Bull. Austral. Math. Soc. Vol. 69 (2004) [383-394]

ON THE n-PARAMETER ABSTRACT CAUCHY PROBLEM

M. JANFADA AND A. NIKNAM

Let $H_i(i = 1, 2, ..., n)$, be closed operators in a Banach space X. The generalised initial value problem

$$\begin{cases} \frac{\partial}{\partial t_i} u(t_1, t_2, \dots, t_i, \dots, t_n) = H_i u(t_1, \dots, t_n), \quad t_i \in (0, T_i] \quad i = 1, 2, \dots, n\\ u(0) = x, \quad x \in \bigcap_{i=1}^n D(H_i), \end{cases}$$

of the abstract Cauchy problem is studied. We show that the uniqueness of solution $u: [0,T_1] \times [0,T_2] \times \cdots \times [0,T_n] \to X$ of this *n*-abstract Cauchy problem is closely related to C_0 -*n*-parameter semigroups of bounded linear operators on X. Also as another application of C_0 -*n*-parameter semigroups, we prove that many *n*-parameter initial value problems cannot have a unique solution for some initial values.

1. INTRODUCTION

Suppose X is a Banach space and A is a linear operator from $D(A) \subseteq X$ into X. Given $x \in X$, the abstract Cauchy problem for A with the initial value x, consists of finding a solution u(t) to the initial value problem

(1)
$$\begin{cases} \frac{du(t)}{dt} = Au(t) & t \in (0, T] \\ u(0) = x \end{cases}$$

where by a solution we mean an X-valued function $u : [0, T] \to X$ which is continuous for $t \ge 0$, continuously differentiable for t > 0, $u(t) \in D(A)$ for $t \in (0, T]$ and (1) is satisfied.

A one-parameter semigroup of operators is a homomorphism $T : (\mathbb{R}_+, +) \to B(X)$ for which T(0) = I, where $\mathbb{R}_+ = [0, \infty)$ and B(X) is the Banach space of all bounded linear operators on X. The one-parameter semigroup $\{T(t)\}_{t\geq 0}$ is called strongly continuous (or C_0 -continuous) if $\lim_{t\to 0} T(t)x = x$, for each $x \in X$ and is called uniformly continuous if $\lim_{t\to 0} T(t) = I$ in B(X). The linear mapping A defined by

$$A(x) = \lim_{t\to 0} \frac{T(t)x - x}{t},$$

Received 22nd May, 2003

This work has been done under supervision of Professor J. Phillips when the first author has been in University of Victoria for a six month visit.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 \$A2.00+0.00.

[2]

Π

where $D(A) = \left\{ x : \lim_{t \to 0} (T(t)x - x)/t \text{ exist} \right\}$, is called the infinitesimal generator of (T, \mathbb{R}_+, X) .

The following Theorem which is due to Hille [5], shows the close relation of abstract Cauchy problem with semigroup theory (see also [4]).

THEOREM 1.1. Let A be a closed linear operator in Banach space X, then the following are equivalent:

- (a) For each $x \in D(A)$ there exists a unique solution for (1).
- (b) The part $A_1 = A_{|X_1|}$ of A in $X_1 := (D(A), || \cdot ||_A)$ is the infinitesimal generator of a C_0 -one-parameter semigroup of operators on the Banach space X_1 , where $|| \cdot ||_A$ is the graph norm on D(A).

PROOF: [2, II.6.6].

The previous Theorem has many applications in inhomogenous initial value problems and evaluation systems. One can see some more applications of abstract Cauchy problem in [3, 7].

Let $\mathbb{R}_{+}^{n} = \{(t_{1}, t_{2}, \ldots, t_{n}) : t_{i} \geq 0, i = 1, 2, \ldots, n\}$. By an *n*-parameter semigroup of operators we mean a homomorphism $W : (\mathbb{R}_{+}^{n}, +) \rightarrow B(X)$ for which W(0) = I and denote it by $(W, \mathbb{R}_{+}^{n}, X)$. Suppose H_{i} is the infinitesimal generator of the one-parameter semigroup $\{W(te_{i})\}_{t\geq 0}$, where $\{e_{i}\}_{i=1}^{n}$ is the standard basis of \mathbb{R}^{n} , we shall think of $(H_{1}, H_{2}, \ldots, H_{n})$ as the infinitesimal generator of W. As in the oneparameter case, $(W, \mathbb{R}_{+}^{n}, X)$ is called strongly continuous (or C_{0} -continuous) if for each $x \in X$, $\lim_{t \to 0} W(t)x = x$, and is called uniformly continuous if $\lim_{t \to 0} W(t) = I$, where $t \to 0$ in \mathbb{R}_{+}^{n} . It is not hard to see that $(W, \mathbb{R}_{+}^{n}, X)$ is a C_{0} -continuous (respectively uniformly continuous) if and only if for each $i = 1, 2, \ldots, n$, $\{W(te_{i})\}_{i\geq 0}$ is strongly (respectively uniformly continuous. The following useful proposition which states some basic Properties of *n*-parameter semigroups can be found in [1] as is described in [6].

