
3

Classical Bits

3.1 Binary Questions

A binary question is a yes or no question. A typical binary question Q will be

of the form Q ≡ Is it true that?, asked of some proposition P such as

P ≡ There is a signal in this detector.

Assuming compatibility of question and proposition, the answer QP will be

either one or zero, interpreted as yes and no, respectively.

The answer set associated with any binary question has two elements, denoted

0 (zero) and 1 (one). Usually the element 0 will be contextually interpreted as

no and element 1 will be interpreted as yes, but we could choose to interpret the

answer set elements the other way around.

We will base most of this book on the mathematical structures associated

with binary questions. Classical binary questions are discussed in this chapter

and their quantum analogues discussed in Chapter 4.

Example 3.1 A trial in an English or American court of law can be thought

of as a process that answers the binary question Q ≡ Is it true that? of the

proposition P ≡ This person committed that crime.

The negation ¬Q of a binary question Q ≡ Is it true that? is defined to be

¬Q ≡ Is it false that?.

3.2 Question Cardinality

The English and American legal systems are based on the ancient Roman prin-

ciple of in dubio pro reo (when in doubt, judge in favor of the accused). This

presumption of innocence gives a binary, or dichotomic, flavor to the proceedings:

assuming a verdict is reached, then verdicts in such courts can only be either

guilty, corresponding to yes, or else innocent, corresponding to no.
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In Scotland, however, there is a third possible verdict, known as not proven.

This and other examples leads us to define the question cardinality #Q of a

question Q as the number of elements in its answer set, before that question

is asked. According to this definition, a rhetorical question has cardinality 1, a

binary question has cardinality 2, and a Scottish law trial answers a question

with cardinality 3.

The cardinality of a question is contextual, in that it depends on the compat-

ibility of a given question and a given proposition or state.

3.3 Classical Binary Questions

Binary questions (yes/no questions) are the fundamental building blocks of the

quantized detector network (QDN) approach to physics discussed in this book.

The reason has to do with the way experiments are conducted. Although modern

experimentalists acquire vast amounts of data electronically and interpret them

in terms of sophisticated theories, what goes on at the most basic level in any

experiment is that a number (possibly vast) of binary questions are answered.

For instance, the question of whether a photon detector has clicked or not is a

binary question.

Another reason for choosing to work with binary questions is the principle that

any empirical question, no matter how complicated, can always be expressed in

terms of some number (possibly infinite) of binary questions. This will be referred

to as the bitification principle. We shall return to this topic in Chapter 5 as it

leads directly to the concepts of classical and quantum registers. These are the

central mathematical constructs in terms of which the ideas of this book are

expressed.

For the rest of this chapter we shall review some of the properties of single

binary questions in classical mechanics. In that context, they are referred to as

classical bits , terminology that comes from the theory and application of classical

computation. When quantum rules are factored in, binary questions become

quantum bits , or qubits . These are discussed in the next chapter. A fundamental

difference (but not the only significant difference) between classical bits and

qubits is that the former have cardinality 2, whereas the latter have infinite car-

dinality in a particular sense to do with the interpretation of quantum mechanics.

3.4 Classical Bits

We turn now to the mathematical representation of binary questions known as

bits. A classical bit , or bit for short, is a set with two elements denoted 0 and 1.

The word bit is short for binary digit . The first recorded use of the word in

this context has been dated to 1947 in a Bell Labs memo written by John W.

Tukey. It first appeared in public in 1948 in Claude E. Shannon’s landmark paper

on information theory (Shannon, 1948). Bits are used extensively in classical
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computation and information theory and are central to our implementation of

quantized detector networks.

Bits represent the most elementary, useful form of data variable, one with only

two possible, mutually exclusive values. But that is a mathematical statement,

insufficient for our purposes. In the sciences, including the theory of computing,

a bit is generally more than a mathematical set with two elements; bits generally

have some associated context that gives some physical meaning or interpretation

to each of the two possible values. For example, the two elements of a bit in two-

valued logic might be thought of as true and false. With context, mathematical

data becomes physical information.

3.5 Signal Bits

The sort of experiment we are mainly interested in this book typically involves

one or more single-click detectors, each detector having two possible outcome

states. These states are associated with a classical bit as follows. If a detector is

found in its ground state, or no-click state, then that state is represented by the

bit state 0, whereas if that detector is found in its signal state, or click state,

then that state is represented by the bit state 1.

