so that a good first agproximation is obtained by reBlacing
Qn by its horizon value, giving

8,(C) % 3 + /(P + q)) 2.7)

Here q_ is chosen in order to obtain the correct value for the horizon-—
tal refraction. Numerical experiments show that for large n (say n > 6)
this approximation is, in practice, sufficient. However, to obtain better
approximations we may write
b
g (C) =C+ - (2.8)
3+l v a0

and chose the parameters b_ and q 41 to give suitable values for both
the refraction and its derivativeat the horizon. On the other hand (2.8)
can be'written in the form

2bn 2bn 5
g (C) =C(1l —-—) + — ¢Y(C” + ¢q ) (2.9)
n dh+1 n+l n+l

thus, due to the above fitting conditions we in fact have formula

8, () = &€ + Y2 - g0+ g 2()) (2.10)

Here the prime indicates a derivative with respect to C. If approximat-
ion of this type is also used for g +1 then, due to the similarity of
the formulae, their errors are quite similar and a good value for the
ratio g /g is obtained. Thus we have for the quantity Q_ in formula
(2.6) the 3;ry good approximation n

2(0))

g0 + Y (21 - 5100 %+ &
Q, ¥ — ——— (2.11)
rl,(00C + ‘/(c (1-g!,,{0) %+ g~ (0))

From formulae (2.4) it is easy to obtain recursion formulae for the
quantities g (0) and g'(0) (given in section 3.1). However, to start the
recursions the horizonurefraction

0
bz, =[ V12 %‘- (2.11)

and the derivative
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Ho
pz) = {%6 f «c? + w)-1/2 i‘.‘.} (2.11)
M Je=0
1
are needed. Making the formal substitution Cz+ Yy = 62 we obtain
C
v d ulqu(w=9 -C ) _ dlog
Azf =2 {dC/ v *)

Cc=0
or (2-12)

1) N
v oo —uo'fug
AZJ_ ,
1+ uo'/up

Here pg' is the derivative of the refractive index with respect to the
height (at ground and ro= unit of distance).

3. Results and discussion
3.1, Collection of formulae

The quotient-difference algorithm for computing the partial numerators
bk of the continued fraction:

Using the expansion coefficients o, defined in (2.2) we start with

Bl,t = q /at_1

By, e ®B1,.” B1,.m1

t=1,2,.04yn (3.1)

and continued by means of

Be-1, .

Bk-l,z-l k-2,.-
Bk" i B - B + B if k is even G-
k-1,! k-1,¢-1 k=-2,.-1"

k = 3,4, «.uyn

1 if k is odd

which gives b, values of:

b, = Bk,k (3.3)

The recursion formulae for the horizontal values of - and g . Ve start

uo
with f ¢'1/2dl-1

pz] = 40 '/ug
1+ug'/up

(3.4)
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and use the recursions

8,(0) = ap/dz; 3 2](0) = -ap ‘g2 (0)az]
g, .1 (0)
Ba1 (0 = By /8 (0 5 gl (0) = =St (1-gl () (3.5)
k

k=1,2,3, ...,n

The approximation for ) is
' 2, 2 2
rI(0)C + ye2(1-g0))% + g 2(0))

Q =
Togl0cC ‘/ci(l-g;‘ﬂ(oni«» 52, (0
(3.6)
_ 1 2
8,(C) = 3(C + y(c? + 45 0 ))

Now the refraction can be evaluated by means of the formula

Az = E-Q-S—b_—. (3.7)
C+ 1 B
2
Cc+
C+ LI B BN )
b
c+ n-1
gan5

3.2, Results of some numerical tests

To test the reliability of the approximations for g_the results obtain=-
ed using the continued fraction formula were compared with a direct
numerical integration using a polytropic model atmosphere. Table 1 gives
the errors for different z and n values when approximations of the type
(2.7) were used for g_ in (3.7). Table 2 shows the errors when formulae
(3.6) are used. As we can see, formulae (3.6) are surprisingly accurate
as they yields an negligible error even for n = 1.

