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Abstract
Deep neural network models have substantial advantages over traditional and machine learning methods that
make this class of models particularly promising for adoption by actuaries. Nonetheless, several important
aspects of these models have not yet been studied in detail in the actuarial literature: the effect of hyperpara-
meter choice on the accuracy and stability of network predictions, methods for producing uncertainty estimates
and the design of deep learning models for explainability. To allow actuaries to incorporate deep learning safely
into their toolkits, we review these areas in the context of a deep neural network for forecasting mortality rates.
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1. Introduction
The maturing field of deep learning, which is the modern approach to designing and fitting neural
networks, has achieved remarkable successes in domains such as computer vision, natural lan-
guage processing and speech recognition (LeCun et al., 2015) and is rapidly advancing the state
of the art on so-called “artificial intelligence tasks” (Bengio, 2009), which are those tasks which
humans find easy, but have turned out to be difficult for computer systems. These advances have
been enabled by the modelling philosophy of representation learning (Bengio et al., 2013;
Goodfellow et al., 2016) that is at the core of deep learning, which, in short, can be defined as
allowing an algorithm to specify the optimal model structure for a particular task.

Recently, the actuarial community has paid increasing attention to deep learning, with investigation
of topics across the spectrum of actuarial practice, such as pricing (Noll et al., 2018; Schelldorfer &
Wüthrich, 2019), reserving (Gabrielli &Wüthrich, 2018; Gabrielli et al., 2019; Kuo, 2019; Delong et al.,
2020), mortality forecasting (Hainaut, 2018; Richman &Wüthrich, 2019; Nigri et al., 2019; Perla et al.,
2020; Schnürch &Korn, 2022), life expectancy forecasting (Nigri et al., 2021; Levantesi et al., 2022) and
analysis of telematics data (Gao & Wüthrich, 2018; Gao et al., 2019; Gao et al., 2020). Some of these
earlier advances have been surveyed in Richman (2018), who provides an introduction to deep learn-
ing geared towards an actuarial audience.

Based on this emerging area of study within actuarial science, it appears that deep learning is an
attractive technique for actuaries for (at least) the following reasons. First, the predictions of deep
neural networks have been shown to outperform traditional actuarial techniques in pricing
(Richman, 2018; Schelldorfer & Wüthrich, 2019), reserving (Gabrielli et al., 2019) and mortality
forecasting (Richman & Wüthrich, 2019), when considering out of sample performance metrics.
Second, these techniques enable actuaries to analyse new forms of data (Gao et al., 2020), which
are potentially beyond the reach of classical techniques, due to the high dimensionality of the data,
the high frequency with which the data are received, or both. Third, actuaries are usually familiar
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with the application of generalised linear models (GLMs) and their understanding of neural net-
works may be enabled by connecting these techniques to GLMs, see, for example, Wüthrich
(2019b), who discusses several manners in which neural networks can be seen as generalising
GLMs. Importantly, the manner in which predictions are made by neural networks is much closer
to traditional actuarial methods than those based on boosted decision trees, which are an alter-
native machine learning methodology often applied to tabular data.

While holding significant potential for the actuarial profession, deep learning suffers from a poten-
tial shortcoming, in that a quite widely held view is that these models are so-called “black boxes”,
meaning to say, that it is difficult to understand how these models arrive at a prediction. While this
is not a problem in some industries utilising neural networks, for actuaries, who are trained to inspect
model structure and fitted coefficients closely, this issue can be worrying. Furthermore, deep neural
networks usually provide only a best-estimate output and do not incorporate measures of uncertainty,
which are important within actuarial practice. Finally, the results of multiple deep neural networks
calibrated on the same data vary due to the random processes used when training these models.
Due to these issues, the application of neural network techniques in actuarial work may be considered
somewhat risky, and, furthermore, in jurisdictions where regulators, and other stakeholders such as
board members, risk managers and auditors, pay close attention to the types of models used by actu-
aries, the use of deep neural networks might be challenged based on some of these grounds mentioned
above. We aim to tackle these issues in this paper, which has, as its goal, to provide actuaries with tools
on how to benefit safely from deep learning.

In this paper, we aim to address some of the key modelling issues actuaries should consider
when looking to incorporate deep neural networks safely into their work. These issues fall under
three main categories:

• Quantitative validation – the impacts of hyperparameter choices on the stability of neural
networks applied to typical actuarial problems is studied, and the trade-offs of model vari-
ability on the one hand, and improved prediction on the other, are considered.

• Uncertainty quantification – we investigate how deep learning models can be modified to
produce explicit measures of uncertainty that may allow actuaries to highlight instances
where the model predictions are potentially more unreliable.

• Design considerations – by using suitability designed neural networks that are more ame-
nable to interpretation in traditional actuarial terms, actuaries can provide comfort to their
stakeholders that their deep learning models are fit for purpose. Here we consider proposals
to design neural networks for explainability.

Relatively few papers within the actuarial literature have focused directly on the topic of how deep
learning can be used safely by actuaries. Richman et al. (2019) focus on changes to the risk man-
agement process necessitated by the use of machine and deep learning models by actuaries and
provides guidance on how deep learning models might be challenged from a risk management
perspective. Whereas that study focusses more on the risk management of deep neural networks
without considering in detail the modifications that might be made to enhance their use for actu-
arial applications, in this study we consider what modifications to deep neural networks might be
appropriate to make their use safer. Wüthrich and Merz (2019) describe a way of structuring neu-
ral networks to incorporate traditional actuarial models, thus leading to greater explainability of
the model (see also Gabrielli et al. (2019) and Schelldorfer & Wüthrich (2019) for applications of
the proposal in Wüthrich and Merz (2019)). Gabrielli et al. (2019) apply bootstrap techniques to
generate Incurred But Not Reported (IBNR) reserve uncertainty measures. Compared to these
studies, the contribution of this paper is both to review and add to these approaches to safely
utilising deep learning within actuarial work.

The rest of this manuscript is organised as follows. In section 2, we introduce concepts and
notation that will be used throughout. In section 3, we use the common actuarial task of reserving
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for incurred but not reported (IBNR) claims within a tutorial aiming to introduce deep learning in
a familiar context. In section 4, we provide a main example of a deep neural network for modelling
and forecasting the mortality of national and sub-national populations. In section 5, we study how
the performance and variability of the results of calibrated neural networks vary depending on the
design of the network. In section 6, we address uncertainty measures for neural networks, based on
techniques from the wider machine learning literature. In section 7, we review how neural net-
works can be designed for greater explainability. Finally, we conclude the paper with avenues for
further research into these topics. An appendix to the paper provides a table of acronyms and
summary of notation. Throughout, excerpts of code to reproduce the examples are provided
and full code is provided on the associated GitHub repository1.

A reader only interested in an introduction to machine learning applied within actuarial work
could read section 3 in isolation. If only a single topic among those discussed in the paper is of
interest, the reader could focus on section 4 and then the relevant section from sections 5 and 6.

2. Concepts and Notation
In this paper, we focus on predictive models, which have as their objective to predict an unknown
vector of quantities y on the basis of a matrix of other, known variables, X. This definition encom-
passes many of the models used in actuarial practice, for example, mortality estimation and fore-
casting, IBNR reserving and pricing models, but does not obviously include the cashflow
projection models commonly used for the valuation of life insurance business. The rows of y
and X are indexed by i 2 1 . . .N , where N is the number of observations that the actuary has avail-
able for parametrising the predictive model. The columns of X are indexed by j 2 1 . . . P, where P
is the number of variables available to the actuary to make predictions. Usually, the relevant com-
ponents of P are determined by the type of problem at hand, for example, in the case of mortality
forecasting, the P variables are usually age, gender and year. To improve the quality of the pre-
dictions, X is often augmented by transforming the variables in X into new variables using several
different techniques (some examples are discretisation of numerical values, the application of
spline functions, the combination of categories, and the interaction of different variables) to a
new matrix X 0 indexed by j 2 1 . . . P0. The transformation of X to X 0 is usually referred to as fea-
ture engineering in the machine learning literature. Then, the aim of a predictive model is to pro-
duce an accurate estimate ŷi of the unseen variables yi on the basis of variables X0

i .
The production of an estimate ŷi from Xi may be accomplished with many different modelling

tools. Traditionally, actuaries have favoured GLMs, which require the explicit specification of the
mapping X0 7!ŷ, meaning to say, that the variables from X 0 that enter the model, and the form in
which they do so, are chosen manually by the actuary. As an alternative to GLMs, actuaries have
started to consider applying machine learning techniques, which we give a working definition of as
those models that automatically produce the mapping X0 7!ŷ. Some popular examples of these
techniques are ensembles of decision trees, examples of which are random forests (Breiman,
2001) and gradient boosted trees (Tibshirani, 1996) and elastic-net (Zou & Hastie, 2005) (for
a review of these models, see Friedman et al. (2009) and for some foundational studies of how
machine learning might be applied to actuarial topics, see Wüthrich (2018) and Deprez et al.
(2017)). Since machine learning models are highly flexible, it is often the case that these models
may overfit the data used to parametrise the models, and produce relatively poor predictions on
unseen data (indeed, this is also a concern with statistical models and tools such as the Aikaike
Information Criterion (AIC) are used to penalise models that are too flexible relative to the gain in
performance as measured by the likelihood). Thus, a fundamental procedure when applying
machine learning models is to test the performance of these models on unseen data. Also, machine
learning techniques often require the choice of hyperparameters, which are usually choices of

1https://github.com/RonRichman/Mind-the-Gap
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model structure that cannot be calibrated directly from the data, for example, the depth of decision
trees used within an ensemble or the extent of the regularisation used when calibrating model
coefficients.

If N is relatively large then a popular was of accomplishing this is to partition the N observa-
tions into three (disjoint) sets: a training set of size Ntrain, a validation set of size Nvalidation and a
testing set of sizeNtest . The models are then parametrised (or trained) on the training set (i.e. using
only the observations in the training set of size Ntrain) and the effect of hyperparameter choices on
the accuracy of models is tested on the validation set. Finally, the accuracy of the model on unseen
data is approximated by testing the model on the Ntest observations of the test set. If, on the other
hand, there are too few observations left to calibrate the models after splitting the observations
into disjoint sets, then another more suitable procedure, such as cross-validation, will be used.

Often, the performance of machine learning models is determined by the extent and quality of
the feature engineering performed to derive X 0. Since feature engineering is a relatively manual
and time-consuming process often requiring substantial domain knowledge (for a summary of the
arguments against the feature engineering approach, see Richman et al. (2019)), a focus of part of
the machine learning literature is on automating the production of X 0 using a technique called
representation learning (Bengio et al., 2013). Thus, instead of approximating only the mapping of
X0 7!ŷ, algorithms that include a representation learning step first produce a mapping X 7!X0,
where the transformed feature matrix X 0 is optimised for the task at hand, and then learn the
mapping X0 7!ŷ.

A successful implementation of representation learning is deep learning (LeCun et al., 2015;
Goodfellow et al., 2016), as measured by the predictive performance of deep learning across many
machine learning tasks such as computer vision and natural language processing, as well as on the
analysis of tabular data (Guo & Berkhahn, 2016) and time series (Makridakis et al., 2018). Here,
our definition of deep learning is that it is the modern approach to designing and fitting neural
networks (see, for example, the usage of the phrase deep learning in Goodfellow et al. (2016)). In
the deep learning approach, machine learning problems are solved by composing together many
layers of non-linear functions, which allow complex relationships within the training data to be
approximated. The specific form of these functions is usually determined by the application at
hand. In the following section we introduce neural networks in the familiar context of IBNR
reserving and in the subsequent section, we discuss the deep learning models applied in this paper.

3. Tutorial on Linear Regression, GLMs and Neural Networks
To work towards the definition of neural networks, we start with simple linear regression models
and expand that definition to GLMs, after which we define neural networks and the structure of
the networks that we focus on in this research. We provide a practical example of the application
of these techniques in an actuarial context by fitting GLM and neural network models on the
famous claims triangle of Taylor and Ashe (1983) to derive IBNR reserves. This example has been
chosen due to its relative simplicity as well as widespread applicability for actuaries.

3.1. Linear Regression and GLMs

A linear regression model can be defined using matrix notation as

ŷ � b0 � BT
0X

0; (1)

where B0 is a vector of regression parameters and b0 is a scalar intercept term, both of which are
determined from the training data. Note that in the neural network literature, these regression
parameters are referred to respectively as the weights and biases of the network. Rewriting equa-
tion (1) for a single prediction, ŷi � β0 �

P
P
p�1 βpx0i;p, it can be seen that an implicit assumption is

that predictions can be made as a linear combination of the predictor variables in X 0. Usually, it is
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also assumed that the error terms of this regression are independently and identically distributed
(i.i.d) from a Gaussian distribution, i.e. it is assumed that yi � β0 �

P
P
p�1 βpx

0
i;p � εi, where

εi � N�0; σ�, or equivalently, that yi � N�β0 �
P

P
p�1 βpx

0
i;p; σ�. Closed form formulae are avail-

able to fit the parameters of the linear regression, as well as provide uncertainty intervals. If linear
regression was to be used as a predictive model, then the parameters could be fit on the training set
and out of sample performance assessed on the test set, or an information criterion, such as the
AIC could be used to assess likely predictive performance.

GLMs relax, to some extent, both of the assumptions expressed above, firstly, that the predic-
tions ŷ are a linear combination of the variables in X 0 and, secondly, that the error terms are inde-
pendent and identically distributed (i.i.d) draws from a (conditional) Gaussian distribution. The
predictions made using a GLM can be expressed as

η�ŷ� � b0 � BT
0X

0; (2)

where η is a link function that is applied so that the assumption of linearity is met. Common
examples of link functions in the GLM literature, are the log and logit functions, which are often
used for modelling data using a Poisson or Binomial distribution, respectively. In addition, GLMs
are able to use a variety of distributions for the errors, namely those distributions from the expo-
nential family, for example, count data are often modelling with Poisson distribution. Since closed
formulae for fitting the parameters of a GLM are usually unavailable, GLMs are fit using Iteratively
Reweighted Least Squares (IRLS). For a recent survey of GLMs we refer to Wüthrich (2019b).

