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Abstract

We consider the number of spanning trees in circulant graphs of βn vertices with generators depending
linearly on n. The matrix tree theorem gives a closed formula of βn factors, while we derive a formula
of β − 1 factors. We also derive a formula for the number of spanning trees in discrete tori. Finally, we
compare the spanning tree entropy of circulant graphs with fixed and nonfixed generators.
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1. Introduction

A spanning tree of a connected graph G is a connected subgraph of G without cycles
with the same vertex set as G. The number of spanning trees in a graph G, τ(G), is
an important graph invariant. It can be computed from the well-known matrix tree
theorem due to Kirchhoff (see, for example, [1]). Let G be a graph on n vertices
labelled by v1, . . . , vn. The adjacency matrix A = (Ai j) of G is the n × n matrix in which
Ai j = 1 if vi and v j are adjacent and Ai j = 0 otherwise. The degree matrix D = (Di j)
is the n × n diagonal matrix in which the diagonal element Dii is the degree of the
corresponding vertex vi. We only consider 2d-regular graphs, so that D = 2dIn, where
In is the n × n identity matrix. The Laplacian matrix ∆G of a 2d-regular graph G on n
vertices is defined by

∆G = 2dIn − A.

The matrix tree theorem states that

τ(G) =
1
n

det∗∆G (1.1)

where det∗∆G denotes the product of the nonzero eigenvalues of the Laplacian matrix
of G. In this paper, we prove closed formulas for τ(G) for two types of graphs in terms
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(a) (b)

Figure 1. Examples of circulant graphs.

of eigenvalues of the Laplacian on a subgraph of G. The formulas are particularly
interesting when the number of vertices is larger than the other parameters of the graph.

Let 1 ≤ γ1 ≤ · · · ≤ γd ≤ bn/2c be positive integers. A circulant graph Cγ1,...,γd
n is the

2d-regular graph with n vertices labelled 0, 1, . . . , n − 1 such that each vertex v ∈ Z/nZ
is connected to v ± γi mod n for all i ∈ {1, . . . , d}. The first type of graph to be studied
is the circulant graph with the first generator equal to 1 and the d − 1 others linearly
depending on the number of vertices, that is, C1,γ1n,...,γd−1n

βn , where 1 ≤ γ1 ≤ · · · ≤ γd−1 ≤

b β/2c and β are integers. Two examples are illustrated in Figure 1. It is known that the
number of spanning trees in circulant graphs with n vertices satisfies a linear recurrence
relation with constant coefficients in n (see [4]). For β ∈ {2,3,4,6,12}, closed formulas
have been obtained by Zhang et al. [8], using techniques inspired by Boesch and
Prodinger [2] and properties of Chebyshev polynomials. As noted in [8], this method
does not work for other values of β. In Section 2, we derive a theorem (Theorem 2.1)
in a simple way which gives a closed formula for all integer values of β. This gives an
answer to an open question in [3] and [8] and proves the conjecture stated in [6]. The
second type of graph studied is the d-dimensional discrete torus defined by the quotient
Zd/ΛZd with nearest neighbours connected, where Λ is a diagonal integer matrix. In
the final section, we deduce the tree entropy of a sequence of circulant graphs with
nonfixed generators and compare it to the one with fixed generators.

2. Spanning trees in circulant graphs with nonfixed generators

Let V(G) be the set of vertices of a graph G and f : V(G)→ R a function. To derive
the eigenvalues of the Laplacian it is more convenient to use the variant definition as
an operator acting on the space of functions, that is,

∆G f (x) =
∑
y∼x

( f (x) − f (y))

where the sum is over all vertices adjacent to x. Since the circulant graph C1,γ1n,...,γd−1n
βn

is the Cayley graph of the group Z/βnZ, the eigenvectors of the Laplacian are given
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by the characters

χk(x) = e2πikx/βn, k = 0, 1, . . . , βn − 1,

where x ∈ Z/βnZ. As in [1, Proposition 3.5], the eigenvalues are given by

λk = 2d − 2 cos(2πk/βn) − 2
d−1∑
m=1

cos(2πkγm/β), k = 0, 1, . . . , βn − 1. (2.1)