PROPOSITION 1.2. Suppose (W, \mathbb{R}^n_+, X) is a C_0 -n-parameter semigroup then

(a) If $x \in D(H_i)$, so does W(t)x, for each $t \in \mathbb{R}^n_+$ and

$$H_iW(t)x = W(t)H_ix \qquad (i = 1, 2, \ldots, n).$$

- (b) $\bigcap_{i=1}^{n} D(H_i) \text{ is dense in } X, \text{ and } X_1 = \left(\bigcap_{i=1}^{n} D(H_i), \|\cdot\|_1\right) \text{ is a Banach space,}$ where for $x \in \bigcap_{i=1}^{n} D(H_i), \|x\|_1 = \|x\| + \sum_{i=1}^{n} \|H_i(x)\|.$
- (c) For each $1 \leq i, j \leq n$, $D(H_i) \cap D(H_iH_j) \subseteq D(H_jH_i)$, and for $x \in D(H_i) \cap D(H_iH_j)$,

$$H_i H_j(x) = H_j H_i(x).$$

In the rest of this note we shall state an extension of one-parameter abstract Cauchy problem and establish its relation with C_0 -n-parameter semigroups of operators. As

another application of C_0 -n-parameter semigroups we shall show that some n-parameter initial valued problems cannot have a unique solution. The abstract Cauchy problem also admits another natural generalisation which is discussed in [5, 6, 8].

2. The main results

Suppose as before X is a Banach space, H_i are closed linear operators from $D(H_i) \subseteq X$ into X and $T_i > 0$, (i = 1, 2, ..., n). Then, a continuous X-valued function $u : [0, T_1] \times \cdots \times [0, T_n] \rightarrow X$ with continuous partial derivatives which satisfy the following *n*-parameter abstract Cauchy problem (*n*-abstract Cauchy problem)

(2)
$$\begin{cases} \frac{\partial}{\partial t_i} u(t_1, t_2, \dots, t_i, \dots, t_n) = H_i u(t_1, \dots, t_n), & i = 1, 2, \dots, n \quad t_i \in (0, T_i] \\ u(0) = x, \quad x \in \bigcap_{i=1}^n D(H_i), \end{cases}$$

is called a solution of the initial value problem (2).

For convenience in the rest of this note we denote by I_T the positive *n*-cell $[0, T_1] \times [0, T_2] \times \cdots \times [0, T_n]$ where $T = (T_1, T_2, \ldots, T_n) \in \mathbb{R}^n_+$ and $T_i > 0$. As mentioned in the previous section, we shall illustrate that (2) is closely related to C_0 -*n*-parameter semigroups of operators. In the following theorem we prove that if I_T is arbitrary and (H_1, H_2, \ldots, H_n) is the infinitesimal generator of a C_0 -*n*-parameter semigroup (W, \mathbb{R}^n_+, X) , then (2) has the unique solution $u(t_1, t_2, \ldots, t_n) = W(t_1, t_2, \ldots, t_n)x$, for each $x \in \bigcap_{i=1}^n D(H_i)$, where $(t_1, t_2, \ldots, t_n) \in I_T$.

THEOREM 2.1. Suppose I_T is a positive n-cell corresponding to $T \in \mathbb{R}^n_+$, and (H_1, H_2, \ldots, H_n) is the infinitesimal generator of the C_0 -n-parameter semigroup (W, \mathbb{R}^n_+, X) of operators, then for each $x \in \bigcap_{i=1}^n D(H_i)$ the n-abastract Cauchy problem (2) has a unique solution.

PROOF: Let I_T be arbitrary, $\{e_i\}_{i=1}^n$ be the standard basis of \mathbb{R}^n and H_i be the infinitesimal generator of the C_0 -n-parameter semigroup $\{W(t_i)\}_{i \ge o}$. For $x \in \bigcap_{i=1}^n D(H_i)$, define $u: I_T \to X$ by u(t) = W(t)x. One can easily see that u(t) is a solution of n-abstract Cauchy problem (2) for the initial value $x \in \bigcap_{i=1}^n D(H_i)$. For proving the uniqueness of solution it is enough to show that (2) has no proper (that is, nonzero) solution for the initial value x = 0. Theorem 1.1 shows that for each $i = 1, 2, \ldots, n$, the initial value problem