Example 3.1. A common activity for actuaries working in non-life insurance is reserving for
claims that have occurred, but where the loss is not yet (fully) reported, commonly referred to
as IBNR claims. Usually, an array of aggregated claims amounts attributable to a particular acci-
dent year is tracked as claims relating to that accident year are reported, producing a so-called
reserving triangle. An example of such a triangle from Taylor and Ashe (1983) is shown in
Table 1. Commonly, reserving for IBNR claims involves predicting in aggregate the value of claims
in periods that have not yet been observed (although some methods involving individual claims
are now being developed, see, for a recent example, De Felice and Moriconi (2019)), using meth-
ods such as the chain ladder and Bornhuetter-Ferguson techniques, reviewed in detail inWüthrich
and Merz (2012). It is well known that the results of the chain ladder technique can be reproduced
using a Poisson GLM regression model, using the covariates of accident and development year to
predict the incremental claims in each cell of the triangle (Renshaw & Verrall, 1998).

The code2 to fit this GLM and produce predictions for future claims development is shown in
Listing 1, which also shows how Mack’s formulation of the chain ladder method (Mack, 1993) might
be applied using the ChainLadder package (Gesmann et al., 2020). Lines 3–4 in the code show how the
GLM may be specified by treating each of the accident year and development year covariates as cat-
egorical variables using the command as.factor in the GLM formula. Internally within R, these cate-
gorical covariates are dummy coded, meaning to say that a separate parameter value is fit for each level
of the variables, except for a baseline value of one of the variables which is redundant.

Line 11 of the listing tests whether the estimates of IBNR from the two methods are similar
(using the syntax of the data.table package) and running the code shows these differ by an insig-
nificant amount, i.e. both the traditional chain ladder method and the GLM produce the same
best-estimate results.

Equation (2) can be written equivalently as

ŷ � σ�b0 � BT
0X

0�; (3)

where σ is the inverse of the link function η. Equation (3) is the formmore commonly found in the
neural network literature, where σ is known as an activation function, and is the inverse of the

2To run this example in R, the reader should refer to the file example_IBNR.r on the associated GitHub repository.
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GLM link function η. Instead of using IRLS, modern neural network software usually implements
gradient descent algorithms to fit models of the form of equation (3).

Example 3.2. In this example, we show how to use the Keras package (Allaire & Chollet, 2017) in
R to fit the same GLM discussed in the previous example3. On Line 3 of the listing, an input layer
with the same number of dimensions as the dummy-coded matrix of covariates is initialised. This
is “chained” with a so-called dense layer, which acts as the output of the network and calculates a
regression parameter β for each input variable, i.e. the dense layer produces exactly the second
part of the right hand side equation (3), BT

0X. Lines 11–17 define the model and compile it with an
optimiser and a loss function. In this case, we use the Poisson loss function so that the GLM results
will be (closely) reproduced. Data to be fed into the network is derived on Lines 20–26, by dummy
coding the categorical variables, resulting in sparse (i.e. most of the values are zero) matrices X 0 of
19 columns.

Finally, the network is fit using the commands on Lines 30–34. After running the data through
the optimisation process about 1,000 times (referred to as epochs), the network converges to a very
similar same solution as the GLM, as tested on Line 40.

Example 3.3. relies on techniques that are usually used to fit models to much larger datasets than
the IBNR triangle discussed in this section, which require processing the data in batches rather
than all at once. Thus, options such as setting the size of each batch passed to the optimiser, which
appear to be unnecessary for such a simple example, are really intended for use in a different
scenario. Rather than relying on dummy coded inputs to the GLM, in the following example,
we illustrate the use of a much more efficient technique.

Example 3.4. Rather than rely on dummy-coded inputs, which even in this simple example cre-
ates a large matrix of 19 columns, another option when fitting neural networks is to use a type of
look-up table, known as embedding layer (originally used by Bengio et al. (2003) in the context of
natural language processing, and more recently in state of the art neural network models for tab-
ular data (Guo & Berkhahn, 2016; Howard & Gugger, 2020)). An embedding layer maps an inte-
ger, representing a level of a categorical variable, to (a vector of) real values, which is calibrated
using the gradient descent algorithm. More formally, if a categorical variable C has N levels, then
an embedding layer looks up the value of each of the N levels with reference to a numerical vector
Kn 2 Rk; 1 ≤ n ≤ N , where the k values of Kn are free parameters that are fit together with the rest
of the neural network, and where the dimension k is typically much smaller than N. Here, we

### Predict using GLM model

glm_model = glm(value~ as.factor(origin) + as.factor(dev)-1,

family = poisson(link = "log"), data = triangle)

test_model$predictions = glm_model %>%

predict(newdata = test_model , type = "response ")

### Apply Chain -ladder

CL = GenIns %>%

MackChainLadder ()

test_model[calendaryear >10, sum(predictions )] - (CL %>% summary)$Totals [4,1]

Listing 1: Code to fit GLM to triangle in Table 1.

3To run this example in R, the reader should refer to the file example_IBNR.r on the associated GitHub repository.
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Table 1. Claims triangle from Taylor and Ashe (1983)

Development Year:

Accident Year: 1 2 3 4 5 6 7 8 9 10

1 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463

2 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085

3 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315

4 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268

5 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311

6 396,132 1,333,217 2,180,715 2,985,752 3,691,712

7 440,832 1,288,463 2,419,861 3,483,130

8 359,480 1,421,128 2,864,498

9 376,686 1,363,294

10 344,014
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propose to use a 1-dimensional embedding layer in place of the dummy coded categorical var-
iables, which reproduces the same values of the IBNR, but converges much quicker than the alter-
native. The major differences between Listings 2 and 3 appear in lines 1–7, where instead of
allowing for a numerical input to the networks, Listing 3 sets up integer-valued input layers that
feed into embedding layers. The values of the embeddings are added together to produce the out-
put of the network. Figure 1 compares the convergence of the GLM models fit using the code in
Listings 2 and 3 and shows that the embedding model converges substantially quicker than the
dummy-coded model, reaching a stable loss within about 125 epochs, compared to 500 epochs for
the dummy-coded model. While this performance gain is not really relevant in the case of this
simple example, when dealing with much larger datasets, this becomes more important.

3.2. Neural Networks

Neural networks can be seen as generalisations of GLMs in the following manner: a neural net-
work is a multi-layered machine learning model that learns a new representation of the predictor
variables X. This new representation, which we call ZL where L is the number of intermediate

### Define the network

input <- layer_input(shape = c(19), dtype = ’float32 ’, name = ’input ’)

y = input %>%

layer_dense(units = 1, activation = "exponential", name = ’y’,

use_bias = F)

### Define a Keras model

model <- keras_model(inputs = list(input), outputs = c(y))

adam = optimizer_adam(lr=0.1)

model %>% compile(

optimizer = adam ,

loss = "poisson ")

### Derive data for Keras

train_mat = (model.matrix (~as.factor(origin) + as.factor(dev) - 1, data = triangle )) %>%

array(dim = c(55 ,19))

test_mat = (model.matrix (~as.factor(origin) + as.factor(dev) - 1, data = test_model )) %>%

array(dim = c(test_model [,.N],19))

train_dat = list(input = train_mat , y = triangle$value)

test_dat = list(input = test_mat)

### Train the model

fit = model %>% fit(

x = train_dat$input ,

y = train_dat$y ,

epochs = 1000,

batch_size = 55,verbose = 1, shuffle = T)

### Derive predictions and test IBNR

test_model$preds_NN = (model %>% predict(test_dat$input ))

test_model[calendaryear >10, sum(preds_NN )] - (CL %>% summary)$Totals [4,1]

Listing 2: Keras code to fit GLM to triangle in Table 1.

8 R. Richman

https://doi.org/10.1017/S1357321722000162 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321722000162


layers of the network, is then used within a GLM to make predictions. More formally, we define a
deep feed-forward fully connected network with L intermediate layers as

Z1 � σ0�c0 � B0
0X�; (4)

Z2 � σ1�c1 � B0
1Z

1� (5)

..

.
(6)

ZL � σL�1�cL�1 � B0
L�1Z

L�1� (7)

ŷ � σL�cL � B0
LZ

L�; (8)

where, for l 2 f1 . . . Lg, Zl are the intermediate layers of the network, Bl are weight matrices con-
taining regression parameters, cl are intercepts, and σl are (non-linear) activation functions of the
neural network which are applied component-wise to the elements of each vector. Note that
whereas a vector of regression parameters was used for the linear regressions and GLMs, the inter-
mediate layers of the neural network may contain several variables, and a separate row of param-
eters is required to derive each of these variables, i.e. Bl may be a matrix of parameters. In neural
network terminology, the intermediate variables in each layer of the network are referred to as
“neurons”. We define a network as “deep” if L is at least 3; for L equal to 2 we call the network
“shallow” and for L equal to 1, the network is nothing more than a GLM. This type of network is
referred to as a “feed-forward” network since the input data travels in only one direction through
the network (other types of neural network with recurrent connections can also be defined, see the

### Define the network

ay <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’ay ’)

ay_fact = ay %>% layer_embedding(input_dim = 20, output_dim = 1) %>% layer_flatten ()

dy <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’dy ’)

dy_fact = dy %>% layer_embedding(input_dim = 20, output_dim = 1) %>% layer_flatten ()

y = list(ay_fact ,dy_fact) %>% layer_add () %>%

layer_dense(units = 1, activation = "exponential", name = ’y’,

use_bias = F, weights = list(array(c(1), dim = c(1,1))), trainable = F)

### Define a Keras model

model <- keras_model(inputs = list(ay ,dy), outputs = c(y))

adam = optimizer_adam(lr=0.1)

model %>% compile(

optimizer = adam ,

loss = "poisson ")

### Derive data for Keras

train_dat = list(input = list(ay = triangle$origin , dy = triangle$dev), y = triangle$value)

test_dat = list(input = list(ay = test_model$origin , dy = test_model$dev ))

### Train the model

fit_embed = model %>% fit(

x = train_dat$input ,

y = train_dat$y ,

epochs = 1000,

batch_size = 55,verbose = 1, shuffle = T)

Listing 3: Keras code to fit GLM to triangle in Table 1 using 1-dimensional embedding layers.
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later chapters of Goodfellow et al. (2016) for an overview). Equation (7) represents the last inter-
mediate layer of the network, which acts as a “new” input to the final layer of the network in
equation (8). Looking only at this last equation, it can be seen that it has the same form as
the GLM in equation (3), i.e. the network can be interpreted as a two-stage model that first derives
a new representation of the input data X by learning a mapping X 7!ZL, which is then used in the
second stage as inputs into a GLM.

The choice of the activation functions, σl, is often recommended in the machine learning lit-
erature to be the rectified linear unit (ReLu), which is nothing more than the function

σl�x� � max�0; x�: (9)

However, in Richman & Wüthrich (2019), and in other places, we have found that the use of the
hyperbolic tangent activation functions, defined as

σl�x� �
ex � e�x

ex � e�x
; (10)

often provides better predictive performance than ReLU activations. In section 5.3, we also test the
exponential linear unit (ELU) (Clevert et al., 2016), which is defined as

σl�x;α� � x if x > 0
α�ex � 1� if x ≤ 0

:

�
(11)

Although we have covered only one of the major types of deep neural networks – feed-forward
networks – in this section, we note that the formulation of deep networks as GLMs is quite general.
For example, most computer vision models replace equations (4)–(7) with features derived using
convolutional neural networks, but maintain the final layer of the network which functions as a
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Figure 1. Comparison of the convergence of the GLM models fit using the Keras package in Listings 2 and 3.
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GLM, see, for example, He et al. (2016). More importantly, for actuarial applications, categorical
covariates are usually treated using embedding layers (as shown in Example 3.3), which involve a
simple modification to equation (4), replacing the input matrix X with a new matrix X 0, where the
parameters describing the categorical variables are learned during the calibration of the network.
Finally, the final layer of the network does not necessarily need to be a GLM learned together with
the neural network, for example, Wüthrich (2019a) applies a GLM to the features in the last layer
of a neural network to achieve a bias correction and Guo and Berkhahn (2016) use features learned
by a neural network in a variety of other machine learning algorithm, such as random forests. In
the following example, we provide an example of fitting a neural network model to the claims
triangle.

Example 3.5. Defining a more richly parametrised neural network than the models shown pre-
viously is almost trivial using Keras. As a first step, on Lines 3–7 of Listing 4, the dimension of the
embeddings is increased from 1 to 2, and as a second step, on Lines 9–11, an intermediate dense
layer has been added, allowing for some representation learning to occur. This model provides a
much closer fit to the data than the GLM did, as shown in Figure 2. Thus, one conclusion from this
toy example is that neural network models are capable of fitting data much more closely than
traditional actuarial models.

Despite this closer fit, we should be wary of uncritically accepting results from a relatively com-
plicated model fit to relatively few data points (the triangle only contains 55 points). Ideally, we

### Define the network

ay <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’ay ’)

ay_fact = ay %>% layer_embedding(input_dim = 20, output_dim = 2) %>% layer_flatten ()

dy <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’dy ’)

dy_fact = dy %>% layer_embedding(input_dim = 20, output_dim = 2) %>% layer_flatten ()

y = list(ay_fact ,dy_fact) %>% layer_concatenate () %>%

layer_dense(units = 4, activation = "tanh") %>%

layer_dense(units = 1, activation = "sigmoid", name = ’y’)

### Define a Keras model

model <- keras_model(inputs = list(ay ,dy), outputs = c(y))

adam = optimizer_adam(lr=0.1)

model %>% compile(

optimizer = adam ,

loss = "poisson ")

### Derive data for Keras

train_dat = list(input = list(ay = triangle$origin , dy = triangle$dev),

y = (triangle$value - min(triangle$value ))/( max(triangle$value) - min(triangle$value )))

test_dat = list(input = list(ay = test_model$origin , dy = test_model$dev ))

### Train the model

fit_embed = model %>% fit(

x = train_dat$input ,

y = train_dat$y ,

epochs = 1000,

batch_size = 55,verbose = 1, shuffle = T)

Listing 4: Keras code to fit a neural network to triangle in Table 1 using 2-dimensional embedding layers and a single
intermediate layer.
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should assess generalisation performance of all of the models using a technique such as cross-
validation. If performance was found to be poor, then a less complex model could be considered,
or the model could be regularised using some of the techniques discussed at the end of this section.
Only then would we be able to draw some conclusions as to the predictive power of the models.
Nonetheless, we refrain from performing this analysis here, but turn our focus to more complex
models in the next section.