Single-click detectors should not be thought of as simple. Typical detectors

such as Geiger counters involve cascade processes that are irreversible and com-

plex. What is significant is that, like avalanches on mountainsides, they are

triggered by the smallest of effects, and that is where their value lies.

A signal bit B ≡ {0,1;CB} is a set with two elements, denoted 0 and 1,

together with a context CB that gives each element contextual physical signifi-

cance relative to the observer involved. A signal bit state, or bit state for short,

is any one of the two elements, 0 or 1, of a signal bit.

Complexity rules the real world and experiments are vastly complex processes

involving many degrees of freedom. Signal bits are best thought of as equivalence

classes defined by a context with two clear alternatives. For example, in the

standard quantum mechanics (QM) description of the Stern–Gerlach (SG) exper-

iment, electrons with arbitrary momentum and position but with spin down are

identified with bit state 0 while electrons with arbitrary momentum and position

but with spin up are identified with bit state 1. Typically, these equivalence class

will not depend on the color of the observer’s shirt or other factors regarded by

the observer as inessential to the experiment. Such equivalence classes are defined

by the observer’s chosen criteria, which may appear subjective.

In the original SG experiment, the detecting screen was a photographic emul-

sion film, acting as a battery or register of signal detectors (Bernstein, 2010). At

the start of the experiment, the film was prepared by the observers by blowing

cigar smoke onto it. Then, after many silver atoms had passed through the main

magnet of the SG device and impinged onto the screen, the observers noticed that

there were two relatively crude but nevertheless separate spots where the bulk
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of the atoms had landed. It was the observers’ decision to interpret these spots

as of empirical significance. Stern and Gerlach did not know that their observed

spots were a marker of electron spin. In 1922, electron spin was unknown; Stern

and Gerlach were trying to validate Bohr’s Old Quantum Mechanics theory of

the atom. The electron spin interpretation came into focus a few years later.

Classical bits are sets, not vector spaces, because there is no obvious math-

ematical or physical meaning to the multiplication of a bit state by a real or

complex number, or to the addition of two bit states. This is no longer the case

when we generalize bits to their probabilistic counterparts, where they are known

as stochastic bits (or s-bits) and to their quantum counterparts, where they are

known as quantum bits (or qubits). Nevertheless, it is useful and convenient

to represent bits via two-dimensional complex vector spaces. This allows us to

represent bit states as vectors and bit operators as matrices, but it should be

kept in mind that classical bit states cannot be added in principle. An exception

is in Boolean algebra, where rules such as 1 + 1 = 0 have a contextual meaning.

3.6 Nodes

QDN analyzes experiments in the simplest form possible, which is in terms of

binary questions and answers. We will show in later chapters how any given

apparatus is represented in QDN as a collection of binary questions and answers

forming a stage network , a collection of nodes connected by links across which

quantum information is transmitted.

Nodes come in two forms, external and internal .

External Nodes

External nodes correspond to physically existing equipment and come in two

varieties: sources (preparation devices) and detectors. Observers input contextual

information into stage networks via sources and extract signal information via

detectors.

Internal Nodes

These occur in the information void , the region of space and time where no

information is extracted. Internal nodes can be thought of as virtual detectors,

as they usually correspond to places in a network where a real detector could

have been placed, if the observer had so chosen.

Example 3.2 In the double-slit experiment, the two slits are identified with

internal nodes, while the source of the incoming beam and the detecting screen

are identified with external nodes.

Nodes are not necessarily localized in space. An example involving highly

nonlocalized nodes would be an apparatus for the measurement of particle

momentum.
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While it will always be easy to identify external nodes in any stage diagram,

that will not always be the case for the internal nodes. The rule for assigning

internal nodes is that any such node represents a potential opportunity for

information extraction, if the observer so chooses. So for instance in the double-

slit experiment example considered above, not only could the observer place

detectors at any of the two slits, but the observer could conceivably fill the space

between source and screen with a vast number of internal nodes, if that was

needed. In the limit of extremely large numbers, the QDN description would begin

to look more like quantum field theory. The art in QDN is to find the simplest

possible description of an experiment in terms of a limited number of nodes.