Theorem 2.1. Let 1 ≤ γ1 ≤ · · · ≤ γd−1 ≤ b β/2c be positive integers and µk = 2(d − 1) −
2
∑d−1

m=1 cos(2πkγm/β), k = 1, . . . , β − 1, be the nonzero eigenvalues of the Laplacian
on the circulant graph Cγ1,...,γd−1

β . For all n ∈ N>1, the number of spanning trees in the

circulant graph C1,γ1n,...,γd−1n
βn is given by

τ(C1,γ1n,...,γd−1n
βn )

=
n
β

β−1∏
k=1

((
µk

2
+ 1 +

√
µ2

k/4 + µk

)n
+

(
µk

2
+ 1 −

√
µ2

k/4 + µk

)n
− 2 cos

(2πk
β

))
.

Remark 2.2. It would be interesting to see if this pattern appears in other types of
graphs, that is, with the number of spanning trees expressed in terms of the eigenvalues
of the Laplacian on a subgraph of the original graph.

Proof. Applying the matrix tree theorem (1.1) to the graph C1,γ1n,...,γd−1n
βn , with

eigenvalues given by (2.1), gives

τ(C1,γ1n,...,γd−1n
βn ) =

1
βn

βn−1∏
k=1

(
2d − 2 cos(2πk/βn) − 2

d−1∑
m=1

cos(2πkγm/β)
)
.

Since there are n spanning trees in the cycle C1
n,

n = τ(C1
n) =

1
n

n−1∏
k=1

(2 − 2 cos(2πk/n)). (2.2)

The product over k = 1, . . . , βn − 1 can be split as a product over multiples of β, that
is, k = βk′ with k′ = 1, . . . , n − 1, and over nonmultiples of β, that is, k = k′ + lβ with
k′ = 1, . . . , β − 1 and l = 0, 1, . . . , n − 1. The product over the multiples of β reduces
to (2.2), so it follows that

τ(C1,γ1n,...,γd−1n
βn ) =

n
β

βn−1∏
k=1
β-k

(
2d − 2 cos(2πk/βn) − 2

d−1∑
m=1

cos(2πkγm/β)
)

=
n
β

β−1∏
k=1

n−1∏
l=0

(
2d − 2 cos(2π(k + lβ)/βn) − 2

d−1∑
m=1

cos(2π(k + lβ)γm/β)
)
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=
n
β

β−1∏
k=1

n−1∏
l=0

(
2 cosh

(
argcosh

(
d −

d−1∑
m=1

cos(2πkγm/β)
))

− 2 cos(2πk/βn + 2πl/n)
)
. (2.3)

We now evaluate the product over l by the following calculation:

n−1∏
l=0

(2 cosh θ − 2 cos((ω + 2πl)/n)) = e−nθ
n−1∏
l=0

(e2θ − 2 cos((ω + 2πl)/n)eθ + 1)

= e−nθ
n−1∏
l=0

(eθ − ei(ω+2πl)/n)(eθ − e−i(ω+2πl)/n). (2.4)

The complex numbers ei(ω+2πl)/n and e−i(ω+2πl)/n, for l = 0, 1, . . . , n − 1, are the 2n roots
of the following polynomial in eθ:

e2nθ − 2enθ cosω + 1 = 0.

Therefore the product (2.4) is equal to

e−nθ(e2nθ − 2enθ cosω + 1) = 2 cosh(nθ) − 2 cosω.

Using this relation in (2.3) with θ = argcosh(d −
∑d−1

m=1 cos(2πkγm/β)) and ω = 2πk/β,
we have

τ(C1,γ1n,...,γd−1n
βn ) =

n
β

β−1∏
k=1

(
2 cosh

(
n argcosh

(
d −

d−1∑
m=1

cos(2πkγm/β)
))
− 2 cos(2πk/β)

)
.