3.3. Conclusion

We do not intend to provide a full introduction to neural networks in this work, since this has
been done elsewhere and we rather wish to focus on the issues described in the introduction, but
we nonetheless note briefly several practical issues that should be considered when neural network
models are used4.

In equation (4), we have defined the input to the neural network as X and not the transformed
feature matrix X 0. Ideally, we would like for the network to learn all of the transformations of X
necessary to achieve an optimal result. In practice, this is usually only possible if the correct archi-
tecture has been specified for the network, for example, using an embedding layer for categorical
covariates. Thus, instead of performing feature engineering, when fitting neural networks, the
modeller is instead required to consider the somewhat different task of architecture specification.
Nonetheless, when providing inputs to a neural network, a particular recommendation is to scale
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Figure 2. Comparison of the fits of the GLM and neural network models to the data shown in Table 1.

4For more detail on these issues we refer to Richman (2018) in an actuarial context, Goodfellow et al. (2016) in a general
machine learning context and for best practices in designing deep neural networks for a range of applications including com-
puter vision and natural language processing, to Howard and Gugger (2020).
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all of the variables with X, as well as the output y, to lie within the interval �0; 1	, since this step is
usually necessary for the network to converge (another option is to standardise the input variables
by subtracting the (sample) mean and dividing by the standard deviation). When specifying the
architecture of a network, one may also get good performance through using a shallow network
(i.e. when L � 2), if the data are small, though usually deep networks outperform shallow net-
works. Similarly, increasing the number of neurons in each layer usually leads to better perfor-
mance but it is usually more efficient to increase the depth of the layers rather than the width of
each layer. While assessing training set performance (as we have done in this chapter) is important
to ensure that a model has enough representational capacity to fit the data, more important are
assessments of predictive performance on the validation and test set. In the example of the reserv-
ing triangle used in this section, this could have been accomplished by leaving the most recent
diagonal of the triangle (in other words, the claims in the most recent calendar period) out of
the training set and validating the performance of the neural network on this diagonal. Generally,
designing and parametrising models that fit the training data well is not sufficient to produce good
performance on the validation and test sets, thus, regularisation techniques are often applied when
using deep neural networks. One of the most popular of these techniques is dropout (Srivastava
et al., 2014), which randomly leaves out neurons from the network while it is being trained.
Another technique, originally introduced to enable the training of deep networks for computer
vision, is batch normalisation (Ioffe & Szegedy, 2015) which normalises the values of the neurons
in each layer to lie between �0; 1	, that has been shown to have a regularising effect on the pre-
dictions of neural networks, as well as making the networks easier to calibrate (see, e.g. Luo et al.
(2018)). Other options for regularising a network are including L1 and L2 penalties on the weights
of the network.

We consider the implementation of some of these best practices on the models in the next
section, and the effect of modifying the hyperparameters of neural networks in the subsequent
section.

4. Example Applications of Deep Neural Networks
In the rest of this study, we focus on an example network of the form of equations (4)–(8), with the
addition of embedding layers for categorical variables (as described in Example 3.3), that we apply
within the context of mortality forecasting. We describe this application in the current section and
then use the model to demonstrate the techniques in the rest of the paper.

4.1. Mortality Forecasting

Mortality rates are a fundamental input into many actuarial tasks such as the pricing and valuation
of life insurance portfolios, pensions and social security schemes. With the introduction of risk-
based capital and own-risk assessment requirements in many jurisdictions around the world (such
as in the Solvency II regime in Europe), modelling the uncertainty around current and future
mortality rates has also become important. Concurrent with these developments is the availability
of databases containing high quality mortality data, measured contemporaneously, for many pop-
ulations (such as in the Human Mortality Database (HMD) (Human Mortality Database, 2020)).
Other advances include the provision of more detailed mortality information, such as cause of
death information (Danilova et al., 2020) or mortality rates reported for different levels of
socio-economic factors (Cairns et al., 2019). These new data sources pose some challenges for
modellers who may be used to applying mortality models to simpler data (such as the famous
Lee Carter model (Lee & Carter, 1992) which is applied to single-population mortality data).
Recently, several studies have applied deep neural networks to model and forecast the mortality
rates appearing in the HMD: Richman & Wüthrich (2019) apply a deep neural network with
embeddings to model the mortality of 76 populations simultaneously and show that their model
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outperforms more traditional multi-population mortality models and Nigri et al. (2019) apply
recurrent neural networks to forecast the time element of the Lee Carter model (in other words,
kt) and show that their approach outperforms the ARIMA models usually used for making these
forecasts. Finally, Perla et al. (2020) apply convolutional and recurrent neural networks to model
the time series of mortality rates in the HMD and the United States Human Mortality Database
(USMD) and find that these types of neural networks, which are specialised to process time series
data, outperform standard feed forward neural networks.

In this study, we consider the case of forecasting mortality data for both national and sub-
national populations simultaneously. In the case when sub-national data are not available, then
we only forecast mortality at the country level, whereas if sub-national data are available (such as
for the USA, Japan, Canada and Australia (Ishii et al., 2020; Payeur et al., 2020; Romo, 2020;
Wilmoth et al., 2020)), then we also produce forecasts for each region within the overall country.

We define µp;g
x;t as the force of mortality for (sub-)population p for those of gender g aged x in

year t. Here, we consider P different populations, comprised of those living in a particular region
or sub-national region of a country. In this study, we consider 41 different countries, and, for 4 of
these (namely, the United States, Canada, Japan and Australia), we consider 117 different sub-
regions, such that p 2 �1; 158	. We restrict this study to focus on forecasting the mortality rates
of males and females in the age range 0–99. Data covering the years 1950–2017 were downloaded
from the HMD (HumanMortality Database, 2020), and the four associated databases covering the
specific countries mentioned above5. The data up until the year 2000 is used as a training set, and
from 2000 to 2017 is used as the testing set. These data consist of three categorical variables indi-
cating country, sub-national region and gender, and two numerical variables, age and year. For the
purpose of modelling these data, we treat the age variable, x, as a categorical variable as well. All of
these categorical variables are mapped to d-dimensional embeddings, where d is 5 for age and
gender and 10 for country and sub-national region. Similarly to Richman and Wüthrich
(2019), the year variable, t enters the model as a numerical variable. Thus, a 31-dimensional fea-
ture vector, featurep;gx;t is fed into the neural network, which consists of 5 layers of 128 neurons, with
hyperbolic tangent activations (this network was found in Richman and Wüthrich (2019) to per-
form well on the HMD data set, and better than an equivalent network with ReLU activations, see
also section 5.3 below), defined as follows:

Z1 � σ0�c0 � B0
0feature

p;g
x;t �; (12)

Z2 � σ1�c1 � B0
1Z

1� (13)

..

.
(14)

Z4 � σ3�c3 � B0
3�Z3; featurep;gx;t ��� (15)

Z5 � σ4�c4 � B0
4Z

4� (16)

ŷ � σ5�c5 � B0
5Z

5� (17)

While similar to the equations defining the neural network in the previous section, the layer of
the network defined by equation (15) also contains a so-called skip connection between the feature
vector and the fourth layer of the network. Skip connections have been shown to improve the
training of deep neural networks used for computer vision, see, for example, He et al. (2016),
and have been used in several actuarial applications of deep learning (Richman & Wüthrich,
2019; Schelldorfer & Wüthrich, 2019; Wüthrich & Merz, 2019). The code to produce this network

5To derive the data used in this example in R, the reader should refer to the file munge_HMD.r on the associated GitHub
repository.
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appears in Listing 5. We train the network 10 times and use the average prediction of the networks
in the years 2000–2017 for comparison to the actual mortality rates.

We compare the results of this model to Lee-Carter (LC) (Lee & Carter, 1992) models fit to
each country, sub-national region and gender separately6. The LC model is defined as

µx;t � ax � bxkt; (18)

where ax is the average log mortality rate at age x in the period, bx is the rate of mortality improve-
ment and kt is the value of the mortality improvement index in year t. The LC models were fit
using the singular value decomposition (SVD) of the matrix of centred log mortality rates and the
time index, kt was forecast using a random walk with drift.

Table 2 shows the average and median mean squared error (MSE) achieved by the neural net-
work and LC models on the test set7. It can be seen that, both for the neural network and LC
models, the average MSE is significantly lower for national populations than sub-national pop-
ulations, whereas the median MSE is lower for sub-national populations as compared to national
populations, indicating that in some instances of the sub-national data, the models perform quite
poorly and produce high MSE values, whereas the models perform well on most of the sub-
national populations. The neural network achieves substantially better performance than the
LC model on all metrics considered here, with lower MSE scores on 71 out of 76 national pop-
ulations and 216 out of 236 sub-national populations. Figure 3 shows that both the LC and neural
network models have similar patterns of performance across the different countries, with the
worst performance (at the right of each panel of the figure) for Australian and Canadian sub-
national regions.

Remarks 4.1. In this study, following common practice in fitting neural networks, we use the
Adam optimiser to calibrate the neural networks (Kingma & Ba, 2014). Recently, several studies
of speeding up the training of neural networks through modifying the learning rate of the opti-
miser have appeared (Loshchilov & Hutter, 2019; Smith, 2017). Here, we apply a simple version of
the restart technique, by training the network for 50 epochs, then restarting the optimiser and
training for another 50 epochs. We show below that this improves out of sample predictive
accuracy.

4.2. Conclusions

We have presented a neural network-based mortality forecasting model in this section. This mor-
tality model treats the time dimension as an input into the regression, similar to the IBNR

Table 2. Test set mean squared error (multiplied by 104) using the LC and neural network models, national and sub-
national populations

Model type Average MSE Median MSE Best Performance

1 LC_SVD National 5.55 2.48 5

2 LC_SVD Sub-National 22.08 1.48 20

3 DEEP National 2.38 1.31 71

4 DEEP Sub-National 20.49 0.78 216

6We utilize the LC model as a standard against which to compare the deep neural networks since this is suitable for fore-
casting the lifetable at all ages, whereas other popular mortality forecasting models often focus only on old age mortality.

7To derive the results used in this example in R, the reader should refer to the file HMD model.r on the associated GitHub
repository.
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reserving model in the previous section that projects future claims amounts to be reported in the
future based on accident and development year variables that are input into the model.

Of course, there are other types of models that are of interest to actuaries, such as models that
do not make forecasts ahead in time, but rather make predictions at the same point in time, for
example, general insurance pricing models. Other models, for example, the reserving model of
Kuo (2019) or the time series model of Perla et al. (2020), use past observations of loss amounts
or mortality rates directly to produce forecasts. The analysis presented in the following sections is
likely to be equally applicable to these types of models.

5. Variability of Neural Network Results
In this section, we investigate how neural network predictions vary each time the network is
trained. On the one hand, predictions that change with each training run are problematic to
explain to stakeholders in the modelling process and are not suitable for most actuarial work
due to the lack of reproducibility. On the other hand, by averaging the results of multiple training
runs of neural networks, it is often found that better predictive performance can be achieved, com-
pared to the predictive performance of a single neural network. The stability of neural network
predictions at the portfolio and policy level has been studied in Richman and Wüthrich (2020),
who call these aggregated network results the “nagging predictor”, in the spirit of the “bagging“
(bootstrap aggregating) predictor of Breiman (1996). The phenomenon of unstable neural net-
work results has also been discussed in several places in the actuarial literature (Richman
et al., 2019; Richman & Wüthrich, 2019; Schelldorfer & Wüthrich, 2019) and in the wider deep
learning literature (Guo & Berkhahn, 2016).
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Figure 3. Logarithm of out of sample MSE for each region for which a forecast has been made. Lower values (i.e. more
negative) indicate better performance. Plots are colour-coded for national populations, and for the country in which sub-
national forecasts have been made.
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Here, we investigate how the stability of neural network predictions varies as different hyper-
parameter choices are made for different parts of the networks. Whereas increasing the variability
of predictions may be undesirable if only a single neural network has been fit, it is likely the case
that averaging the predictions of somewhat more variable networks will lead to better results than
the averaged predictions of more stable neural networks. Using the example neural network pre-
sented in section 4, we study the effect of changing each of the components of the networks on the
stability of the results, as measured by the standard deviation of the MSE on the test set data. By
understanding these effects on this example network, actuaries can draw parallels to their own
modelling examples and either look to minimise the variability of a single neural network, or
design networks with an optimal amount of variability to produce averaged results that are as
predictive as possible.

Since training neural networks is a random process, partly due random batches of data being
fed to the network during training and the application of dropout, which randomly sets some neurons
of the network to zero, an initial hypothesis is that smaller batches and higher dropout rates will lead to
increased randomness of the neural network predictions. We test this hypothesis and explore other
options as we discuss these components of the networks in the following sub-sections:

• dimension of the intermediate layers;
• dimension of the embedding and convolutional layers;
• activation function of the intermediate layers;
• application of batch normalisation;
• depth of the network;
• drop-out rates;
• size of batches; and
• learning rate, restarts and optimiser.

To carry out these experiments, ten training runs of each modified neural network were per-
formed. To investigate the stability of the neural network predictors, the average test set mean
squared error (MSE) and standard deviation of the MSE over these ten runs were recorded.
These estimates, which are summary statistics calculated over the ten training runs, are shown
in the first table in each of the following sub-sections. Also, the MSE of the averaged predictions
of the ten runs on the test set was recorded, as well as the number of times that the model beat the
LCmodel. These estimates, which are estimated first by averaging the predictions, then calculating
the MSE, are shown in the second table in each of the following sub-sections.