3.7 Dual Bits

In anticipation of subsequent developments, we introduce here the notion of a

dual bit . For every bit B ≡ {0,1} we postulate the existence of another bit,

denoted B ≡ {0,1}, referred to as the dual bit, or simply the dual, of bit B. The

two elements of a dual bit will be referred to as dual bit states .

Bits and their duals are related as follows: 0 is the dual of 0 and 1 is the dual

of 1. In anticipation of subsequent developments, we define a function ij from

the Cartesian product B ×B into the set Z ≡ {0, 1} by the rule

ij ≡ δij , i, j = 0, 1, (3.1)

where i is an element of B, j is an element of B, and δij is the Kronecker delta.

This notation will be extended to classical registers , that is, collections of

bits. If Bk ≡ {0k,1k} is the kth bit in a register, then its dual Bk is given by

Bk ≡ {0k,1k}. Then rule (3.1) becomes ikjk ≡ δij .

If k 	= l, then ikjl is undefined. The interpretation of this is that an observer

cannot expect to extract any information from one detector by looking at any

another detector. Exceptions can occur, provided the right context is in place,

such as charge conservation.

3.8 The Interpretation of Bits and Their Duals

In the previous chapter we discussed the role of questions and answers in physics,

and in this chapter started to link this to the notion of a detector. We now tie

in these two ideas with bits and their duals as follows. The two bit states 0, 1 in

a bit do not individually “have” absolute truth values per se: such truth values

are only contextual, relative to the questions asked of the associated detector.

The two questions that could be asked of a detector are

0 ≡ Is this the ground state?,

1 ≡ Is this the signal state?.
(3.2)

It should be now clear why we have chosen our bit state notation in the given

form. In our notation, the question i asked of the bit state j is written in the
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form ij, and then the answer is given by δij . If δij = 0 (the number zero), then

that means that the answer is no, whereas if δij = 1 (the number one), then that

means that the answer is yes. We shall refer to each side of expressions such as

(3.1) as a classical answer .

3.9 Matrix Representation

We introduce here a convenient matrix representation of bits and their duals.

The rule is that bit states are represented by two-component column matrices as

follows:

0 =
R

[
1

0

]
, 1 =

R

[
0

1

]
, (3.3)

where =
R

denotes “is represented by.” For the dual bits, we have the row matrix

representation

0 =
R

[
1 0

]
, 1 =

R

[
0 1

]
. (3.4)

There is a small technical point concerning this representation that we clarify

now. The classical answer ij is a number, either zero or one. However, according

to the rules of matrix multiplication, the action of a two-dimensional row matrix

on a two-dimensional column matrix is a 1×1 matrix, not a number. For instance,

01 =
R

[
1 0

] [0
1

]
=
[
0
]
	= 0. (3.5)

We resolve this problem by interpreting the left-hand side of (3.5) as the compo-

nent of the 1× 1 matrix on the right-hand side. Henceforth we shall ignore this

technical point.

3.10 Classical Bit Operators

The process of asking a binary question i of a bit state j gives the answer ij,

which is a number (either zero or one). The ordering here is significant: the

binary question i is to the left and the bit state j is to the right. It turns out

to be useful to define objects known as transition bit operators , which have the

ordering interchanged, forming an object known as a dyadic. There are four such

operators, defined as T ij ≡ ij for i, j = 0, 1. The application rules of these

operators are as follows:

Action on Bit States

The action of T ij on bit state k is from the left and is given by

T ijk ≡ (ij)k ≡ i(jk) = δjki. (3.6)
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Action on Dual Bit States

The action of bit operator T ij on dual bit p is from the right and is given by

pT ij ≡ p(ij) ≡ (pi)j = δpij. (3.7)

The transition operators have the following matrix representations:

T 00 =
R

[
1 0

0 0

]
, T 01 =

R

[
0 1

0 0

]
, T 10 =

R

[
0 0

1 0

]
, T 11 =

R

[
0 0

0 1

]
. (3.8)

These four matrices form a basis for the four-dimensional vector space of complex

2× 2 matrices, so we can use them to construct other useful matrices. There are

four bit operators, labelled I, F , D, and U here, that are occasionally useful.

They are defined and represented as follows.

The Bit Identity Operator I

This operator is defined as I ≡ T 00+T 11. It leaves bit elements unchanged, i.e.,

I0 = 0, I1 = 1. (3.9)

The Bit Flip Operator F

This operator is defined as F ≡ T 01 + T 01. It switches bit elements, i.e.,

F0 = 1, F1 = 0. (3.10)

In quantum computation, F is known as the NOT gate and denoted X (Nielsen

and Chuang, 2000).