More details about the method using a polytropic model atmosphere are
given in an earlier paper of the author (Mikkola 1978).
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Errors when using

Table 1.
the formula (2.7) for Py

S. MIKKOLA

Ao 1 2 3 Y 5 6 7 8 9
80%0 | 330 - OY10 0Y01 =-0'0O OY0O0 OY0O 00O 000  OY00
81.00 ! u4,34 - 0,26 0,01 -0.00 0,00 0,00 0.00 0.00 0.00
82.00! 5.8 - 0.25 0,03 -0.00 0,00 0,00 0,00 0.00 0,00
83,00 | 8.10 - 0,42 0.06 -0.01 0,00 -0.00 0.00 0,00 0.00
84,00 11.54 - 0.73 0.12 -0.01 0,00 -0.00 0.00 0.00 0,00
85.00 | 16.95 - 1.32 0.27 =-0.04 0,01 -0.00 0,00 -0.00 0.00
86.00 | 25.64 - 2,48 0.65 -0.12 0.02 -0.01 0.00 =-0,00 0.00
87.00 | 39.39 - 4,75 1.62 -0.37 0.08 =-0.07 0.01 -0.01 0.01
87.50 | 48,51 - 6,54 2.59 -0.69 0,16 -0.16 0.03 -0.02 0.02
88.00 | 58.56 - 8.85 4,09 -1.26 0.30 -0.35 0.08 -0.06 0.05
88.50 | 67.56 -11.51 6.25 =-2.28 0,55 -0,78 0.21 -0.16 0,17
89.00 | 70.37 -13.66 8.75 -3.84 0,93 -1.59 0.52 =-0.36 0.49
89.25 | 66.25 -13.81 9.63 -4.,65 1.13 -2.13 0,76 -0.50 0.79
89.50 | 55.53 -12.51 Q.49 =-5,07 1.25 -2.54 1.m -0.63 1.13
89.75 1 34,95 - 8,57 7.0 -4,19 1,05 -2.30 1.03 =-0.59 1.23
90.00J 0.00 0,00 0,00 0,00 0,00 0.00 0.00 0,00 0.00

Table 2.
Frrors when using, the formulae (3.6) for e

N\ 1 2 3 4 5 6 7 8 9
80200 [ -0¥02.  0OUOO  OYOO OO0  OT0O OO0  OYN0  0Y00  0V00
81.00{-0.03 0.00 0,00 0,00 0,00 0,00 0,00 0,00 0.00
82.00|-0,04 0,00 0,00 0.00 0,00 0,00 0.00 0.00 0,00
83,00{-0.07 0.00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
84,00|-0.10 0.00 0.01 0.00 0,00 0.00 0,00 0.00 0.00
85,00 | -0.15 0.00 0,01 0,00 0,00 0,00 =-0.00 -0,00 0.00
86,00 | -0,19 -0.00 0,04 0,01 0.00 -0.00 -0.00 -0.00 0,00
R7.004-0,19 -0.01 0,00 0,02 0,00 =-0,01 =-0.00 =-0.00 =-0.00
87.50 { -0.13 -0.02 0,18 0.04 0.00 -n.01 -0,01 =-0.01 -0.00
88.00 {-0.01 -0.03 0.29 0,06 0.,0C -0.03 =-0,02 =-0,01 =-0,00
88.s0| 0.16 -0.04 0.4 0,08 -0.01 -0.07 -0.05 -0.03 =0.01
89.00| 0.30 =-0.03 0.47 0.08 -0.0%3 -0.12 -0.09 =-0.06 -0.01
89.25 | 0.%1 -0.03 0,42 0,06 -0,05 =-0,13 -0.10 =-0.07 =-0.01
89,50 | -0.25 =-0.02 0,31 N,04 =-0.,05 -0.12 =-0.,09 -0,06 =-0.01
89.75| 0.10 -n,01 0.12 0,01 =-0.03 -0.06 =-0.05 =-0.03 =-0.00
90.00 { 0.0n 0,00 0,00 9,00 0,00 0,00 0,00 0.00 0,00
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B. “arfinkel: For what zenitn distances 1s 1t possivle to apply
Mikkola't formulac?

J. ¥akkuri: answered that he nasc no complete information on this
subject

B. Carfinzel, J.A. Hugnes, K. Poder and J. Saastamoinen: discussed theo
possibilities of refraction calculation near to zenith distances of 907.
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