5.1. Dimension of Intermediate Layers

An inspection of the number of parameters in the mortality forecasting model shows that the
majority of the parameters are in the intermediate fully connected layers of the network. Here,
we consider the effect of varying the number of neurons in each intermediate layer (in other
words, the width of each layer) from 32 to 1,024 in multiples of 2. Intermediate layers with 32
neurons probably do not have enough representational capacity to fit the mortality data well,
whereas 1,024 neurons may overfit the training data (despite the regularisation of the network
using dropout and batch normalisation). It is unclear what the effect of varying the neurons
in each layer will be on the stability of the results of the network.

Table 3 shows that the baseline model discussed in section 4.1 with intermediate layers of 128
neurons achieves the lowest standard deviation of MSE, and both the narrower and wider models
are less stable. Two of the networks with wider layers (of size 256 and 512 neurons) achieve better
performance than the baseline and the narrower networks. However, Table 4 shows that despite
the baseline network attaining the lowest standard deviation of the MSE, two of the wider net-
works (with 256 and 512 neurons in each layer) outperform the baseline network, as measured
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both by the MSE and outperformance of the LC model. Nonetheless, the widest network tested, of
1,024 neurons, performs slightly worse than the baseline. These findings can be interpreted intui-
tively: the ensemble predictions of the networks benefit from some increase in “diversity” of the
predictions (as measured by standard deviation of the MSE), compared to the baseline model,
however, too much variability eventually hurts performance (see also Wilson and Izmailov
(2020) who make a similar argument). Moreover, the ensemble results benefit only when the net-
works contributing predictions perform well in of themselves, as can be seen from the relatively
poor performance of the narrower networks. Thus, one can conclude that maximising the stability
of neural network solutions may in fact not be a good strategy in practice, if the networks will be
used in an ensemble.

We also comment that traditional actuarial and statistical modelling often seeks to minimise
the number of parameters in a model (i.e. to find a parsimonious model). In this case, we find that
a model with a very large number of parameters exhibits excellent predictive performance, sug-
gesting that the traditional bias towards smaller models should be interrogated carefully when
using deep neural networks especially when these are regularised.

5.2. Dimension of the Embedding Layers

Here, we test the impact of varying the dimensions of the embedding layers in the mortality fore-
casting model. The baseline mortality forecasting model used embeddings of 5 dimensions for age
and gender and of 10 dimensions for country and sub-national region. In addition, the second last
layer of the network contained a skip-layer connecting the deeper layers of the network directly to

Table 3. Average and Standard Deviation of MSE over ten runs of the mortality forecasting model on the test set (multiplied
by 104), with the width of the intermediate layers being varied as noted in the description column. Results sorted by
Standard Deviation of MSE

Description Average MSE Std Dev of MSE

1 Baseline 12.55 0.18

2 Width: 256 12.47 0.26

3 Width: 512 12.43 0.28

4 Width: 1,024 12.67 0.33

5 Width: 32 13.16 0.35

6 Width: 64 13.01 0.40

Table 4. MSE of the average prediction of ten runs of the mortality forecasting model on the test set (multiplied by 104) and
number of times that the LC model is beaten, with the width of the intermediate layers being varied as noted in the
description column. Results sorted by MSE

Description MSE Best Performance over Populations

1 Width: 512 12.18 296

2 Width: 256 12.27 288

3 Baseline 12.44 287

4 Width: 1,024 12.45 279

5 Width: 64 12.87 247

6 Width: 32 13.02 235
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the embeddings. The impact of varying the dimensions of the embeddings between 2 and 20
dimensions, as well as removing the skip-connection is tested in this section.

Table 5 shows that the lowest standard deviation is achieved by the model with no skip con-
nections; however, the performance of this network is significantly worse than the rest of the mod-
els, i.e. here we replicate the finding of Richman and Wüthrich (2019) that adding a skip
connection improves performance of neural networks for mortality forecasting. Increasing the
dimension of the embedding layers for age and gender to 10 dimensions produces the best per-
formance among the networks tested, as well as the best performance of the ensemble, as mea-
sured by the MSE (shown in Table 6). The best performance versus the baseline LC model is
produced by networks with embeddings of 20 dimensions. Interestingly, the performance of
the network is enhanced by having embeddings with the same number of dimensions (whether
these are 5 or 10). One can conclude that minimising standard deviation of the network solutions
is not a good strategy from the perspective of maximising the performance of the averaged pre-
dictions. Another conclusion, similar to the previous section, is that more highly parametrised
networks seem to perform better on this data set.

5.3. Activation Function of Intermediate Layers

The mortality forecasting network utilised hyperbolic tangent (tanh) activation functions, based
on prior experience with the HMD data in Richman andWüthrich (2019), where it was found that
networks with tanh activations outperformed networks with ReLU activations (which were
defined in equation (9)). On the other hand, the machine learning literature often recommends
the use of ReLu activation functions. Since ReLU units may output 0, it is fair to hypothesise that

Table 5. Average and Standard Deviation of MSE of ten runs of the mortality forecasting model on the test set (multiplied
by 104), with the dimension of the embedding layers being varied as noted in the description column. Results sorted by
Standard Deviation of MSE

Description Average MSE Std Dev of MSE

1 Embedding: 10 dim no-skip 12.66 0.09

2 Embedding: 10 dim 12.43 0.17

3 Baseline 12.55 0.18

4 Embedding: 5 dim 12.49 0.21

5 Embedding: 20 dim 12.49 0.23

6 Embedding: 2 dim 13.78 0.70

Table 6. MSE of the average prediction of ten runs of the mortality forecasting model on the test set (multiplied by 104) and
number of times that the LC model is beaten, with the dimension of the embedding layers being varied as noted in the
description column. Results sorted by MSE

Description Average MSE Best Performance over Populations

1 Embedding: 10 dim 12.26 295

2 Embedding: 20 dim 12.34 298

3 Embedding: 5 dim 12.35 294

4 Baseline 12.44 287

5 Embedding: 10 dim no-skip 12.53 274

6 Embedding: 2 dim 13.32 224
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predictions based on ReLU networks will be more unstable than those from tanh networks. We
also test ELU units, defined in equation (11), which do not output zero, but rather a value that
depends both on the input to the ELU unit and a learned parameter. Whereas we expect ELU units
to produce less variation than ReLU units, nonetheless, for the same amount of regularisation, the
performance on test data is likely to be a little worse, given the extra parameters in ELU networks.

Somewhat surprisingly, the performance of both the ReLu and ELU networks is significantly
worse than the tanh networks across all metrics (see Tables 7 and 8), although the ELU network
appears to perform better than the ReLu network. Notably, this is despite the application of batch
normalisation and dropout within the networks. It could be argued that the choice of parameter
initialisation schemes, learning rates and optimisers is not optimal for these alternative activation
functions (and indeed, no further effort to tune these choices was made), nonetheless, these results
reinforce that tanh networks should usually be considered for actuarial modelling.

5.4. Application of Batch Normalisation

Batch normalisation (Ioffe & Szegedy, 2015) is a standard technique that is applied both to make
the training of deep networks easier, as well as for its effect as a regulariser, see, for example, Luo
et al. (2018). This technique acts by standardising (subtracting the mean and dividing by the stan-
dard deviation) the network activations to have a zero mean and a standard deviation of unity.
Batch normalisation was applied in two places in the mortality forecasting networks, as can be
seen in Listing 5: firstly, after the embedding layers, and secondly, between each dense layer
in the network. Here, we experiment with removing all batch normalisation from the network,
and then, only from the embedding layers.

We note that since tanh activations are constrained to the range ��1; 1�, it might be thought
that applying batch normalisation will have little beneficial effect. It can be seen in Table 9 that this
is not the case and that the performance of the network is improved by applying batch normal-
isation both to the embedding layer and the dense layers of the network. However, the standard
deviation of the MSE increases as batch normalisation is added to more parts of the network.
Based on the results in Table 10, it appears that batch normalisation should be applied both after
embedding and dense layers of deep neural networks. Furthermore, although batch normalisation

Table 7. Average and Standard Deviation of MSE of ten runs of the mortality forecasting model on the test set (multiplied
by 104), with the activation function of the intermediate layers being varied as noted in the description column. Results
sorted by Standard Deviation of MSE

Description Average MSE Std Dev of MSE

1 Baseline 12.55 0.18

2 Activation: ReLu 13.23 0.50

3 Activation: ELU 13.00 0.51

Table 8. MSE of the average prediction of ten runs of the mortality forecasting model on the test set (multiplied by 104) and
number of times that the LC model is beaten, with the activation function of the intermediate layers being varied as noted
in the description column. Results sorted by MSE

Description Average MSE Best Performance over Populations

1 Baseline 12.44 287

2 Activation: ELU 12.74 259

3 Activation: ReLu 13.01 231
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is usually associated with ReLu activation functions, we see that nonetheless, there is a beneficial
effect even on tanh networks.

5.5. Depth of the Network

The mortality forecasting model is an example of a relatively deep network, compared to many usual
applications of neural networks to tabular data. In this section, we experiment with making the network
even deeper, by adding 5 and 10 more layers to the network. It is well known that deeper networks are
harder to optimise, thus, it is fair to speculate that increased depth may result in worse results.

The results in Tables 11 and 12 show that increasing the depth of the networks results in worse
and more variable performance than the baseline network. While this section shows that adding
depth does not result in improved performance, nonetheless, other ways of building deeper net-
works could be explored, for example, using the fully connected architecture of Huang et al. (2017)
or by using the ResNet architecture of He et al. (2016).

5.6. Dropout Rates

Here, we test whether modifying the dropout rate within the mortality forecasting network might
produce more optimal results. The baseline network applies dropout to the embedding layers with
a chance of a neuron being dropped set to 4%, and to the intermediate layers at 8%, and here we
vary these percentages (in the description column of Tables 13 and 14, the first percentage refers to

Table 9. Average and Standard Deviation of MSE of ten runs of the mortality forecasting model on the test set (multiplied
by 104), with the application of batch normalization being varied as noted in the description column. Results sorted by
Standard Deviation of MSE

Description Average MSE Std Dev of MSE

1 Batchnorm: none 13.04 0.12

2 Batchnorm: not on embedding 12.75 0.14

3 Baseline 12.55 0.18

Table 10. MSE of the average prediction of ten runs of the mortality forecasting model on the test set (multiplied by 104)
and number of times that the LC model is beaten, with the application of batch normalization being varied as noted in the
description column. Results sorted by MSE

Description Average MSE Best Performance over Populations

1 Baseline 12.44 287

2 Batchnorm: not on embedding 12.65 272

3 Batchnorm: none 12.97 233

Table 11. Average and Standard Deviation of MSE of ten runs of the mortality forecasting model on the test set (multiplied
by 104), with the depth of the network being varied as noted in the description column. Results sorted by Standard
Deviation of MSE

Description Average MSE Std Dev of MSE

1 Baseline 12.55 0.18

2 Depth: 10 layers 12.70 0.27

3 Depth: 15 layers 13.20 0.55
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the dropout on the embedding layer and the second to dropout applied to the intermediate layers).
We also experiment with a network that only applies dropout to the last layer of the network.

Somewhat unintuitively, Table 13 shows that increasing the dropout rate of the intermediate
layers acts to reduce the standard deviation of the MSE. Increasing the dropout rate applied to the
embedding layer greatly reduces performance and increases the standard deviation, as does apply-
ing dropout only to the last layer.

5.7. Learning Rate, Restart and Batch Size

Here, we address hyperparameter choices relating to the optimisation of the network. The per-
formance of neural networks is often closely linked to the learning rate used in the optimiser, as
well as to the batch size used in the optimisation process. In addition to these choices, as discussed
in section 4, we employ a “restart” of the optimiser when fitting the mortality forecasting network.

Table 12. MSE of the average prediction of ten runs of the mortality forecasting model on the test set (multiplied by 104)
and number of times that the LC model is beaten, with the depth of the network being varied as noted in the description
column. Results sorted by MSE

Description Average MSE Best Performance over Populations

1 Baseline 12.44 287

2 Depth: 10 layers 12.53 243

3 Depth: 15 layers 12.96 189

Table 13. Average and Standard Deviation of MSE of ten runs of the mortality forecasting model on the test set (multiplied
by 104), with the application of drop out being varied as noted in the description column. Results sorted by Standard
Deviation of MSE

Description Average MSE Std Dev of MSE

1 Dropout: 4%/15% 12.63 0.10

2 Dropout: 4%/25% 12.73 0.13

3 Baseline 12.55 0.18

4 Dropout: 4%/50% 13.57 0.33

5 Dropout: 8%/5% 13.06 0.36

6 Dropout: 4%/50% last layer 13.72 0.91

Table 14. MSE of the average prediction of ten runs of the mortality forecasting model on the test set (multiplied by 104)
and number of times that the LC model is beaten, with the application of drop out being varied as noted in the description
column. Results sorted by MSE

Description Average MSE Best Performance over Populations

1 Baseline 12.44 287

2 Dropout: 4%/15% 12.57 284

3 Dropout: 4%/25% 12.64 276

4 Dropout: 8%/5% 12.92 225

5 Dropout: 4%/50% last layer 13.19 213

6 Dropout: 4%/50% 13.50 159
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Here we experiment with different choices relating to the optimisation process and show these
results in Tables 15 and 16.

The results of Table 16 are similar to those of Table 4, in that small increases in standard devi-
ation results in better performance of the network, whereas larger increases result in degraded
performance. Significantly better performance than the baseline can be achieved by doubling
the learning rate or halving the batch size. However, halving the learning rate and doubling
the batch size, as well as removing the restarts, harms the performance of the network
significantly.

5.8. Summary

When considering the mortality forecasting model, we have found that modest increases in the
standard deviation of the predictions from the model have often led to better performance of the
averaged prediction of the networks. In Figure 4, we compare the performance of the averaged
predictions against the standard deviation of the individual predictions. It can be seen that the
baseline model is quite close to optimal, but benefits from changes that increase the standard devi-
ation only marginally. Models that produce predictions that are either too stable or too unstable
tend to produce worse predictions when averaging over multiple runs.