(2.5)
The theorem then follows by expressing the formula in terms of the eigenvalues on
Cγ1,...,γd−1
β and using the relation argcosh x = log(x +

√
x2 − 1) for x > 1. Indeed, writing

µk = 2(d − 1) − 2
∑d−1

m=1 cos(2πkγm/β),

τ(C1,γ1n,...,γd−1n
βn ) =

n
β

β−1∏
k=1

(2 cosh(n argcosh(1 + µk/2)) − 2 cos(2πk/β))

=
n
β

β−1∏
k=1

(
2 cosh

(
n log(1 + µk/2 +

√
µ2

k/4 + µk)
)
− 2 cos(2πk/β)

)

=
n
β

β−1∏
k=1

((
µk/2 + 1 +

√
µ2

k/4 + µk

)n

+

(
µk/2 + 1 −

√
µ2

k/4 + µk

)n
− 2 cos(2πk/β)

)
. �

Remark 2.3. The techniques used here to derive Theorem 2.1 might not be
generalisable to circulant graphs with two or more fixed generators. As an example, to
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compute the number of spanning trees in the graph C1,2,γn
βn we would need to find a

closed formula for the product
n−1∏
l=0

(2 cosh θ − 2 cos((ω + 2πl)/n) − 2 cos(2(ω + 2πl)/n))

where θ = argcosh(3 − cos(2πkγ/β)) and ω = 2πk/β. We were not able to do that.

Example 2.4. The formula of Theorem 2.1 reproves Theorems 4, 5, 6, 8 and corrects a
typographical error in Theorem 7 in [8]. For example, [8, Theorem 5] states that

τ(C1,n
3n ) =

n
3

[
(
√

7/4 +
√

3/4)2n + (
√

7/4 −
√

3/4)2n + 1
]2

which is a particular case of the formula with d = 2, γ1 = 1, β = 3, on noting that
µk = 2 − 2 cos(2πk/3), k = 1, 2, are the nonzero eigenvalues on the cycle C1

3. As
another example, [8, Theorem 8] states that

τ(C1,2n,3n
6n ) =

n
6

[
(
√

11/4 +
√

7/4)2n + (
√

11/4 −
√

7/4)2n − 1
]2[

(
√

2 + 1)n + (
√

2 − 1)n
]2

×
[
(
√

7/4 +
√

3/4)2n + (
√

7/4 −
√

3/4)2n + 1
]2

which is a particular case of the formula with d = 3, γ1 = 2, γ2 = 3, β = 6 and
µk = 4 − 2 cos(2πk/3) − 2 cos(πk), k = 1, . . . , 5, being the nonzero eigenvalues on the
circulant graph C2,3

6 .

Remark 2.5. We emphasise that the circulant graph C1,γ1n,...,γd−1n
βn consists of n copies

of Cγ1,...,γd−1
β which are embedded in the cycle C1

βn. This explains the eigenvalues on
Cγ1,...,γd−1
β appearing in the formula.

3. Spanning trees in discrete tori

In this section we establish a formula for the number of spanning trees in the discrete
torus Zd/ΛZd with nearest neighbours connected, where Λ = diag(α1, . . . , αd−1, n)
is a diagonal matrix with positive integer coefficients. Let k = (k1, . . . , kd), x =

(x1, . . . , xd) ∈ Zd/ΛZd and kΛ = Λ−1k. The eigenvectors of the Laplacian are given
by

gkΛ
(x) = e2πi〈kΛ,x〉

where 〈·, ·〉 denotes the usual inner product. Denote by ei, i = 1, . . . , d, the canonical
basis of Zd. Since each vertex x ∈ Zd/ΛZd is connected to its nearest neighbours, that
is, x is adjacent to x − ei and x + ei, for all i = 1, . . . , d, we obtain the eigenvalues on
Zd/ΛZd by applying the Laplacian on the eigenvectors gkΛ

(x):

λk = 2d − 2
d−1∑
i=1

cos(2πki/αi) − 2 cos(2πkd/n) where k ∈ Zd/ΛZd.

The formula given in the following theorem is interesting when n is larger than det(A).
It improves the asymptotic result given in [6, Example 4.4.3].
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Theorem 3.1. Let A = diag(α1, . . . , αd−1) and, for ` = 1, . . . , det(A) − 1, let

{µ`}` =

{
2(d − 1) − 2

d−1∑
i=1

cos
(2πki

αi

)
: ki = 0, 1, . . . , αi − 1, (k1, . . . , kd−1) , 0

}
be the nonzero eigenvalues of the Laplacian on Zd−1/AZd−1. For all n ∈ N>1, the
number of spanning trees in the discrete torus Zd/ΛZd is given by

τ(Zd/ΛZd) =
n

det(A)

det(A)−1∏
`=1

((
µ`
2

+ 1 +

√
µ2
`
/4 + µ`

)n
+

(
µ`
2

+ 1 −
√
µ2
`
/4 + µ`

)n
− 2

)
.