(3)
$$\begin{cases} \frac{du^i(s)}{ds} = H_i u^i(s) & s \in (0, T_i] \\ u^i(0) = x & x \in D(H_i) \end{cases}$$

has a unique solution for each $x \in D(H_i)$. By definition of solution we know that for $t \in I_T$, u(t) which is a solution of (2) for x = 0, is in $\bigcap_{i=1}^n D(H_i)$, so for the initial value $x = u(t_1, t_2, \ldots, t_{i-1}, 0, t_{i+1}, \ldots, t_n) \in D(H_i)$, $u^i(s) = u(t_1, \ldots, t_{i-1}, s, t_{i+1}, \ldots, t_n)$ and $v^i(s) = W(se_i)u(t_1, \ldots, t_{i-1}, 0, t_{i+1}, \ldots, t_n)$ is a solution of (3) for x. Uniqueness of solution of (3) implies that

(4)

$$W(se_i)u(t_1,\ldots,t_{i-1},0,t_{i+1},\ldots,t_n) = v^i(s)$$

$$= u^i(s) = u(t_1,\ldots,t_{i-1},s,t_{i+1},\ldots,t_n),$$

for each i = 1, 2, ..., n, $0 \leq s \leq T_i$ and $0 \leq t_j \leq T_j$, $i \neq j = 1, 2, ..., n$. Using (4) for $t = \sum_{i=1}^n t_i e_i \in I_T$, shows that

$$u(t) = u(t_1, t_2, \dots, t_n) = W(t_1e_1)u(0, t_2, \dots, t_n)$$
 (*i* = 1, *s* = *t*₁)
= W(t_1e_1)(W(t_2e_2)u(0, 0, t_3, \dots, t_n) (*i* = 2, *s* = *t*₂)
(Win *n*-parameter) = W($\sum_{i=1}^{n} t_i e_i$) $u(0, 0, \dots, 0) = W(t)(0) = 0$

Hence u(t) = 0 and (2) cannot have a proper solution for x = 0, or equivalently (2) has a unique solution for each $x \in \bigcap_{i=1}^{n} D(H_i)$.

Now let H_i 's (i = 1, 2, ..., n) from $D(H_i) \subseteq X$ into X be closed operators. Similarly to Proposition 1.2 (b) one can see $X_1 = \left(\bigcap_{i=1}^n D(H_i), \|\cdot\|_1\right)$, where $\|x\|_1 = \|x\| + \sum_{i=1}^n \|H_i(x)\|$, $\left(x \in \bigcap_{i=1}^n D(H_i)\right)$ is a Banach space. In the next theorem we are going to show that for positive *n*-cells I_T and $I_{T'}$, where $I_T \subseteq I_{T'}$, if (2) has a unique solution for each $x \in X_1$ then there exist a C_0 -*n*-parameter semigroup (W, \mathbb{R}^n_+, X_1) with the infinitesimal generator (K_1, K_2, \ldots, K_n) for which W(t)x = u(t; x), the unique solution of (2) for $x \in X_1$ and $t \in I_T$, also for $x \in D(K_i)$, $K_i(x) = H_i(x)$.

THEOREM 2.2. Suppose H_i 's (i = 1, 2, ..., n) are closed linear operators and for positive n-cells I_T and $I_{T'}$, where $I_T \subseteq I_{T'}$, the n-abstract Cauchy problem (2) has a unique solution for each $x \in X_1$, then there exist a C_0 -n-parameter semigroup (W, \mathbb{R}^n_+, X_1) of linear bounded operators with the infinitesimal generator $(K_1, K_2, ..., K_n)$ such that for $t \in I_T$ and $x \in X_1$, W(t)x = u(t; x) where u(t; x) is the unique solution of (2) for the initial value x, and for $x \in D(K_i)$, $K_i(x) = H_i(x)$.

PROOF: Let u(t; x) be the unique solution of (2) for $x \in X_1$. For $t \in I_T$, we define the operator $W_1(t): X_1 \to X_1$ by $W_1(t)x = u(t; x)$. Trivially $W_1(t)$ is well-defined and a linear operator, since the solution is unique. We are going to show that $W_1(t)$ is bounded. Define the mapping $\Phi: X_1 \to C^1(I_T, X_1)$ by $\Phi(x)(t) = W_1(t)(x)$, where $C^1(I_T, X_1)$ is the Banach space of all continuous X_1 -valued functions on I_T with continuous partial derivative, equiped with the supremum norm. Φ is linear, we prove it is closed. Suppose $x_m \to x$ in X_1 and $\Phi(x_m) \to f$ in $C^1(I_T, X_1)$, integrating of (2) implies that for each $i = 1, 2, ..., n, m \in \mathbb{N}$ and $t = (t_1, ..., t_n) \in I_T$,