In this section, we have investigated how different choices in neural network architecture can
influence the variability of the predictions made and the accuracy of the averaged predictions. This
has been done by varying a single element of the models at a time. On the other hand, it might be
found that varying two or more elements of the model simultaneously could lead to improved

Table 15. Average and Standard Deviation of MSE of ten runs of the mortality forecasting model on the test set (multiplied
by 104), with the optimization parameters being varied as noted in the description column. Results sorted by Standard
Deviation of MSE

Description Average MSE Std Dev of MSE

1 Baseline 12.55 0.18

2 Optimization: half batch size 12.39 0.21

3 Optimization: double LR 12.36 0.24

4 Optimization: no restart 12.98 0.44

5 Optimization: half LR 13.34 0.73

6 Optimization: double batch size 13.32 0.75

Table 16. MSE of the average prediction of ten runs of the mortality forecasting model on the test set (multiplied by 104)
and number of times that the LC model is beaten, with the optimization parameters being varied as noted in the description
column. Results sorted by MSE

Description Average MSE Best Performance over Populations

1 Optimization: double LR 12.23 300

2 Optimization: half batch size 12.26 299

3 Baseline 12.44 287

4 Optimization: no restart 12.79 249

5 Optimization: double batch size 13.02 210

6 Optimization: half LR 13.04 202
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performance and different conclusions. For example, it was shown above that the performance of
the mortality forecasting model with layers of 1,024 neurons is worse than the model with layers of
512 neurons. However, if the dropout rate was increased, it might be found that the wider model is
in fact more optimal. Nonetheless, the conclusion from this section is that the most predictive
neural network results are those that are averaged over multiple training runs of models that pro-
duce predictions with variability that is neither too extreme nor too minimal.

6. Uncertainty Estimation
In this section, we discuss how the neural network presented in section 4 can be extended from
producing only a best estimate to producing also estimates of uncertainty around the predictions.
A paradigm for estimating uncertainty within the actuarial literature is the estimation of uncer-
tainty of IBNR reserve estimates, which is usually estimated by considering two types of uncer-
tainty that may affect estimates from models: parameter uncertainty and process variance, see, for
example, section 7 in England and Verrall (2002). The former type of uncertainty relates to the
uncertainty in model parameters and has often been quantified in IBNR reserving using the boot-
strap, for an early example, see England (2002). The latter type of uncertainty relates to the ran-
dom variation of forecast quantities around their best estimate prediction. Recently, there has been
some interest in quantifying the accuracy of traditional measures of uncertainty used in IBNR
reserving, see Gabrielli and Wüthrich (2019), who find that, in the case of the chain-ladder
method, the estimate of the MSE of prediction of the IBNR underestimates the true uncertainty
for small and medium size portfolios.

On the other hand, the machine learning literature, which has as its focus the task of prediction,
has focussed less on uncertainty arising from parameter error, and more on estimating directly the
conditional quantiles of predictions, see, for example, the quantile random forest method of
Meinshausen (2006) or the more general study of Takeuchi et al. (2006).

Uncertainty of predictions has been used by actuaries both as a way of quantifying and com-
municating how certain actuarial projections are, as well as to estimate the capital requirements of
financial services companies (for a discussion of the link between these two objectives in IBNR

Figure 4. Comparison of the performance of the averaged neural network predictions on the test set, measured by MSE,
compared to the standard deviation of the MSE produced by the individual predictions over different training runs.
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reserving, see England et al. (2019)). In addition, we see uncertainty estimation as playing another
role, which is to enable actuaries to investigate which model predictions are more uncertain, and
take corrective action, for example, by increasing margins in areas of higher uncertainty or con-
sidering other risk management techniques such as reinsurance.

Here, we adapt two techniques from the machine learning literature to estimate prediction
uncertainty in the context of mortality modelling. These techniques are the non-parametric quan-
tile regression approach using the so-called “pinball” loss Takeuchi et al. (2006) and the recent
parametric approach of deep ensembles (Lakshminarayanan et al., 2017). Both of these techniques
have achieved considerable success in estimating the uncertainty of predictions from deep learn-
ing models (Ovadia et al., 2019; Smyl, 2020; Wilson & Izmailov, 2020); the latter is often cited as
the best performing technique in the deep learning literature, see, for example (Mukhoti
et al., 2021).

First, we provide definitions that are only used in this section, following which we discuss the
application of these techniques.

6.1. Definitions

Here we are concerned with estimating upper and lower bounds of the predictions made by the
deep learning models presented above. These bounds are often represented using quantiles.
Above, we have defined that the usual aim of a predictive model is to produce an accurate estimate
ŷi of unseen variables yi on the basis of variables X0

i . We note that unseen yi are random variables
usually following an unknown distribution. In addition to predicting a best estimate of yi we are
also interested in how yi is distributed. Here, we focus on estimating the quantiles of the distri-
bution of yi, denoted as yτi , where y

τ
i is the smallest quantity such that P�yi < yτi � � τ. We now

consider that for the purpose of uncertainty estimation, the actuary has chosen an upper and lower
quantile of the distribution of yi that must be estimated, denoted as τu and τl respectively (other
measurements of the distribution of yi might be of interest, but here we have chosen quantiles of
the unknown distribution since these are often used in insurance regulation, for example, the use
of Value-at-Risk in Solvency II, which depends on nothing more than the quantile of an insurer’s
loss distribution). If the quantiles are calibrated correctly, then the upper and lower bounds yτui
and yτli form a predictive interval into which observations of yi should fall with probability
P�yτli ≤ yi ≤ yτui � � τu � τl. In practice, we do not know the actual quantiles of yi, and therefore
we try to make predictions of the lower and upper quantiles, ŷτli and ŷτui , conditional on the known
variables X0

i . To measure the accuracy of the predicted quantiles, we calculate the empirical cov-
erage of the predictive interval formed by �ŷτli ; ŷτui 	 using the following estimator evaluated on test
set data: PNtest

i�1 1yi2�ŷτli ;ŷτui 	
Ntest

:

If the predicted quantiles are perfectly accurate, then the coverage should equal τu � τl. We
estimate the quantiles by suitably adapting the deep learning models presented above for this task,
using the two techniques we present next and consider the accuracy of the coverage on unseen
data, in other words, on the test set for each model.

6.1.1. Quantile regression via the pinball loss
Quantile regression techniques aim to estimate the quantiles of the distribution of yi directly, in
other words, the model directly outputs the quantiles and does not rely on making distributional
assumptions for yi. We achieve this by modifying the loss function used when training the deep
learning models from the MSE loss to the so-called pinball loss, which is defined as
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L�yi; ŷi; τ� � τ�yi � ŷi� if yi � ŷi ≥ 0
�τ � 1��yi � ŷi� if yi � ŷi < 0

�

and where τ is the selected quantile that the deep network is optimised to predict. Since we wish to
derive a confidence band composed of two quantiles, we use a network that produces two outputs,
which are the upper and lower percentiles τl and τu. An implementation of the pinball loss func-
tion in R appears in Listing 6.

6.1.2. Deep ensembles
The deep ensemble technique adds an estimate of the variance of each observation to the neural
network, on the assumption that each observation i is Gaussian distributed, in other words, this
technique applies a type of heteroscedastic Gaussian regression where both the expected value and
variance of observation i are jointly predicted. To apply the technique, several of this same type of
network are fit to the data and the resulting expected values and variances are averaged to derive
the “ensemble” predictions for these quantities. Predictive intervals are then derived using the
Gaussian parameters for each observation i, thus, different from the quantile regression approach
above, the deep ensemble approach relies on distributional assumptions. The loss function is
derived by minimising the negative log likelihood of each observation according to the
Gaussian assumption (see Nix and Weigend (1994) for the derivation):

L�ŷi� �
�yi � ŷi�2

σ2
i

� log�σ2
i �

2
: (19)

Inspecting equation (19) shows that the first-term estimates the MSE of the prediction with ref-
erence to the actual observation, scaled by the variance, thus, the network can reduce the contri-
bution of an observation i to the loss by increasing the variance. The second term acts as a penalty
on observations with large estimated variances.

An implementation of the deep ensemble loss function in R appears in Listing 7. The first func-
tion in the listing is used to derive the expected value prediction and depends on the predicted
variance. This corresponds to equation (19), except for the addition of a small constant number ε
to each variance term to precent division by, or taking the logarithm of, zero. The second function
is used to ensure that the predicted variance of the network is unbiased by calculating the empiri-
cal variance of the observations and calculating the MSE of the empirical variance compared to the
predicted variance.

6.2. Uncertainty in the Mortality Forecasting Model

The mortality forecasting model was adapted to apply each of the pinball loss and the deep ensem-
ble approaches separately. A simple way to adapt the models for this is to modify only the last layer
of the network, in other words, keep the design of the network the same as it is when trying to
forecast a best estimate and modify only Line 51 in Listing 5. Listing 8 shows how this can be done
for each of the pinball loss and deep ensemble methods, by adding outputs to the network. For the
deep ensemble method, these outputs are the predicted mean and variance for observation i (see
Lines 8–16 of the Listing), and for the pinball loss method, these outputs are the lower and upper
quantiles, in addition to the mean forecast of mortality (see Lines 30–37 of the Listing).

On the other hand, one might suppose that the representation learned by the network to pro-
duce a best estimate forecast is not ideally suited to predicting uncertainty and should be modified
to produce a representation that is more suitable. This could be achieved, for example, by adding
layers to the network that modify the representation to be more suitable for the task of estimating
the quantiles. Listing 9 contains code for an example model using the pinball loss that implements
this idea. The model is the same as that presented in Listing 5 up to line 18. After this point, the
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model “branches” into three separate paths: one to estimate the mean outcome and two more for
each of the lower and upper quantiles respectively. Similar modifications were made to the mor-
tality forecasting model to implement the deep ensemble approach, except in this case, only two
branches are needed8. Each model was fit ten times on the training data set and the predicted 2.5%
and 97.5% quantiles on the test set were averaged over the ten runs to provide a final predicted
quantile for each model type. Table 17 shows the coverage of the models on the test set for the
following variations of the model: deep ensemble and pinball loss models without branches, and
deep ensemble and pinball loss models with branches, where, for each model, we test two versions
that use either tanh and ReLu activations.

The table shows that all variations of the models achieve relatively good performance, with the
branch variations of the pinball loss model producing an empirical coverage of 4.8% and lower
and upper quantiles that are both quite accurate. The next most accurate model is the deep ensem-
ble model without branches, followed by the rest of the models. Thus, based on these results, it

Table 17. Empirical coverage of the 2.5%–97.5% confidence interval derived using ten runs of the uncertainty prediction
models on the test set. Results sorted by deviation from the targeted 5% coverage

Description Data Exceeding 97.5% Data Exceeding 2.5% Coverage Delta

1 Pinball Loss, ReLu branches 0.022 0.026 0.048 0.002

2 Pinball Loss, tanh branches 0.021 0.026 0.048 0.002

3 Deep Ensemble 0.026 0.029 0.055 0.005

4 Deep Ensemble, ReLu branches 0.012 0.030 0.043 0.007

5 Pinball Loss 0.017 0.025 0.042 0.008

6 Deep Ensemble, tanh branches 0.014 0.027 0.041 0.009
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Figure 5. Confidence bands for projected UK mortality rates using the pinball loss model with ReLu branches, 2016, males
and females.

8Model code for the pinball loss and the deep ensemble approach in R can be found in the files HMD model pinball.r and
HMD model deep ensemble.r on the associated GitHub repository.
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seems that both the deep ensemble and pinball loss approaches produce reasonably accurate pre-
dictive intervals for mortality forecasting, and that adding “branching” layers to the network leads
to improved uncertainty quantification when applying the pinball loss. In Figure 5, we show some
example confidence bands from the pinball loss model with ReLu branches for actual and pro-
jected mortality rates in the UK in 2016. The figure shows that the confidence bands are adapted
well to the shape of the underlying mortality rates, with the greatest uncertainty at the teenage and
young adult years, and lower uncertainty at ages older than these. Comparing the actual mortality
rates to the expected shows that, at the younger ages, mortality rates were generally lower than
expected, whereas at the older ages, the outcomes were closer to the forecasts. In this case, at least,
the greater uncertainty of the models at the younger ages corresponds well with the greatest devi-
ations from the model forecasts.

Next, we consider the impact of including uncertainty predictions on the models’ forecasting
performance. Table 18 shows that compared to the baseline model performance of a test set MSE
of 12.44 and exceeding the LC model’s forecasting performance on 287 populations (see the base-
line model results in Table 3), all of the uncertainty forecasting models perform quite well, with
the variations of the deep ensemble models exceeding the performance of the LC model by a
greater margin than the baseline models, and with the pinball loss model producing a lower aver-
age MSE score than the baseline model. Thus, some performance gains on best estimate forecast-
ing can be achieved by augmenting best estimate forecasting models to predict measures of
uncertainty.