The Bit Down Operator D

This operator is defined as D ≡ T 00+T 01. It forces all bit states into the ground

state 0, i.e.,

D0 = 0, D1 = 0. (3.11)

The Bit Up Operator U

This operator is defined as U ≡ T 10 +T 11. It forces all bit states into the signal

state 1, i.e.,

U0 = 1, U1 = 1. (3.12)

The four operators I, F , U , and D will be used in bit state dynamics, and

then it will be convenient to define O1 ≡ I, O2 ≡ F , O3 ≡ D, and O4 ≡ U .

3.11 Labstates

Our objective in this book is to interpret quantum mechanics via signal states

of apparatus instead of states of systems under observation (SUOs). In order to

keep this in mind, we shall use the term labstate whenever we refer to the former,

reserving the term system state for the latter.
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In this book, we shall deal with three kinds of labstate associated with a

single detector: classical labstates , stochastic labstates , and quantum labstates .

Classical and stochastic labstates are discussed in this chapter, quantum labstates

are discussed in the next chapter. Each form of labstate has its own dynamical

evolution rules, which we shall discuss separately in some detail. Because only

one detector is involved in these preliminary discussions, such dynamics will

be referred to as rank one. If two detectors were involved, then we would be

discussing rank two dynamics, and so on.

Given a single detector, the observer would find it either in its signal ground

labstate 0 or in its signal labstate 1, assuming the detector existed, was not

faulty, and that the observer actually looked.

3.12 Time and the Stages Concept

Before we can discuss the QDN approach to dynamics, we need some more

precision in our modeling of the processes of observation, because detectors are

distributed not only in space but also in time. Time is a necessary ingredient in

our discussion. Once we start to incorporate that element into the discussion, we

are led naturally to the stage concept that underpins QDN.

In QDN, time is defined relative to an observer and is generally measured

in discrete steps called stages. This requires some explanation. It does not mean

that we have dispensed with time as conventionally modeled in standard physics,

that is, as a continuous real number–valued parameter via which velocities and

other temporal derivatives are calculated.

Contrary to what is implied in conventional formulations of quantum mechan-

ics, such as Schrödinger wave mechanics, the time in the laboratory required

to complete any observation of a signal state is always nonzero. There are in

fact no actual continuous time measurements possible in physics. Any references

to continuous time observations, such as in quantum Zeno (also referred to as

nondemolition) experiments (Itano et al., 1990), are to contextually incomplete

mathematical approximations that often have great validity and usefulness, but

only up to a point and under specific assumptions. Continuous time has much

the same status in experimental physics as the concept of temperature: a useful

and powerful emergent concept representing a great deal of contextuality, but

otherwise not an objective thing in its own right.

In QDN, the concept of events in continuous spacetime is replaced by the

concept of stage network.

Definition 3.3 A stage network is a conceptual collection of external

and internal nodes representing apparatus distributed over time and space

in a laboratory. Each node is connected by temporal links to other nodes

or to modules . Modules represent processes between nodes that influence
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the transmission of classical or quantum information. Nodes are indexed by

integers called labtimes . Each labtime is associated with a stage, the QDN

analog of a hypersurface of simultaneity in relativity.

Quantum state preparation occurs at the source nodes and generally takes

place over some contextually “small” or negligible interval of labtime (time as

measured in the laboratory). States then evolve undisturbed over temporal links

and are detected by the observer at the detectors, again over contextually “small”

or negligible intervals of labtime.

The power of QM in general is that detailed modeling of what actually goes

on at the nodes seems to be less significant than the detailed modeling of the

transition amplitudes evolving over temporal links. For example, Feynman dia-

grams are used in relativistic quantum field theory to calculate those amplitudes,

with virtually no modeling of the detection equipment that would be needed in

practice.

This view of quantum processes was taken to an extreme with the development

of the Multiverse paradigm (Deutsch, 1997). In that paradigm, only evolution

of the wave function for the Multiverse in the information void is asserted to be

significant. But because real, empirical information is extracted in the laboratory

at nodes only, it should not come as a surprise that the Multiverse concept turns

out to be empirically vacuous. So where does QDN stand in relation to these

nodes and links?