(5)
$$W_1(t_1,\ldots,t_n)x_m = W_1(t_1,t_2,\ldots,t_{i-1},0,t_{i+1},\ldots,t_n)x_m + \int_0^{t_i} H_i W_1(t_1,t_2,\ldots,t_{i-1},s,t_{i+1},\ldots,t_n)x_m \, ds.$$

Let $m \to \infty$, so $\sup_{t \in I_T} \|\Phi(x_m)(t) - f(t)\|_1 \to 0$, this, (5), together with the closedness of H_i , imply that for each i = 1, 2, ..., n,

(6)
$$f(t_1,\ldots,t_n) = f(t_1,t_2,\ldots,t_{i-1},0,t_{i+1},\ldots,t_n)$$

+ $\int_0^{t_i} H_i f(t_1,t_2,\ldots,t_{i-1},s,t_{i+1},\ldots,t_n) ds.$

Thus (6) and the fact that $f \in C^1(I_T, X_1)$ show that

$$\begin{cases} \frac{\partial}{\partial t_i} f(t_1, t_2, \dots, t_i, \dots, t_n) = H_i f(t_1, \dots, t_n), \quad i = 1, 2, \dots, n \quad t_i \in (0, T_i] \\ f(0) = \lim_{m \to \infty} \Phi(x_m)(0) = \lim_{m \to \infty} W_1(0)(x_m) = x. \end{cases}$$

Hence f is a solution of (2) for the initial value x, the uniqueness of solution gives

$$f(t) = W_1(t)x = \Phi(x)t, \qquad t \in I_T,$$

it means that Φ is closed operator from the Banach space X_1 into the Banach space $C^1(I_T, X_1)$ and the closed graph theorem tell us

$$\sup_{\|x\|_{1}\leq 1} \|W_{1}(\cdot)x\|_{\infty} = \sup_{\|x\|_{1}\leq 1} \left(\sup_{t\in I_{T}} \|W_{1}(t)x\|_{1} \right) = M < \infty.$$

Thus for each $t \in I_T$, $W_1(t)$ is a bounded operator on X_1 . Now let $T'' = (T''_1, T''_2, \ldots, T''_n)$, where $T''_i = min\{T'_i, T_i - T'_i\}$. We are going to show that for each $t, t' \in I_{T''}, W_1(t+t') = W_1(t)W_1(t')$. First we notice that for $t \in I_{T'}$ and $t' \in I_{T''}, t_i \in T'_i$ and $t'_i \leq T_i - T'_i$ so $t_i + t'_i \leq T_i$ and $t + t' \in I_T$. Let t' be fixed, for $x \in X_1$ define $v(\cdot) : I_{T'} \to X_1$ by $v(t) = W_1(t+t')x$. Trivially v(t) and $u(t) = W_1(t)W_1(t')x$ are solutions of (2) in $I_{T'}$ for the initial value $W_1(t')x$, by the uniqueness of solution of (2) in $I_{T'}$ we have

$$W_1(t+t')x = v(t) = u(t) = W_1(t)(W_1(t')x)$$

Now we can extend W_1 to an *n*-parameter semigroup of operators. Let $s = (s_1, s_2, \ldots, s_n) \in \mathbb{R}^n_+$, and choose $m_i \in \mathbb{N}$ and $r_i \in [0, T''_i]$ so that $s_i = m_i T''_i + r_i$, $i = 1, 2, \ldots, n$. Suppose

$$W(s)x = W_1(r) \Big[\prod_{i=1}^n \big(W_1(T_i''e_i) \big)^{m_i} \Big](x)$$

where $r = (r_1, r_2, \ldots, r_n) \in I_{T''}$. By the previous parts of proof the operators in the right hand side of the last equality commute and are bounded linear operators on X_1 . One can easily see that (W, \mathbb{R}^n_+, X_1) is an *n*-parameter semigroup of operators and the fact that $\lim_{t\to 0} W(t)x = x$ (by continuity of u(t; x)) show that W is strongly continuous. Also for $s \in I_T$, $W_1(s)x = W(s)x$, since

$$\frac{\partial}{\partial s_i} W(s)x = \frac{\partial}{\partial r_i} W_1(r) \Big[\prod_{i=1}^n \big(W_1(T_i''e_i) \big)^{m_i} \Big](x)$$
$$= H_i W_1(r) \Big[\prod_{i=1}^n \big(W_1(T_i''e_i) \big)^{m_i} \Big](x) = H_i W(s)x$$

and the equality holds from the uniqueness of solution in I_T . If (K_1, K_2, \ldots, K_n) is the generator of W and $x \in D(K_i) \subseteq X_1 = \bigcap_{i=1}^n D(H_i)$, then

$$\|\cdot\|_{1} - \lim_{t\to 0} \frac{W(te_i)x - x}{t} = K_i(x)$$

which implies $\lim_{t\to 0} (W(te_i)x - x)/t = K_i(x)$, but $x \in D(H_i)$ and so

$$\lim_{t \to 0} \frac{W(te_i)x - x}{t} = \frac{\partial}{\partial t_i} W(0, 0, \dots, 0)x$$
$$= H_i W(0)x = H_i(x)$$

Thus $K_i(x) = H_i(x)$ and this complete the proof of theorem.