We now consider to what extent the intervals produced by the models accord with intuition: it
would be expected that countries with larger populations would have more stable mortality expe-
rience leading to narrower confidence intervals, and, similarly, that forecasts for subnational pop-
ulations will have wider confidence intervals than those for national populations. Also, we would
expect that confidence intervals projected far into the future should have wider confidence inter-
vals than projections made for time periods in the short-term future. We illustrate the model per-
formance in these cases graphically in Figure 6, which compares the performance of the pinball
loss model with ReLu branches forecasting mortality rates for the USA and Iceland in 2016. It can
be seen that for the USA, with a large population and thus, stable mortality rates, the confidence
bands are quite narrow, whereas for Iceland, with a very small population, the bands are wider at
almost every age. Similarly, Figure 7 shows that the model produces wider confidence bands for
the sub-national populations of Australia compared with the national population. Finally, Figure 8
shows that the confidence bands for UK mortality in 2016 are slightly wider than those in 2001 at
most ages. This is confirmed in Figure 9, which displays the size of the confidence band at each
age, measured by adding together the ratio of the upper confidence band to the best estimate fore-
casts, and the inverse of this ratio for the lower band. It can be seen that the confidence band for

Table 18. MSE of the average prediction of ten runs of the uncertainty forecasting models on the test set (multiplied by 104)
and number of times that the LC model is beaten, with the particular model choice being varied as noted in the description
column. Results sorted by number of times each forecasting model beat the LC model

Description Average MSE Best Performance over Populations

1 Pinball Loss 12.385 278

2 Pinball Loss, ReLu branches 12.481 285

3 Pinball Loss, tanh branches 12.488 289

4 Deep Ensemble, tanh branches 12.642 291

5 Deep Ensemble 12.644 294

6 Deep Ensemble, ReLu branches 12.492 297
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2016 is wider than that for 2000 at most ages, and, in particular, is wider at the younger and middle
ages, whereas the bands are of similar magnitudes at the older ages. Since the younger ages exhibit
substantially larger variability in mortality rates than the older ages, this behaviour is to some
extent understandable. Moreover, forcing the confidence bands to expand with time at every
age would produce bands that are less calibrated than the examples shown here. We return to
this point at the end of this section. In summary, the results of applying the proposed methods
for quantifying uncertainty generally accord well with intuition, and the models have produced
confidence bands that adapt reasonably to the specifics of each case being forecast.

6.3. Summary

Two relatively simple techniques to modify deep neural networks to produce uncertainty esti-
mates have been presented in this section. Notably, neither of these approaches require multiple
simulations, as is the case with bootstrapping, and can be implemented directly within Keras,
without the need for other packages. This section showed that the predictive intervals produced
using the deep ensemble and pinball loss approaches are quite well calibrated empirically and
slightly improve the best estimate forecasting performance of the networks. Importantly, neither
of these approaches account for parameter error within the networks, meaning that it is likely the
predictive intervals produced in this section are too narrow, if these would be used for setting
capital requirements, among other actuarial uses. On the other hand, widening the intervals to
account for parameter error would lead to worse empirical coverage than is shown in
Table 18, thus, for applications where good empirical coverage of predictive intervals is necessary,
these techniques should be considered.

7. Designing Networks for Explainability
In this section, we discuss how neural network models can be designed to allow for greater
explainability. On the one hand, the complex functional structure of deep neural networks
(see section 4.1) allows for highly accurate predictions to be made at the cost that the effect of
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Figure 6. Confidence bands for projected mortality rates in the USA and Iceland using the pinball loss model with ReLu
branches, 2016, males and females.
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each input variable on the predictions is difficult to quantify (mainly because feature engineering
is performed implicitly by the neural network). On the other hand, for linear models and GLMs,
the effect of each input variable is easy to quantify, but extensive feature engineering becomes
necessary to attain good predictive performance. In this section, we discuss how deep neural net-
works can be designed to enable greater explainability, by which we mean to say, that the effect of
the input variables on the predictions of the network can be easily quantified and understood.

This section is organised as follows. In the first sub-section, we discuss the Combined Actuarial
Neural Network (CANN) proposal of Wüthrich and Merz (2019) and show how it can be
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Figure 7. Confidence bands for projected mortality rates in Australia and its sub-national territories using the pinball loss
model with ReLu branches, 2014, males and females.
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implemented for the mortality forecasting example. Using this implementation, we consider the
linear and non-linear contributions of the input variables on the mortality forecasts produced with
the neural networks. In the next section, we define an explainable neural network (XNN) model
(Vaughan et al., 2018; Agarwal et al., 2020), extend the formulation to include embeddings, and
discuss how to combine the CANN and XNN models into a single model, which we call the com-
bined actuarial explainable neural network (CAXNN) model. Following this section, based on the
insights into the model gained in these first sub-sections, we reproduce the performance of the
ensemble of mortality forecasting networks using the technique of model distillation (Hinton
et al., 2015).

7.1. Combined Actuarial Neural Network

Wüthrich and Merz (2019) describe a general approach to combining classical actuarial models,
usually based on GLMs, together with neural networks, which has been applied in the context of
actuarial pricing and reserving models (Gabrielli, 2019; Gabrielli et al., 2019; Gao et al., 2020;
Schelldorfer & Wüthrich, 2019). The basic idea is to use a neural network to enhance the predic-
tions made by a simple actuarial model. This is done by embedding a GLM within a neural net-
work, such that both the GLM and neural network use the same covariates X for the prediction y.
The output of the GLM component is used directly to predict the outcomes y, i.e. the GLM is
directly connected to the output, whereas the neural network component first augments the cova-
riates via representation learning to X 0, before predicting the outcomes. One advantage of the
CANN approach is faster calibration of the combined model, if the linear component of the model
is pre-calibrated using maximum likelihood estimation (MLE). Moreover, directly connecting the
covariates input into a network to the output has been studied in Van Der Smagt and Hirzinger
(2012), who find that this approach allows networks to be calibrated faster.

Here, we focus on a different advantage of the CANN approach, which is that predictions made
using the linear component of a CANN model are easily explainable, in that the prediction is a
simple linear combination of the covariates X. The magnitude of the non-linear component of the
predictions can then be compared to the explainable component and the covariates X, allowing the
user of the model to understand further the contribution of the non-linear component.
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Figure 8. Confidence bands for projected mortality rates in the UK using the pinball loss model with ReLu branches, 2000
and 2016, females.
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We define a CANN version of the mortality model presented in section 4.1 as follows:

Z1 � σ0�c0 � B0
0feature

p;g
x;t � (21)

Z2 � σ1�c1 � B0
1Z

1� (21)

..

.
(22)

Z4 � σ3�c3 � B0
3Z

3� (23)

Z5 � σ4�c4 � B0
4�Z4; featurep;gx;t �� (24)

ŷ � σ5�c5 � B0
5feature

p;g
x;t � B0

6Z
5�: (25)
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Figure 9. Size of the confidence bands for projected mortality rates in the UK using the pinball loss model with ReLu
branches, 2000 and 2016, females. Size was estimated as described in the text.
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Comparing these equations to those presented before, it can be seen that the major change is to
include the feature vector featurep;gx;t directly in the output of the network, so that a skip connection
to the covariates now links X directly to the output of the network, y. Thus, on the canonical scale
(before the application of the link function σ5), the predictions of the model are comprised of a
linear component B0

5feature
p;g
x;t added to the output of the neural network B0

6Z
5, which we refer to

as the non-linear component of the CANN model in what follows. We remark that the skip con-
nection in the neural network part of the model is maintained, see equation (25), as this leads to
better performance of the model compared to the case when this is removed.

In this application of the CANN approach, we do not pre-calibrate the linear component of the
model using MLE (as is suggested in Wüthrich and Merz (2019)), but rather calibrate both com-
ponents of the CANN model simultaneously. Listing 10 shows the code used to fit the model.
Different from the model presented previously, we now pass the time covariate through a smaller
network so that the time effect on the outcome can be non-linear, even in the linear component of
the network. This smaller network outputs 5 new variables, equal to the dimension of the embed-
dings for Age and Gender. This is shown on Lines 24–27 of the listing. We note that allowing a
network focussing on only a single variable within the predictor variables X is discussed in more
detail in the following parts of this section. The major change compared with the model presented
earlier is on Line 58 of the listing, where the skip connection containing the feature vector appears.
10 versions of the model were fit using the same data and process as described section 4.1. The
results of the model on the test set are shown in Table 19. The CANN model achieves similar
performance to the DEEP model, performing slightly better on forecasts at the sub-national level,
and slightly worse for forecasts at the national level.

We now proceed to explore the linear and non-linear components of the network by selecting
one of the networks used to produce the forecasts and exploring the weights (regression coeffi-
cients) of the last layer. The left pane of Figure 10 shows the magnitude of these weights for the
linear and non-linear components of the CANN model. The linear weights vary over a far greater
range than the non-linear weights, which are confined to a small range close to zero. The right
pane shows that the weights for the Age, Gender and Year embeddings are substantially larger
than those for the Country and Subnational region embeddings. Thus, relatively large weight
is being placed within the CANN model on each element of the linear component, and smaller
weight on each component of the non-linear component (although there are more of the latter).

The effect size for each level of the Year, Gender, Age and Country variables are shown in Figure 11.
It can be seen that the effects are quite easily interpretable: the values for Year show a (non-linear)
decreasing trend, signifying mortality improvements with time, and the Age variable follows the shape
of a life-table. Males are shown to have higher mortality than females and, finally, the country effects
match intuition quite well. Thus, the linear component of the CANNmodel can be interpreted directly
in familiar terms and could be used directly to construct an approximate life-table.

Remarks 7.1. Including the embeddings in the last layer of the network, see equation (25), has the
effect of imposing a constraint within the model that a linear projection of the embeddings into a

Table 19. Test set mean squared error (multiplied by 104) using the LC and CANN models, national and sub-national pop-
ulations

Model type Average MSE Median MSE Best Performance

1 LC_SVD National 5.55 2.48 10

2 LC_SVD Sub-National 22.08 1.48 17

5 CANN National 2.46 1.26 66

6 CANN Sub-National 20.37 0.82 219
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single dimension must have a direct interpretation in terms of the output of the neural network.
This linear projection is learned by the network, see the linear coefficients B6 in 25, and is shown
in Figure 11. Whereas a principal component analysis has been used to explain learned embed-
dings in a relative manner, see, for example Perla et al. (2020), the approach shown here does not
require PCA, and, moreover, allows each level of the embedding to be interpreted in abso-
lute terms.

We now turn to the non-linear component of the CANN model. Figure 12 compares the non-
linear component of the CANN model to the linear component for a 5% sample of predictions on
the test set. For middle-aged and older age mortality, the non-linear component is quite small
relative to the linear component, whereas for child, young adult and oldest ages, the non-linear
component is much more significant. Thus, we can explain the workings of the CANNmodel that
the majority of the corrections made to the linear part of the model relate to accurately forecasting
mortality for these ages, whereas for middle- and older- aged mortality, a linear model performs
quite well.

A more detailed view of these non-linear corrections is shown in Figure 13, which shows these
separately for different countries and sub-national regions, for each gender, over time.
Immediately observable is that the extent of the non-linear component varies with all of the factors
within the model, in other words, it varies in quite a complex manner by Country, Sub-national
region, Year and Gender. Thus, the non-linear component can be understood in terms of inter-
action effects between these inputs to the CANN model that are implicitly learned by the neural
network and added to the linear output to produce predictions from the model.
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Figure 10. Magnitude of weights in last layer of CANN model for HMD data. Left pane shows weights for the linear and non-
linear parts of the network and right pane shows only weights for the non-linear component.

34 R. Richman

https://doi.org/10.1017/S1357321722000162 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321722000162


Notably, however, the exploration of the linear and non-linear components of the network has
been performed for only a single example training run, whereas to produce predictions using this
network, an average prediction from many networks would be used. Of course, the predictions
from each of these networks could be inspected but besides for being a tedious exercise, each net-
work might produce predictions using a different representation, leading to difficulties in gaining
an understanding the average result. For this reason, in what follows, we fit a new surrogate neural
network model to reproduce the average predictions of the networks trained in this section. In the
deep learning literature, this is called model distillation (Hinton et al., 2015), and has been applied
in Richman and Wüthrich (2020) in the context of non-life pricing. The non-linear component of
the single surrogate model is designed to be explainable and is based on the insights into the non-
linear component of the network gained in this section, thus leading to a fully explainable model,
while taking advantage of representation learning to specify the exact form of the model.
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Figure 11. Effect sizes for each level of the Year (top lhs), Gender (top middle), Age (top rhs) and Country variables (bot-
tom), derived using the CANN model.
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7.2. Explainable Neural Networks

The non-linear component fit the CANNmodel was shown in the previous section to depend in a
complex manner on all of the inputs to the neural network, which can be understood as the inter-
action effects between these variables. However, it is still difficult to isolate and explain the con-
tribution of each interaction effect, which, as shown in Figure 12 can modify the predictions of the
linear component of the model significantly. On the one hand, if the non-linear effect could be
decomposed into the interaction effects of particular variables, then the explainability of the model
would be increased. On the other hand, the exact form of these interaction effects appears to be
quite difficult to specify explicitly, thus building a traditional model to reproduce these does not
appear viable. Here we focus on solving this problem by using neural networks to model each
potential interaction on a stand-alone basis, in other words, using representation learning to spec-
ify the interactions implicitly but constraining the input to each network so that the output of
these networks is explainable as a combination of only a limited number of variables.

Two quite similar proposals have appeared in the deep learning literature in Vaughan et al. (2018)
and Agarwal et al. (2020), who, respectively, refer to these types of models as Explainable Neural
Networks (XNNs) or Neural Additive Models (NAMs); in what follows we focus on the former since
it appeared earlier in the literature. XNNs are a type of additive index model defined as

ŷi � µ� γ1f1�xi;1� � γ2f2�xi;2� � . . .� γPfP�xi;P�; (26)

where fp; 1 ≤ p ≤ P, are functions of individual covariates xi;p which are learned using neural net-
works, µ and γp, are the coefficients of the final layer of the model, and P is the number of covariates
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Figure 12. Comparison of linear and non-linear effects from the CANN model, coloured according to age. Horizontal lines
indicate a non-linear effect of 0.05 and −0.05, respectively. 5% sample of the test set predictions.
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entering the model. Comparing 7.7 to 3.4, the effect of each covariate that enters the model on the
prediction can be isolated in the XNN, whereas this cannot be done in the traditional neural network.
Both Vaughan et al. (2018) and Agarwal et al. (2020) discuss extensions to these models that could
result in improved predictive performance in some cases, but are not necessary for the application that
follows.