QDN is an attempt to investigate the nodal aspect of quantum physics more

than has been hitherto the case. As with scattering matrix (S-Matrix) theory

(Eden et al., 1966), QDN provides a framework for discussing the spatiotemporal

architecture of observation but does not provide the dynamical details of the

amplitudes involved.

Our aim in this book is to discuss a multi-detector approach to quantum

physics. By this we mean to discuss real experiments that involve perhaps many

preparation channels; large numbers of modules such as beam splitters, mirrors,

and suchlike; and batteries of outcome detectors. In such circumstances, we

naturally find ourselves encountering the dictates of special and general rela-

tivity (GR). To date there has been no empirical evidence that the principles

of relativity and of quantum mechanics are incompatible. There is in practice

“peaceful co-existence” between GR and QM, and that has to be respected in

QDN.

The grouping of nodes into sets called stages reflects classical causality , the

notion that an event can influence some events dynamically but not others. In

relativity, events outside each other’s light cones cannot be causally related. The

analogous concept in QDN is that nodes in the same stage cannot transmit or

receive quantum information from each other.
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There is a subtlety here, however, to do with shielding . This needs some expla-

nation. Consider two detectors, A and B, that are, in relativistic parlance, time-

like separated. This means that one of the detectors, say B, is inside the forward

light cone of A, viewed from the conventional relativistic perspective. Therefore,

by standard causal physics, B could in principle be affected dynamically by

whatever was done at A. But suppose B was shielded in some way from any

dynamical effects from A (such as being placed inside a Faraday cage, in the

case of electromagnetic interactions). Then for all practical purposes, we could

regard A and B as if they were dynamically independent. It would not then

be inconsistent to assign them to the same QDN stage, even though they were

not on any hypersurface of simultaneity in physical spacetime. On this basis the

QDN definition of simultaneity is contextual.

Example 3.4 Consider an SG experiment where an electron passes through

an inhomogeneous magnetic field and is expected to land on one of two possible

sites on a screen. Provided there was no tampering with the screen after the

electron had passed through the magnetic field, then the observer could take

their time in looking at the two sites to see where the electron actually had

landed. The observer could in fact look at one site immediately after the

electron had passed though (that is, after it had been calculated to have

passed through), and then look at the other site 20 years later. The acts of

looking at the two sites would take place 20 years of real time apart, but

provided the screen had not been tampered with over those 20 years, the two

site examinations could legitimately be regarded as having taken place in the

same stage.

In fact, all experiments are conducted in this way. Signals are registered

irreversibly in detectors, and the observer generally looks at those memories

usually much later.

The stage concept is designed to reflect the inherent certainty/uncertainty

dichotomy in any experiment: an observer may be quite sure that a signal has

been detected in a detector (simply because they looked and found a signal),

but the actual exact laboratory time when the signal was triggered could be

quite uncertain. Indeed, it is a vacuous concept to imagine that signals trigger

instantaneously. How could that be proved? At best, approximate time intervals

of triggering could be determined.

The stage concept is naturally tuned in to the notion of wave-function collapse,

or state reduction. Nothing physical actually collapses when an observer looks

at a detector and finds a positive signal there: it is true that there will be some

quantifiable changes, both in the apparatus and in the observer’s information

store, but these changes are not manifestations of anything that happened in the

information void, merely interpreted as evidence that something had happened.
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Figure 3.1. A typical stage diagram. Dotted lines represent individual stages,
labeled by subscripts, the nth stage being denoted Σn. Circles represent nodes,
where information either enters or leaves the network, or passes on to other
nodes. Shaded circles represent actual outcome detectors. Boxes represent
modules such as the source (S), a Wollaston prism (W ), a phase-changer (φ),
a mirror (M), and a beam splitter (B). Solid lines represent transmission in
the information void between nodes and modules.

3.13 Stage Diagrams

All experiments have a spacetime architecture that can be represented dia-

grammatically. In QDN, we use stage diagrams . These are simplified diagrams

showing the information flow between components of apparatus over the course

of an experimental run. Figure 3.1 is a typical stage diagram. Numbered circles

represent individual information gates or nodes, either real or virtual (explained

later). Shaded circles represent real detectors, that is, nodes that the observer

actually extracts signal information from. Boxes represent various modules, such

as mirrors and beam splitters. Modules are discussed in Chapter 11. Dotted lines

represent the stages, indexed by subscripts.