In the previous Theorem we could replace the assumption of existence of a unique solution for (2) in I_T and $I_{T'}$, by the assumption that (2) has a unique solution in I_T and whole of \mathbb{R}^n_+ , which seems stronger than our hypothesis. As another application of C_0 -n-parameter semigroups, we shall show that for a closed linear operator $A: D(A) \subseteq X \to X$, the n-parameter initial value problem

(7)
$$\begin{cases} \sum_{i=1}^{n} \frac{\partial}{\partial t_{i}} u(t_{1}, t_{2}, \dots, t_{n}) = A u(t_{1}, t_{2}, \dots, t_{n}), \quad t = (t_{1}, t_{2}, \dots, t_{n}) \in I_{T} \\ u(0) = x, \quad x \in D(A) \end{cases}$$

does not have a unique solution in both I_T and $I_{T'}$ for each $x \in D(A)$, for which $I_{T'} \subseteq I_T$.

The initial value problem (7) can have a solution, for example if (H_1, H_2, \ldots, H_n) is generator of a C_0 -n-parameter semigroup (W, \mathbb{R}^n_+, X) and $A = H_1 + H_2 + \cdots + H_n$, then obviously u(t) = W(t)x is a solution of (7) in any positive n-cell I_T , for the initial value $x \in \bigcap_{i=1}^n D(H_i) \subseteq D(A)$.

Before proving our claim we need the following lemmas.

LEMMA 2.3. Suppose $\{T(t)\}_{t\geq 0}$ is a C_0 -one parameter semigroup of operators with the infinitesimal generator A, and $B \in B(X)$, then A + B is the infinitesimal generator of a C_0 -semigroup S(t) on X satisfying

$$S(t)x = T(t)x + \int_0^t T(t-s)BS(s)x\,ds\,,\quad x\in X.$$

П

Also the next lemma which provide a necessary and sufficient condition for the composition of C_0 -one parameter semigroups to be a C_0 -n-parameter semigroup, has a principal role in the next theorem.

Recall that for linear operator H in Banach space X, $\rho(H)$ denotes the resorvent set of H and for $\lambda \in \rho(H)$, $R(\lambda; H)$ is used for $(\lambda I - H)^{-1}$.

LEMMA 2.4. Suppose $\{U_i^i(s)\}_{s\geq 0}$ is a C_0 -one-parameter semigroup of operators on Banach space X with the infinitesimal generator H_i , (i = 1, 2, ..., n), then $W(t_1, t_2, ..., t_n) = U^1(t_1)U^2(t_2)...U^n(t_n)$ is a C_0 -n-parameter semigroup of operators if and only if there is an $\omega > 0$ such that for each i = 1, 2, ..., n, $[\omega, \infty) \subseteq \rho(H_i)$ and for each integers $0 \leq i, j \leq n$ and $\lambda, \lambda' \geq \omega$, we have

$$R(\lambda'; H_j)R(\lambda; H_i) = R(\lambda; H_i)R(\lambda'; H_j).$$

PROOF: First suppose W is a C_0 -n-parameter semigroup of operators. Since H_i is the infinitesimal generator of $\{u^i(t)\}_{t\geq 0}$, by the Hille-Yosida Theorem ([7, I.5.3]), there is an $\omega_i > 0$ such that for each $\lambda \geq \omega_i$, $R(\lambda; H_i)$ exist and are bounded operators. Let $\omega = \max\{\omega_i : i = 1, 2, ..., n\}$. If $\lambda \geq \omega$, from [7, I.5.4]

$$R(\lambda; H_i)(x) = \int_0^\infty e^{-\lambda s} U^i(s)(x) \, ds.$$

Also we know that for each integers $0 \leq i, j \leq n$,

$$U^{i}(s)U^{j}(t) = W(se_{i})W(te_{j}) = W(te_{j})W(se_{i}) = U^{j}(t)U^{i}(s),$$

so

$$R(\lambda; H_i)(U^j(t)x) = \int_0^\infty e^{-\lambda t} U^i(s) U^j(t) x \, ds$$

=
$$\int_0^\infty e^{-\lambda t} U^j(t) U^i(s) x \, ds = U^j(t) \int_0^\infty e^{-\lambda t} U^i(s) x \, ds$$

=
$$u^j(t) R(\lambda; H_i) x.$$

Now let $\lambda' \ge \omega$, we know $R(\lambda; H_i)$ is bounded so

$$R(\lambda; H_i)R(\lambda'; H_j)x = R(\lambda; H_i) \int_0^\infty e^{-\lambda' t} U^j(t)x \, dt$$
$$= \int_0^\infty e^{-\lambda' t} U^j(t)R(\lambda; H_i)x \, dt$$
$$= R(\lambda'; H_j)R(\lambda; H_i)x$$

and this prove the necessary part of lemma.