XNNs can be adapted for use in the mortality forecasting example by extending these models to
incorporate categorical variables and to allow for interactions between different variables. The first
of these adaptations consists simply of using embedding layers for each categorical variable that
are input into the neural networks that define each function fp�:�. The second adaption consists of
passing multiple variables into each function fp�:�, where these interaction effects need to be cho-
sen using judgement. To encourage the network to learn interaction effects, we use a simple
“crossing” layer (see Wang et al. (2017) for an extended discussion and application of a similar
idea), which can we formulate as
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Figure 13. Comparison of linear and non-linear effects from the CANN model, coloured according to age. Horizontal lines
indicate a non-linear effect of 0.05 and −0.05, respectively. 5% sample of the test set predictions.
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Z1 � σ0�c0 � B0
0X

0� (27)

Z2 � eZ
1
; (28)

where X 0 is the vector containing the embeddings for each categorical variable entering the net-
work and the exponential operator in equation (28) is applied element-wise to the output of the
neural network Z1. The idea of the crossing layer is to learn multiplicative representations of the
input vector X 0. We found that adding this crossing layer significantly improves the predictive
performance of the XNN.

In the next section, will illustrate this process for mortality forecasting model.

7.3. The Combined Actuarial Explainable Neural Network

In this section, we build on the previous CANN decomposition of the output of a deep network
into a linear and non-linear component, by modelling the non-linear component of the output
using an XNN to derive explicitly the interaction effects among the predictor variables X. We call
this combined model a Combined Actuarial Explainable Neural Network (CAXNN). The linear
component of the model is specified in the same way as shown in equation (25). For the non-linear
component, we consider the analysis in section 7.1 which showed that the non-linear component
of the network varies in a complex manner depending on all of the inputs to the CANN network.
To allow for these non-linear effects, we specify a XNN which models several of the second- and
third- order interactions of the inputs to the network in an explicit manner. Since the effects of
each interaction can be considered in isolation, the CAXNN model is more explainable than the
CANN model considered earlier.

The CAXNN model is used here as a surrogate model to explain the average predictions of the
10 CANN networks fit in section 7.1 by “distilling” the predictions of these networks using a dif-
ferent model. Notably, we fit the CAXNN model on the average predictions of the 10 CANN
models on both the training set (years less than or equal to 1999) and testing set (years greater
than 1999), since the predictions ŷ on the test set are available from the model even if the out-
comes y are not.

The CAXNN model is fit in two steps. First, a neural network consisting only of the linear
component of the CAXNN model is calibrated; this part of the model is structured in exactly
the same manner as the linear component of the CANN model discussed in section 7.1. The code
for this model is shown in Listing 11, which defines a smaller subnetwork for the time variable and
embeddings for each categorical variable. Table 20 shows the results of this model on the test set.
Compared to the results of the CANN model shown in Table 19, this linear model performs sur-
prisingly well, achieving substantially better performance than the LCmodel for sub-national pop-
ulations. This indicates that, to some extent, a linear distillation to explain the predictions of an
ensemble of neural networks may be sufficient.

Remarks 7.2. Whereas the CAXNN model shown here relies on calibrating a stand-alone linear
model, other sources for the linear component of the model might be considered. For example, the
embeddings from the CANN model discussed in section 7.1 could be used. Although we do not
show these results here in detail, experiments using embeddings from a single CANN model pro-
duced a CAXNN model that exceeded the performance shown in Table 21.

In a second step, the rest of the CAXNN model, i.e. the non-linear component is calibrated. To
do this, the weights of the linear component of the CAXNNmodel are set equal to those derived in
the previous step where model with only a linear model was calibrated. These weights are held
fixed at these values throughout the second step of training the CAXNN network, meaning to say,
that only the weights of the non-linear component are calibrated. The code for setting these
weights of the linear component of the CAXNN model is shown in Listing 12.
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The non-linear component is based on the XNN introduced in section 7.2 and consists of a
simple three layer neural network, which operates by first attempting to learn interactions using a
“crossing” layer (see equation (28)) and then passing the input data and the output of the “cross-
ing” layer through two more fully connected layers, the second of which is a skip connection. The
function used for this purpose is shown in Listing 13.

Finally, the rest of the CAXNN network is shown in Listing 14. A number of different inter-
action effects between the predictor variables comprising X are manually specified, based on the
insights from section 7.1. Finally, the linear and non-linear components of the CAXNN model are
combined, see Lines 54–55 of the listing.

The results of fitting the CAXNN network are shown in Table 21. Comparing these to the linear
component of the model, we see that performance has improved for both national and sub-
national forecasts, particularly for the latter. Quite remarkably, the performance of a single
CAXNN network is only slightly worse than the average prediction of the 10 basic networks
shown in Table 2 and the average performance of the 10 CANN networks shown in Table 19.

Figure 14 shows the linear component of the CAXNNmodel, which are comparable to those in
Figure 11, and are, likewise, quite easily interpretable in an intuitive manner. To compare the
relative magnitude of the contribution of the linear and non-linear components of the
CAXNN model, a sample of 15% of the effect sizes in the training and testing sets was taken,
and a box-plot of these effects estimated. This is shown in Figure 15. By far, the effects with largest
magnitude are the age effects in the linear component of the network, which is expected, since
mortality rates vary by several orders of magnitude with age in modern life-tables. Similarly,
the other linear effect sizes (for Gender, Year and Country) are significant. It can be seen that
the interaction effects are of a similar magnitude, and that the interactions between the year vari-
able and the other categorical variables have the largest impact on the predictions.

Next, we consider how the interaction effects might be interpreted. An intuitive example is the
effect size for the interaction between Year, Age and Gender shown in Figure 16. The CAXNN
model makes relatively large adjustments to the linear model for younger females and middle-
aged males, as well as at the older ages for both genders. The figure shows that the size of these
adjustments varies with year, indicating that, to enhance predictive accuracy, the CAXNN model

Table 20. Test set mean squared error (multiplied by 104) using the LC and linear component of the CAXNNmodel, national
and sub-national populations

Model type Average MSE Median MSE Best Performance

1 LC_SVD National 5.55 2.48 35

2 LC_SVD Sub-National 22.08 1.48 43

3 Linear National 4.28 3.07 41

4 Linear Sub-National 20.94 0.95 193

Table 21. Test set mean squared error (multiplied by 104) using the LC and full CAXNN model, national and sub-national
populations

Model type Average MSE Median MSE Best Performance

1 LC_SVD National 5.55 2.48 9

2 LC_SVD Sub-National 22.08 1.48 21

3 DEEP National 2.67 1.46 67

4 DEEP Sub-National 20.60 0.90 215
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allows for different rates of mortality improvement for each age and gender. Similarly, Figure 17
shows the interaction effects between Country and Year, showing that the model has learned a
different baseline level of mortality for each country that then improves at a rate of mortality
improvement specific to that Country.

We show the quality of the CAXNN approximation to the ensemble of CANN models in
Figure 18, for two examples: Males in the United States and Males in the Tokyo region of
Japan, both in 2010. It can be seen that the CAXNN model closely approximates the average pre-
diction of the CANN models at almost every age, with the largest deviations of the approximation
at the young adult ages around 23–25, which themselves are quite insignificant. Thus, the CAXNN
model has successfully approximated the ensemble predictions of the CANN models.

Finally, in Figure 19 we consider the key drivers of the difference in mortality predictions
between Males and Females aged 50 in the United Kingdom and Georgia, United States in the

−0.2

0.0

0.2

0.4
19

60

19
80

20
00

20
20

Year

Ye
ar

_e
ffe

ct
Year effect

−0.10

−0.05

0.00

0.05

0.10

Fe
m

al
e

M
al

e

Sex

S
ex

_e
ffe

ct

Gender effect

−2

−1

0

1

2

0 25 50 75 10
0

Age

A
ge

_e
ffe

ct

Age effect

−0.2

−0.1

0.0

0.1

0.2

AU
S

AU
T

B
E

L

B
G

R

B
LR

C
A

N

C
H

E

C
ZE

D
N

K

E
S

P

E
S

T

FI
N

FR
AT

N
P

G
B

R
_N

IR

G
B

R
_S

C
O

G
B

R
TE

N
W

G
R

C

H
U

N

IR
L

IS
L

IS
R

IT
A

JP
N

LT
U

LU
X

LV
A

N
LD

N
O

R

N
ZL

_N
M

P
O

L

P
R

T

R
U

S

S
V

K

S
V

N

S
W

E

TW
N

U
K

R

U
S

A

Country

C
ou

nt
ry

_e
ffe

ct

Country effect

Figure 14. Effect sizes for each level of the Year (top lhs), Gender (top middle), Age (top rhs) and Country variables (bot-
tom), derived using the CAXNN model.
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year 2015. Several characteristics are shared across all of these predictions, which are the effect of
the age and year variables. The plots illustrate that, for these predictions, the country and region
variables, as well as the interactions of these variables with the other variables in the model, are
familiarly responsible for the different mortality predictions made by the model. Among the most
important of these are the effect of the sub-national region, which leads to higher predictions for
the state of Georgia and the interaction between the year of the forecasts, and the country and
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region for which these are being made: in the United Kingdom, this effect is quite negative, con-
tributing to a lower mortality prediction, whereas for the State of Georgia in the United States, this
is quite positive, leading to higher mortality predictions.

7.4. Summary

Two model designs that enable greater interpretability of neural network predictions were
presented in this section. The CANN model predictions can be decomposed into linear and
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non-linear parts. The former are easily explainable when effect sizes are considered, whereas the latter
are quite amenable to analysis in a graphical manner. The CAXNN model builds upon this to enable
easier interpretation of the non-linear effects and was shown to be quite predictive when used to distil
the average predictions arising from 10 different CANN models. Since the CAXNN model essentially
produces a linear model in the last layer of the network, the effect of each component of the predictor
variables on the predictions of the model can easily be isolated and investigated.

8. Conclusions
This research has investigated three aspects of neural networks that may impact their adoption
into the toolkit of actuaries: the variability of results, producing uncertainty intervals and design-
ing these models for explainability. A relatively complex mortality forecasting example was used
throughout to investigate these issues.

Female Male

N
ational

G
B

R
TE

N
W

G
A

U
S

A

−0.2 −0.1 0.0 0.1 −0.2 −0.1 0.0 0.1

bias

Age_effect

Age_Country_Region_effect

Age_Sex_effect

Country_effect

Region_Country_effect

Sex_effect

Sex_Country_effect

SubNat_effect

Year_effect

Year_Age_effect

Year_Age_Country_effect

Year_Age_Country_Region_effect

Year_Age_Sex_effect

Year_Country_effect

Year_Country_Region_effect

Year_Region_effect

Year_Sex_effect

bias

Age_effect

Age_Country_Region_effect

Age_Sex_effect

Country_effect

Region_Country_effect

Sex_effect

Sex_Country_effect

SubNat_effect

Year_effect

Year_Age_effect

Year_Age_Country_effect

Year_Age_Country_Region_effect

Year_Age_Sex_effect

Year_Country_effect

Year_Country_Region_effect

Year_Region_effect

Year_Sex_effect

value

va
ria

bl
e

−0.2 −0.1 0.0 0.1
value

Predictions for mortality at age 50 in 2015

Figure 19. Breakdown of the contributions to the mortality predictions for Males and Females aged 50 in the year 2015, in
the United Kingdom, and Georgia, United States.
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In examining the variability of results produced with neural network models, it was shown that
the accuracy of ensemble predictions of networks suffers if the underlying networks have too little
or too much variability. The analysis presented here focussed on modifying single aspects of the
design and fitting of neural network models; future research could consider a more complex inves-
tigation where more than one aspect is modified at a time.

Two methods were used to extend the neural network model to quantify the uncertainty of the
predictions using predictive intervals: deep ensembles and networks trained using the pinball loss.
Similar to the results of applying these methods in other contexts, both of these methods produced
empirically well-calibrated predictive intervals as measured on unseen data. It was observed that if
parameter error was to be included within this type of analysis, then the intervals would likely be
less well calibrated. Future research should consider how to incorporate parameter risk appropri-
ately into the predictive intervals produced by neural networks.

To enhance the explainability of neural network predictions, the example mortality forecasting
model was successively modified to produce predictions based on combinations of linear and rel-
atively low order interaction effects. This model was shown to be highly accurate in reproducing
the average predictions of an ensemble of models, with the output of the model being directly
amenable to interpretation. Some subjective judgement was utilised to specify the interaction
effects of the non-linear component of the model. Future work could consider how best to auto-
mate the selection of these interaction effects, perhaps using post-hoc model interpretability meth-
ods. Another useful extension would be to apply an explainable model to produce uncertainty
metrics, thus leading to more insight into the role of each variable in producing predictive
intervals.

The investigations within this research should be applicable to other types of actuarial model-
ling, for example, non-life pricing models. As more complex neural networks, such as recurrent or
convolutional networks, begin to be applied for actuarial modelling tasks, future research should
also address how these models can best be modified for the safe use by actuaries.
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A Abbreviations and Notation

Tables 22 and 23 provide a summary of abbreviations used in the text.