3.14 Measurements and Observations

To explain more fully the points we are making, we first need to pin down some

of the terms we shall use to describe any experiment.

Intervention

An intervention is a single act of information extraction from a set of detectors

at a single stage.

Run

A run is the complete process involved in a given sequence of actions, which

starts with initial labstate preparation and ends with final labstate detection.
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Experiment

An experiment consists of a given number of runs, each following an identical

protocol, or experimental procedure.

Runtime

Runtime is time required to perform a given run, as measured by the observer’s

laboratory clocks.

Measurement

A measurement is the statistical result of data accumulated over one or more

runs of a given experiment.

3.15 Transtemporal Identity

With the introduction of time, we come to an important question in the devel-

opment of our formalism: does an detector have a transtemporal identity (an

identity that persists over some interval of time), or is it something that exists

only at a specific time?

Such a question goes to the heart of an ancient debate concerning the nature

of reality. In The Way of Truth, a surviving fragment from a poem of the

ancient Greek philosopher Parmenides (ca. 520–450 BCE), it was argued that

change is impossible and that existence is timeless, uniform, and unchanging.

Parmenides also suggested that the world of appearance (or by our interpre-

tation, observation) is false and deceitful. He claimed that truth could not be

known through sensory perception and that only pure reason could lead to a

proper understanding of reality. In essence, this was an argument for not doing

experimental physics.

Parmenides’s ideas had an enduring effect on subsequent philosophy, physics,

and mathematics. One of his pupils, Zeno of Elea (ca. 490–430 BCE) took

Parmenides’s line of reasoning further and created a number of paradoxes about

motion, such as the race between the Tortoise and Achilles. Zeno’s paradoxes

could not be fully resolved until the modern mathematical understanding of the

limit concept was developed. Parmenides also denied the existence of nothingness,

or the void, which stimulated Leucippus to propose the existence of atoms.

In contrast to Parmenides, Heraclitus suggested that everything flows, nothing

stands still, and that change is the only constant.

We can make sense of some of the ideas of Parmenides, Leucippus, and Hera-

clitus provided we avoid introducing absolute truths and base our discussion on

contextuality, the proper basis for theories of observation of reality.

Any answer to the question of temporality determines the way in which dynam-

ics is thought about and represented. If SUOs and/or detectors have enduring

temporal identities, then it is reasonable to imagine that they “evolve” over time

in fixed spaces, changing perhaps their states but retaining sufficient attributes to
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justify giving them their particular identities. This is related to the phenomenon

of persistence, which depends on the time scales over which objects can be taken

reliably to have significance.

Such an approach is taken in conventional classical mechanics (CM), where

SUOs are represented by points moving about phase space, and in QM, where

state vectors move about in Hilbert space.

The alternative to this is to imagine, like Heraclitus, that everything changes,

nothing persists. According to this view, objects such as SUOs and apparatus

only appear to persist because sufficient patterns of mass and energy are repeated

sufficiently unchanged over certain time scales as judged by some observer, and it

is this that gives that observer the impression that “objects” exist in the universe.

We shall adopt the Heraclitian point of view, because we need to consider the

possibility that observers and apparatus can be created and destroyed. This will

mean changing, over time, the dimensions of the mathematical spaces used to

model processes of observation.

Therefore, when we discuss a rank-one labstate evolving from stage ΣM to

stage ΣN , we shall think of it as a succession of detectors, denoted, say, by

ΔM ,ΔM+1, . . . ,ΔN . Each detector Δn is associated with a classical bit Bn and

its dual Bn, and that detector exists only at stage Σn. But if persistence is

assumed, then the whole set {Δi : i = M,M + 1, . . . , N} of detectors may be

thought of as a single detector with an enduring, transtemporal identity existing

over the time interval [tM , tN ].

It is important not to mix different theoretical spaces associated with different

times. While we can ask the question injn for M ≤ n ≤ N , we are not allowed

to ask the question injm for n 	= m. The reason is obvious when stated in words:

we cannot observe today what does not yet exist or what used to exist. All actual

observations are done in process time. Past and future are inferred from the data

so acquired: archaeologists do not dig up the past – they dig up traces of the

past embedded in the present. Improper questions such as injm, n 	= m, are not

defined mathematically either, in the same way that dual vectors (one-forms) are

defined only by their action on their individual, associated vector space.