Proof. From the matrix tree theorem,

τ(Zd/ΛZd)

=
1

det(A)n

d−1∏
i=1

αi−1∏
ki=0

(k1,...,kd),0

n−1∏
kd=0

(
2d − 2

d−1∑
i=1

cos(2πki/αi) − 2 cos(2πkd/n)
)

=
n

det(A)

d−1∏
i=1

αi−1∏
ki=0

(k1,...,kd−1),0

n−1∏
kd=0

(
2 cosh

(
argcosh

(
d −

d−1∑
i=1

cos(2πki/αi)
))
− 2 cos(2πkd/n)

)

=
n

det(A)

d−1∏
i=1

αi−1∏
ki=0

(k1,...,kd−1),0

(
2 cosh

(
n argcosh

(
d −

d−1∑
i=1

cos(2πki/αi)
))
− 2

)

where the second equality comes from (2.2) and the third equality comes from the
same device as in the proof of Theorem 2.1, namely

n−1∏
k=0

(2 cosh θ − 2 cos(2πk/n)) = 2 cosh(nθ) − 2.

The theorem then follows by expressing the formula in terms of the eigenvalues on
Zd−1/AZd−1 and from the relation argcosh x = log(x +

√
x2 − 1), for x > 1. �

4. Spanning tree entropy of circulant graphs

For a sequence of regular graphs Gn with vertex set V(Gn), one can consider the
number of spanning trees as a function of n. Assuming that the limit

z = lim
n→∞

log τ(Gn)
|V(Gn)|

exists, it is sometimes called the associated tree entropy [7]. From Theorem 2.1, the
tree entropy of the circulant graph C1,γ1n,...,γd−1n

βn with nonfixed generators as n→∞,
denoted by zNF( β; γ1, . . . , γd−1), is given in the following corollary.
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Corollary 4.1. Let 1 ≤ γ1 ≤ · · · ≤ γd−1 ≤ b β/2c and β be positive integers. The tree
entropy of the circulant graph C1,γ1n,...,γd−1n

βn as n→∞ is given by

zNF( β; γ1, . . . , γd−1) =
1
β

β−1∑
k=1

argcosh
(
d −

d−1∑
m=1

cos(2πkγm/β)
)

=

∫ ∞

0

(
e−t −

1
β

β−1∑
k=0

e−µkte−2tI0(2t)
) dt

t

where µk = 2(d − 1) − 2
∑d−1

m=1 cos(2πkγm/β), k = 0, 1, . . . , β − 1, are the eigenvalues of
the Laplacian on the circulant graph Cγ1,...,γd−1

β and I0 is the modified I-Bessel function
of order zero.

Proof. Let fk := argcosh(1 + µk/2) > 0, k = 1, . . . , β − 1. From (2.5), the number of

spanning trees in C1,γ1n,...,γd−1n
βn is given by

τ(C1,γ1n,...,γd−1n
βn ) =

n
β

β−1∏
k=1

(en fk + e−n fk − 2 cos(2πk/β))

=
n
β

en
∑β−1

k=1 fk
β−1∏
k=1

(1 + e−2n fk − 2 cos(2πk/β)e−n fk ).

But

lim
n→∞

log(1 + e−2n fk − 2 cos(2πk/β)e−n fk ) = 0 for k = 1, . . . , β − 1,

and so
β−1∏
k=1

(1 + e−2n fk − 2 cos(2πk/β)e−n fk ) = eo(1) as n→∞.

Therefore, the asymptotic number of spanning trees in C1,γ1n,...,γd−1n
βn is given by

τ(C1,γ1n,...,γd−1n
βn ) =

n
β

en
∑β−1

k=1 argcosh(d−
∑d−1

m=1 cos(2πkγm/β))+o(1) as n→∞.