For the converse suppose there is an $\omega > 0$ such that for each $\lambda, \lambda' > 0$, $R(\lambda; H_i)$ and $R(\lambda'; H_j)$ exist and commute. So we have $H^i_{\lambda} H^j_{\lambda'} = H^j_{\lambda'} H^i_{\lambda}$ where $H^i_{\lambda} = \lambda^2 R(\lambda; H_i) - \lambda I$

П

[8]

and $H_{\lambda'}^{j} = \lambda'^{2} R(\lambda; H_{j}) - \lambda' I$ are the Yosida approximation of H_{i} and H_{j} respectively. Applying [7, I.3.5] we have $U^{i}(s)x = \lim_{\lambda \to \infty} e^{sH_{\lambda}^{i}}x$ and $U^{j}(t)x = \lim_{\lambda' \to \infty} e^{tH_{\lambda'}^{j}}x$, thus

$$U^{i}(s)U^{j}(t)x = \lim_{\lambda \to \infty} e^{sH_{\lambda}^{i}}U^{j}(t)x$$

$$= \lim_{\lambda \to \infty} e^{sH_{\lambda}^{i}}(\lim_{\lambda' \to \infty} e^{tH_{\lambda'}^{j}}x)$$

$$= \lim_{\lambda \to \infty} \lim_{\lambda' \to \infty} e^{sH_{\lambda}^{i}}e^{tH_{\lambda'}^{j}}x \quad (e^{sH_{\lambda}^{i}} \text{ is continuous})$$

$$= \lim_{\lambda \to \infty} \lim_{\lambda' \to \infty} e^{tH_{\lambda'}^{j}}e^{sH_{\lambda}^{i}}x \quad (\text{since } H_{\lambda}^{i}H_{\lambda'}^{j} = H_{\lambda'}^{j}H_{\lambda}^{i})$$

$$= \lim_{\lambda \to \infty} U^{j}(t)e^{sH_{\lambda}^{i}}x$$

$$= U^{j}(t)U^{i}(s)x \qquad (U^{j}(t) \text{ is continuous}).$$

Hence $W(t_1, t_2, ..., t_n) = U^1(t_1)U^2(t_2)...U^n(t_n)$ is a C_0 -n-parameter semigroup of operators.

Now we are ready for this theorem.

THEOREM 2.5. Suppose A is a closed operator from $D(A) \subseteq X$ into X and I_T and $I_{T'}$, $I_{T'} \subseteq I_T$, is given. Then the initial value problem (7) cannot have a unique solution for each $x \in D(A)$ in both I_T and $I_{T'}$.

PROOF: Suppose to the contrary (7) has a unique solution for each $x \in D(A)$ in both I_T and $I_{T'}$. As in Theorem 2.2 we are going to show that if u(t; x) is the unique solution of (7) for $x \in D(A)$ and $t \in I_T$, then $W_1(t)x = u(t; x)$ can be extended to a C_0 -n-parameter semigroup of operators, and using previous lemma we shall get a contradiction.

Obviously uniqueness of solution shows that $W_1(t)x = u(t; x)$ is a well-defined linear operator on Banach space $X_1 = (D(A), \|\cdot\|_A)$ where $\|\cdot\|_A$ is the graph norm on X_1 . Before proving the boundedness of $W_1(t)$ we notice that $Y = (C^1(I_T, X_1), \|\cdot\|')$, where $\|f\|' = \|f\|_{\infty} + \sum_{i=1}^n \left\|\frac{\partial}{\partial t_i}f\right\|_{\infty}$ is a Banach space. Next we show that the mapping $\Phi: X_1$ $\rightarrow Y$ defined by $\Phi(x)(t) = W_1(t)$ is closed, for; suppose $x_m \rightarrow x$ in X_1 and $\Phi(x_m) \rightarrow f$ in Y. Integrating of (7) for initial value x_m , we have

$$W_1(t_1, t_2, \dots, t_n) x_m = W_1(0, t_2, \dots, t_n) x_m - \sum_{i=2}^n \int_0^{t_1} \frac{\partial}{\partial t_i} W_1(s, t_2, \dots, t_n) x_m \, ds + \int_0^{t_1} A W_1(s, t_2, \dots, t_n) x_m \, ds.$$