Table 22. Summary of abbreviations and definitions used in the text

Abbreviation Definition

AIC Aikaike Information Criterion

ARIMA Autoregressive Integrated Moving Average

CANN Combined Actuarial Neural Network

CAXNN Combined Actuarial eXplainable Neural Network

ELU Exponential Linear Unit

GLM Generalized Linear Model

HMD Human Mortality Database

i.i.d independent and identically distributed

IBNR Incurred But Not Reported

IRLS Iteratively Reweighted Least Squares

LC Lee-Carter

MLE Maximum Likelihood Estimation

MSE Mean Squared Error

NAM Neural Additive Model

ReLu Recitifed Linear unit

tanh Hyperbolic tan function

USMD United States Human Mortality Database

XNN eXplainable Neural Network
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Table 23. Summary of notation and definitions used in the text

Notation Definition

X Predictor variables

X 0 Predictor variables after feature engineering

Xi;j Predictor variable j for observation i

y Target/unknown variable

ŷ Estimated target variable

N Number of observations

P Number of predictor variables

b Intercept/bias

B Regression coefficients/weights

T Transpose

� Activation function

Z Neurons in hidden layer of network

� Quantile of target variable distribution

�u Upper quantile

�l Lower quantile

y�u Estimated upper quantile of target variable

y�l Estimated lower quantile of target variable
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Year <- layer_input(shape = c(1), dtype = ’float32 ’, name = ’Year ’)

Age <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’Age ’)

Country <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’Country ’)

Sex <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’Sex ’)

SubNat <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’SubNat ’)

Age_embed = Age %>%

layer_embedding(input_dim = 100, output_dim = 5,input_length = 1, name = ’Age_embed ’) %>%

keras:: layer_flatten ()

Sex_embed = Sex %>%

layer_embedding(input_dim = 2, output_dim = 5,input_length = 1, name = ’Sex_embed ’) %>%

keras:: layer_flatten ()

Country_embed = Country %>%

layer_embedding(input_dim = country_dim , output_dim = 10, input_length = 1, name = ’Country_embed ’) %>%

keras:: layer_flatten ()

SubNat_embed = SubNat %>%

layer_embedding(input_dim = region_dim , output_dim = 10, input_length = 1, name = ’SubNat_embed ’) %>%

keras:: layer_flatten ()

feats <- list(Year ,Age_embed ,Sex_embed ,Country_embed ,SubNat_embed) %>%

layer_concatenate () %>%

layer_batch_normalization () %>%

layer_dropout(rate = 0.04)

middle=feats%>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05)

main_output =

layer_concatenate(list(feats , middle )) %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 1, activation = ’sigmoid ’, name = ’main_output ’)

model <- keras_model(inputs = c(Year ,Age ,Country ,Sex ,SubNat),

outputs = c(main_output ))

Listing 5: Keras code to fit a neural network to the national and sub-national mortality data.
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pinball_loss = function(y_true , y_pred ){

tau =0.025

err = y_true - y_pred

k_mean(k_maximum(tau * err , (tau - 1) * err), axis=-1)

}

Listing 6: Keras code for the pinball loss function to estimate the 0.95 quantile.

deep_ensemble_loss <- function(sigma) {

loss_fun = function(y, y_hat) {

0.5* k_log(sigma + k_epsilon ()) + 0.5* k_square(y - y_hat) / (sigma + k_epsilon ())

}

return(loss_fun)

}

bias_loss = function(y, y_hat) {

dat_sd = k_var(y, axis = 1)

pred_sd = k_mean(y_hat , axis =1)

return(loss_mean_squared_error(dat_sd , pred_sd ))

}

Listing 7: Keras code for the Deep Ensemble method.
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### Modify last layer of model to apply Deep Ensembles

last = layer_concatenate(list(feats , middle )) %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05)

main_output = last %>%

layer_dense(units = 1, activation = ’sigmoid ’, name = ’main_output ’)

var_output = last %>%

layer_dense(units = 1, activation = ’softplus ’, name = ’var_output ’)

model <- keras_model(

inputs = c(Year ,Age ,Country ,Sex ,SubNat),

outputs = c(main_output , var_output ))

model %>% compile(

optimizer = adam ,

loss = list(deep_ensemble_loss(var_output), bias_loss),

experimental_run_tf_function=FALSE )

### Modify last layer of model to apply Pinball Loss

last = layer_concatenate(list(feats , middle )) %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05)

main_output = last %>%

layer_dense(units = 1, activation = ’sigmoid ’, name = ’main_output ’)

lower_output = last %>%

layer_dense(units = 1, activation = ’sigmoid ’, name = ’lower_output ’)

upper_output = last %>%

layer_dense(units = 1, activation = ’sigmoid ’, name = ’upper_output ’)

model <- keras_model(

inputs = c(Year ,Age ,Country ,Sex ,SubNat),

outputs = c(main_output , lower_output ,upper_output ))

pinball_loss_down = function(y_true , y_pred ){

tau =0.025

err = y_true - y_pred

k_mean(k_maximum(tau * err , (tau - 1) * err), axis=-1)

}

pinball_loss_up = function(y_true , y_pred ){

tau =0.975

err = y_true - y_pred

k_mean(k_maximum(tau * err , (tau - 1) * err), axis=-1)

}

model %>% compile(

optimizer = adam ,

loss = list("mse",pinball_loss_down ,pinball_loss_up),

experimental_run_tf_function=FALSE)

Listing 8: Keras code to modify the mortality forecasting model to estimate uncertainty.
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middle=feats%>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05)

last = layer_concatenate(list(feats , middle )) %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05)

main_output = last %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 1, activation = ’sigmoid ’, name = ’main_output ’)

lower_output = last %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 1, activation = ’sigmoid ’, name = ’lower_output ’)

upper_output = last %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 1, activation = ’sigmoid ’, name = ’upper_output ’)

model <- keras_model(

inputs = c(Year ,Age ,Country ,Sex ,SubNat),

outputs = c(main_output , lower_output ,upper_output ))

Listing 9: Keras code to fit a neural network to the national and sub-national mortality data that estimates uncertainty
using the pinball loss and \branches”.
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############### Build embedding layers

Year <- layer_input(shape = c(1), dtype = ’float32 ’, name = ’Year ’)

Age <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’Age ’)

Country <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’Country ’)

Sex <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’Sex ’)

SubNat <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’SubNat ’)

Age_embed = Age %>%

layer_embedding(input_dim = 100, output_dim = 5,input_length = 1, name = ’Age_embed ’) %>%

keras:: layer_flatten ()

Sex_embed = Sex %>%

layer_embedding(input_dim = 2, output_dim = 5,input_length = 1, name = ’Sex_embed ’) %>%

keras:: layer_flatten ()

Country_embed = Country %>%

layer_embedding(input_dim = country_dim , output_dim = 10, input_length = 1, name = ’Country_embed ’) %>%

keras:: layer_flatten ()

SubNat_embed = SubNat %>%

layer_embedding(input_dim = region_dim , output_dim = 10, input_length = 1, name = ’SubNat_embed ’) %>%

keras:: layer_flatten ()

Year_net = Year %>%

layer_dense(units = 32, activation = "tanh") %>%

layer_dense(units = 32, activation = "tanh") %>%

layer_dense(units = 5, activation = "tanh")

feats <- list(Year_net ,Age_embed ,Sex_embed ,Country_embed , SubNat_embed) %>%

layer_concatenate () %>%

layer_batch_normalization ()

middle=feats%>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05)

middle = list(feats , middle )%>%

layer_concatenate () %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05)

# skip connection

main_output = layer_concatenate(list(feats , middle )) %>%

layer_dense(units = 1, activation = ’sigmoid ’, name = ’main_output ’)

model <- keras_model(

inputs = c(Year ,Age ,Country ,Sex ,SubNat),

outputs = c(main_output ))

Listing 10: Keras code to fit a CANN model to the national and sub-national mortality data.
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Year <- layer_input(shape = c(1), dtype = ’float32 ’, name = ’Year ’)

Age <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’Age ’)

Country <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’Country ’)

Sex <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’Sex ’)

SubNat <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’SubNat ’)

Age_embed = Age %>%

layer_embedding(input_dim = 100, output_dim = 5,input_length = 1, name = ’Age_embed ’) %>%

keras:: layer_flatten ()

Sex_embed = Sex %>%

layer_embedding(input_dim = 2, output_dim = 5,input_length = 1, name = ’Sex_embed ’) %>%

keras:: layer_flatten ()

Country_embed = Country %>%

layer_embedding(input_dim = country_dim , output_dim = 10, input_length = 1, name = ’Country_embed ’) %>%

keras:: layer_flatten ()

SubNat_embed = SubNat %>%

layer_embedding(input_dim = region_dim , output_dim = 10, input_length = 1, name = ’SubNat_embed ’) %>%

keras:: layer_flatten ()

feats <- list(Year ,Age_embed ,Sex_embed ,Country_embed ,SubNat_embed) %>% layer_concatenate () %>% layer_batch_normalization () %>% layer_dropout(rate = 0.04)

middle=feats%>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05)

last = layer_concatenate(list(feats , middle )) %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05)

main_output = last %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 1, activation = ’sigmoid ’, name = ’main_output ’)

lower_output = last %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 1, activation = ’sigmoid ’, name = ’lower_output ’)

upper_output = last %>%

layer_dense(units = 128, activation = ’tanh ’) %>%

layer_batch_normalization () %>%

layer_dropout (0.05) %>%

layer_dense(units = 1, activation = ’sigmoid ’, name = ’upper_output ’)

model <- keras_model(

inputs = c(Year ,Age ,Country ,Sex ,SubNat),

outputs = c(main_output , lower_output ,upper_output ))

Listing 11: Keras code to fit the linear component of a CAXNN model to the average predictions of the CANN networks.
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#### linear

Age_embed_linear = Age %>%

layer_embedding(input_dim = 100, output_dim = 5,input_length = 1,

name = ’Age_embed_linear ’,

weights = model_weights$layers [[8]] %>% get_weights (),

trainable = F) %>%

keras:: layer_flatten ()

Sex_embed_linear = Sex %>%

layer_embedding(input_dim = 2, output_dim = 5,input_length = 1,

name = ’Sex_embed_linear ’,

weights = model_weights$layers [[9]] %>% get_weights (),

trainable = F) %>%

keras:: layer_flatten ()

Country_embed_linear = Country %>%

layer_embedding(input_dim = country_dim , output_dim = 10, input_length = 1,

name = ’Country_embed_linear ’,

weights = model_weights$layers [[10]] %>% get_weights (),

trainable = F) %>%

keras:: layer_flatten ()

SubNat_embed_linear = SubNat %>%

layer_embedding(input_dim = region_dim , output_dim = 10, input_length = 1,

name = ’SubNat_embed_linear ’,

weights = model_weights$layers [[11]] %>% get_weights (),

trainable = F) %>%

keras:: layer_flatten ()

Year_net_linear = Year %>%

layer_dense(units = 32, activation = "tanh",

weights = model_weights$layers [[2]] %>% get_weights (), trainable = F) %>%

layer_dense(units = 32, activation = "tanh",

weights = model_weights$layers [[7]] %>% get_weights (), trainable = F) %>%

layer_dense(units = 5, activation = "tanh",

weights = model_weights$layers [[12]] %>% get_weights (), trainable = F)

Listing 12: Keras code to fit the full CAXNN model to the average predictions of the CANN networks: linear weights trans-
ferred from previously trained model.
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skip_net = function(dat){

### concatenate input layers

concat_dat = dat %>% layer_concatenate ()

### cross layer

cross = concat_dat %>%

layer_dense (25, activation = "exponential ")

### first dense layer

temp = list(concat_dat , cross) %>%

layer_concatenate () %>%

layer_dense(units =128, activation = "tanh") %>%

layer_batch_normalization ()

### skip connection and second dense layer

out = list(temp , concat_dat , cross) %>% layer_concatenate () %>%

layer_dense(units =128, activation = "tanh") %>%

layer_batch_normalization () %>%

layer_dense(units = 1, activation = "tanh")

### return output

return(list(concat = concat_dat , temp = temp , out = out))

}

Listing 13: Keras code to define the network used in the XNN.
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#### non -linear embeddings

Age_embed = Age %>%

layer_embedding(input_dim = 100, output_dim = 5,input_length = 1,

name = ’Age_embed ’) %>%

keras:: layer_flatten ()

Sex_embed = Sex %>%

layer_embedding(input_dim = 2, output_dim = 5,input_length = 1,

name = ’Sex_embed ’) %>%

keras:: layer_flatten ()

Country_embed = Country %>%

layer_embedding(input_dim = country_dim , output_dim = 10, input_length = 1,

name = ’Country_embed ’) %>%

keras:: layer_flatten ()

SubNat_embed = SubNat %>%

layer_embedding(input_dim = region_dim , output_dim = 10, input_length = 1,

name = ’SubNat_embed ’) %>%

keras:: layer_flatten ()

Year_net = Year %>%

layer_dense(units = 32, activation = "tanh") %>%

layer_dense(units = 32, activation = "tanh") %>%

layer_dense(units = 5, activation = "tanh")

feats <- list(Year_net_linear , Age_embed_linear ,Sex_embed_linear ,

Country_embed_linear ,SubNat_embed_linear) %>%

layer_concatenate () %>%

layer_batch_normalization ()

)(ten_piks%>%)debme_egA,debme_xeS(tsil=xeS_egA

)(ten_piks%>%)debme_egA,ten_raeY(tsil=xeS_raeY

Year_Country = list(Year_net ,Country_embed) %>% skip_net ()

Year_Region = list(Year_net ,SubNat_embed) %>% skip_net ()

Region_Country = list(SubNat_embed ,Country_embed) %>% skip_net ()

Sex_Country = list(Sex_embed , SubNat_embed ,Country_embed) %>% skip_net ()

)(ten_piks%>%)debme_egA,ten_raeY(tsil=egA_raeY

Year_Age_Sex = list(Year_net ,Age_embed ,Sex_embed) %>% skip_net ()

Year_Age_Country = list(Year_net ,Age_embed ,Country_embed) %>% skip_net ()

Year_Age_Country_Region = list(Year_net ,Age_embed ,Country_embed , SubNat_embed) %>% skip_net ()

Year_Country_Region = list(Year_net ,Country_embed ,SubNat_embed) %>% skip_net ()

Age_Country_Region = list(Age_embed ,Country_embed ,SubNat_embed) %>% skip_net ()

middle = list(Age_Sex$out , Year_Sex$out , Year_Country$out ,Region_Country$out ,

Sex_Country$out ,Year_Age$out , Year_Age_Sex$out ,Year_Age_Country$out ,

Year_Age_Country_Region$out , Year_Country_Region$out , Year_Region$out ,

Age_Country_Region$out) %>%

layer_concatenate () %>%

layer_batch_normalization ()

# skip connection

main_output = layer_concatenate(list(feats , middle )) %>%

layer_dense(units = 1, activation = ’sigmoid ’, name = ’main_output ’)

model <- keras_model(

inputs = c(Year ,Age ,Country ,Sex ,SubNat),

outputs = c(main_output ))

Listing 14: Keras code to fit the full CAXNN model to the average predictions of the CANN networks.
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