This proves the first equality. The second equality comes from [6, Proposition 2.4]
which expresses the argcosh in terms of an integral of the modified I-Bessel function:
for all x > 2, ∫ ∞

0
(e−t − e−xtI0(2t))

dt
t

= argcosh(x/2). �

As mentioned in Section 2, the circulant graph C1,γ1n,...,γd−1n
βn consists of n copies

of Cγ1,...,γd−1
β which are embedded in the cycle C1

βn. This structure is reflected by
the appearance of the term θCγ1 ,...,γd−1

β
(t)e−2tI0(2t) in the asymptotic formula, where

θCγ1 ,...,γd−1
β

(t) =
∑β−1

k=0 e−µkt is the theta function on Cγ1,...,γd−1
β and e−2tI0(2t) is the typical

term appearing in the asymptotics of the number of spanning trees in the cycle. Indeed,
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the tree entropy on the cycle is (see [6, Section 3.2])

zcycle =

∫ ∞

0
(e−t − e−2tI0(2t))

dt
t

= 0.

Consider the sequence of circulant graphs C1,n,γ1n,...,γd−1n
βn when n → ∞ with

zNF( β; 1, γ1, . . . , γd−1) denoting the corresponding tree entropy. In the following
proposition we show that it is greater than the entropy of circulant graphs with fixed
generators.

Proposition 4.2. For all positive integers γ1, . . . , γd, there exists an integer B > 2 such
that for all β > B,

zNF( β; 1, γ1, . . . , γd−1) > zF(1, γ1, . . . , γd)

where zF(1, γ1, . . . , γd) is the tree entropy of the circulant graph C1,γ1,...,γd
n with fixed

generators.

Proof. By letting β→ ∞ in the corollary, the sum over the Laplacian eigenvalues
converges to a Riemann integral, so that

lim
β→∞

zNF( β; 1, γ1, . . . , γd−1) =

∫ ∞

0
(e−t − e−2(d+1)tI0(2t)I1,γ1,...,γd−1

0 (2t, . . . , 2t))
dt
t

where I1,γ1,...,γd−1
0 is the d-dimensional modified I-Bessel function of order zero defined

by (see [6, Section 2.4])

I1,γ1,...,γd−1
0 (2t, . . . , 2t) =

1
2π

∫ π

−π

e2t(cos w+
∑d−1

m=1 cos(γmw)) dw.

It can be expressed in terms of a series of modified I-Bessel functions:

I1,γ1,...,γd−1
0 (2t, . . . , 2t) =

∑
(k1,...,kd−1)∈Zd−1

I∑d−1
i=1 γiki

(2t)
d−1∏
i=1

Iki (2t).

On the other hand, from [6, Theorem 1.1], the tree entropy of the circulant graph
C1,γ1,...,γd

n with fixed generators as n→∞ is given by

zF(1, γ1, . . . , γd) =

∫ ∞

0
(e−t − e−2(d+1)tI1,γ1,...,γd

0 (2t, . . . , 2t))
dt
t

where, for all t > 0,

I1,γ1,...,γd
0 (2t, . . . , 2t) =

∑
(k1,...,kd)∈Zd

I∑d
i=1 γiki

(2t)
d∏

i=1

Iki (2t)

> I0(2t)
∑

(k1,...,kd−1)∈Zd−1

I∑d−1
i=1 γiki

(2t)
d−1∏
i=1

Iki (2t)

= I0(2t)I1,γ1,...,γd−1
0 (2t, . . . , 2t).

Therefore limβ→∞ zNF( β; 1, γ1, . . . , γd−1) > zF(1, γ1, . . . , γd). �
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Related to this comparison between circulant graphs with fixed and nonfixed
generators, one might wonder, for example in the simplest case of C1,n

βn , how taking
limits first in β and then in n would compare to taking limits first in n and then in β.
From [5, Lemma 5] and by letting β→∞ in [5, Theorem 4], one easily sees that for
all positive integers γ1, . . . , γd−1,

lim
γd→∞

lim
n→∞

log τ(Cγ1,...,γd
n )

n
= lim

β→∞
lim
n→∞

log τ(C1,γ1n,...,γd−1n
βn )

βn
,

which by definition is

lim
γd→∞

zF(γ1, . . . , γd) = lim
β→∞

zNF( β; γ1, . . . , γd−1).

In the particular case of d = 2 it shows that the limits over n and β commute, that is,

lim
β→∞

lim
n→∞

log τ(C1,n
βn )

βn
= lim

n→∞
lim
β→∞

log τ(C1,n
βn )

βn
,

which does not seem obvious a priori.
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