As $m \to \infty$ by our choosing of the norm and the closeness of A we get

$$\left\|\frac{\partial}{\partial t_i}W_1(\cdot)x_m-\frac{\partial}{\partial t_i}f(\cdot)\right\|_{\infty}\to 0, \quad as \ m\to\infty, \quad i=1,2,\ldots,n$$

and

$$\begin{split} \left\| W_{1}(\cdot)x_{m} - f(\cdot) \right\|_{\infty} &= \sup_{t \in I_{T}} \left(\left\| W_{1}(t)x_{m} - f(t) \right\|_{A} \right) \\ &= \sup_{t \in I_{T}} \left(\left\| W_{1}(t)x_{m} - f(t) \right\| + \left\| AW_{1}(t)x_{m} - Af(t) \right\| \right) \to 0 \end{split}$$

as $m \to \infty$. Hence

$$f(t_1, t_2, \dots, t_n) = f(0, t_2, \dots, t_n) - \sum_{i=2}^n \int_0^{t_1} \frac{\partial}{\partial t_i} f(s, t_2, \dots, t_n) \, ds + \int_0^{t_1} Af(s, t_2, \dots, t_n) \, ds.$$

It gives

$$\begin{cases} \sum_{i=1}^{n} \frac{\partial}{\partial t_i} f(t_1, t_2, \dots, t_n) = Au(t_1, t_2, \dots, t_n) \\ f(0) = \lim_{m \to \infty} W_1(0) x_m = x. \end{cases}$$

So f is a solution of (7) and by the uniqueness of solution we conclude $f(t) = W_1(t)x$, equivalently f is closed and by closed graph theorem Φ is bounded, thus $\sup_{t \in I_T} ||W_1(t)|| < \infty$.

As in Theorem 2.2 $W_1(t)$ can be extended to a C_0 -*n*-parameter semigroup (W, \mathbb{R}^n_+, X_1) . Let (H_1, H_2, \ldots, H_n) be the infinitesimal generator of W, for $x \in \bigcap_{i=1}^n D(H_i) \subseteq D(A)$ we have

$$\frac{\partial}{\partial t_i}W(t)x = H_iW(t)x.$$

Thus

$$\sum_{i=1}^{n} \frac{\partial}{\partial t_i} W(t) x = \left(\sum_{i=1}^{n} H_i \right) W(t) x = A W(t) x.$$

From the continuity of $\frac{\partial}{\partial t_i} W(t)x$ and strong continuity of W(t)x, the fact that $\sum_{i=1}^n H_i W(t)x$ = $W(t) \sum_{i=1}^n H_i x$ (Proposition 1.2), and the closedness of A as $t \to 0$, the last equality yields

(8)
$$\sum_{i=1}^{n} H_i(x) = A(x) , \text{ for each } x \in \bigcap_{i=1}^{n} D(H_i)$$

Applying Lemma 2.4 shows that there is $\omega > 0$ such that for each λ , $\lambda' \ge \omega$, we have

$$R(\lambda'; H_j)R(\lambda; H_i) = R(\lambda; H_i)R(\lambda'; H_j).$$

[10]

392

Now let $H'_1 = H_1 + I$ and $H'_2 = H_2 - I$, if $\omega' = \omega + 1$ and λ , $\lambda' \ge \omega'$, we have $\lambda + 1$, $\lambda' - 1 \ge \omega$ and

$$R(\lambda'; H_1')R(\lambda; H_2') = R(\lambda' - 1; H_1)R(\lambda + 1; H_2)$$

= $R(\lambda + 1; H_2)R(\lambda' - 1; H_1)$
= $R(\lambda; H_2')R(\lambda'; H_1').$

Similarly $R(\lambda; H'_i)R(\lambda'; H_j) = R(\lambda'; H_j)R(\lambda; H'_i)$, for $\lambda, \lambda' \ge \omega'$, i = 1, 2, and $j = 3, 4, \ldots, n$. By Lemma 2.3 H'_1 and H'_2 are the infinitesimal generators of two C_0 -one-parameter semigroups of operators. With the above equalities and Lemma 2.4, this shows that $(H'_1, H'_2, H_3, \ldots, H_n)$ is the infinitesimal generator of a C_0 -n-parameter semigroup, say $(W', \mathbb{R}^n_+, X_1)$. So by Lemma 2.3, for each $x \in X_1$,

$$W'(te_1)x = W(te_1)x + \int_0^t W((t-\mu)e_1)W'(\mu e_1)xd\mu,$$

and

$$W'(te_2)x = W(te_2)x - \int_0^t W((t-\nu)e_2)W'(\nu e_2)xd\nu$$

Also $W'(te_i) = W(te_i)$, for i > 2. We conclude that for $x \in \bigcap_{i=1}^n D(H_i)$,

$$\frac{\partial}{\partial t_i} W'(t_1, t_2, \dots, t_n) x = \begin{cases} H'_i W'(t_1, t_2, \dots, t_n) & i = 1, 2\\ H_i W'(t_1, t_2, \dots, t_n) & i > 2. \end{cases}$$

Hence by (8)

$$\begin{cases} \frac{\partial}{\partial t_i} W'(t) = (H_1' + H_2' + H_3 + \dots + H_n) W'(t) = \sum_{i=1}^n H_i W'(t) = A W'(t) x \\ W'(0) = x. \end{cases}$$

But the solution of (7) is unique, and so for i = 1, ..., n and $0 \leq t \leq T_i$,

$$W'(te_i) = W(te_i).$$

This implies that

$$W(te_1)x = W'(te_1)x = W(te_1)x + \int_0^t W((t-\mu)e_1)W'(\mu e_1)xd\mu$$

= $W(te_1)x + \int_0^t W(te_1)xd\mu$
= $W(te_1)x + tW(te_1)x.$

So $tW(te_1)x = 0$ or $W(te_1)x = 0$. This is a contradiction, because $0 = \lim_{t \to 0} W(te_1)x = x \neq 0$. Thus (7) cannot have a unique solution for each $x \in D(A)$.

Abstract Cauchy problem

REMARK 2.6. Our technique for proving Theorem 2.2 and a part of Theorem 2.5 is based on Hille's technique for one-parameter case [5]. C_0 -n-parameter semigroups are solutions of many initial value problems contain partial derivative and as in previous Theorem, C_0 -n-parameter semigroups can be used for showing that these initial value problems cannot have a unique solution. As another example for second order initial value problems, consider the two-parameter initial value problem

$$\begin{cases} \frac{\partial}{\partial s} \frac{\partial}{\partial t} u(s,t) = Au(s,t) \\ (s,t) \in [0,S] \times [0,T] \\ u(0,0) = x, \quad x \in D(A) \end{cases}$$

where A is a closed operator. If this problem has a unique solution for each $x \in D(A)$ in both $I_{(S,T)}$ and $I_{(S',T')}$ for which $I_{(S',T')} \subseteq I_{(S,T)}$, then $W_1(s,t) = u(s,t;x)$ can be extended to a C_0 -two-parameter semigroup on Banach space $X_1 = (D(A), || \cdot ||_A)$, with the infinitesimal generator (H, K). We know $\overline{D(HK) \cap D(KH)}^{|| \cdot ||_A} = D(A)$, (it can be proved completely similarly to the proof of Proposition 1.2 (b)), so $D(HK) \cap D(KH) \neq 0$. Now for $x \in D(HK) \cap D(KH)$, by Proposition 1.2 HK(x) = KH(x) and one can see that this is equal to A(x). Also it can be checked that (H/2, 2K) is the generator of $W'(s,t) = W(s/2, 2t) \neq W(s,t)$. So for $x \in D(HK) \cap D(KH)$,

$$\begin{cases} \frac{\partial}{\partial s} \frac{\partial}{\partial t} W'(s,t) = \left(\frac{1}{2}H\right)(2K)W'(s,t)x = HKW(s/2,t)x = AW'(s,t)\\ W'(0,0)x = x \end{cases}$$

and this is a contradiction with the uniqueness of solution.

References

- P.L. Butzer and H. Berens, Semi-group of operators and approximation (Springer-Verlag, New York, 1967).
- K.J. Engle and R. Nagle, One-parameter semigroups for linear evoluation equations (Springer-Verlag, New York, 2000).
- [3] A. Friedman, Partial differential equations (Holt, Rinhart and Winston, New York, 1969).
- [4] E. Hille, 'On the differentiability of semigroup of operators', Acta Sci. Math. (Szeged) 12 (1950), 19-24.
- [5] E. Hille, 'One generalization du problem de Cauchy', Ann. Inst. Fourier 4 (1952).
- [6] E. Hille and R.S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. 31 (American Mathematical Society, Providence, R.I., 1957).
- [7] A. Pazy, 'Semigroups of linear operators and applications to partial differential equations', Applied Mathematical Sciences 44 (Springer-Verlag, New York).
- [8] R.S. Phillips, 'A note on abstract Cauchy problem', Proc. Nat. Acad. Sci. (1954), 244-248.

Department of Mathematics Ferdowsi University of Mashhad P.O. Box 1159-91775 Masjad Iran e-mail: Niknam@math.um.ac.ir Janfada@math.um.ac.ir