3.16 Typical Experiments

A typical rank-one experiment of the classical type starts with a definite initial

labstate jM at initial stage ΣM . Usually we shall take M = 0, but this is not

essential. We shall not ask how this initial labstate was created but, in this

section, require it to be definite; that is, there is no element of probability here

other than certainty. There are therefore only two possible initial labstates in

any such experiment: jM can take the value 0 or the value 1.

Next, we imagine that the observer has no further interaction with “the”

detector until stage ΣM+1, but by this time, something will have acted on it

to possibly change its signal state. We shall represent this by the action of one
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of the classical bit operators Ok, k = 1, 2, 3, 4, defined in Section 3.10, i.e., we

suppose the transition

iM → iM+1 ≡ OkM

M+1,M iM , (3.13)

where OkM

M+1,M is given by

OkM

M+1,M ≡
1∑

a=0

1∑
b=0

aM+1O
kM

ab bM (3.14)

and OkM

ab are the ab components of the corresponding classical bit matrix. This

operator takes us from the two-dimensional vector space QM in which we have

embedded 0M and 1M into the two-dimensional vector space QM+1 in which we

have embedded 0M+1 and 1M+1.

This process can be continued. Specifically, for any time n such that M ≤ n <

N we may write

in → in+1 ≡ Okn
n+1,nin, (3.15)

from which we find

iM → iN ≡ ON,M iM , (3.16)

where the complete evolution operator ON,M is given by

ON,M ≡ ON,N−1ON−1,N−2 . . .OM+1,M

=

1∑
a=0

1∑
b=0

aN

[
OkN−1OkN−2 . . .OkM

]
ab

bM .
(3.17)

If now at time N, the observer stepped in and looked at the detector, they would

normally ask the question 1N ≡ Is there a signal here? The answer is given

by 1N iN , where a value one represents an answer yes while a value zero represents

an answer no.

Each set of integers {kM , kM+1, . . . , kN−1} in (3.17) represents a specific “oper-

ator chain” of labstate dynamical changes. Each of the integers kn can be 1, 2, 3,

or 4, so there is in total 4N−M different operator chains. However, because the

multiplication of the operator matrices is closed, the net result is that there are

only four possible overall complete evolution operators, given by

Ok
N,M ≡

1∑
a=0

1∑
b=0

aNOk
abbM , k = 1, 2, 3, 4. (3.18)

This form of dynamics is relatively simple but there is a surprising aspect to

it: it is entirely deterministic, in that a given present labstate unambiguously

determines the labstate at any time in the future. However, if any one or more

of the N −M matrices in (3.17) is of D or U type, then the complete dynamics

is irreversible. What this means is that even if the observer knew the final

labstate and every detail of the evolution operator from initial to final times,
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but not the initial labstate, they could not say for sure what that initial state

was. Retrodiction is therefore impossible if a D or U transition occurs even

once.

The mathematical reason why the occurrence of just a single D or U transition

generates irreversibility is that each of these maps is two-to-one, and so their

matrix representations are singular.

3.17 Rank-One Stochastic Evolution

In the real world, classical certainty is an exception and we have to use concepts

of probability to discuss most situations. In this section we extend the ideas of

the previous section to incorporate this requirement.

There are two competing philosophies or schools of thought about probability:

the Frequentist school and the Bayesian school . These are in principle quite

different in their core philosophies of what probability means, although some

convergence of thinking appears to be taking place among the experts, and the

differences are at times too subtle to be of much significance to us here.

There is however one clear difference, analogous to the difference between the

CM noncontextual view of reality and the contextual QM view. Frequentists

talk about probabilities as if they were intrinsic to the events taking place, such

as a fair coin “having” a probability of 1
2 landing on a head. Bayesians require

a context to be supplied before they presume to make such an assertion. In an

absence of such context, Bayesians will make a prior , or educated starting guess,

such as 1
2 for the probability p of a head. A Bayesian would then throw the coin a

few times and make some outcome observations. With this new information, the

Bayesian would make an updated estimate of p based on a well-known formula

attributed to Bayes.

For Bayesians, probabilities are contextual. For example, a Bayesian who

had thrown a coin 10 times and not observed a single tail would calculate the

probability of the eleventh throw landing on a tail to be much less than 1
2 .

This is because the 10 observations (i.e., the 10 runs of the basic experiment)

had provided new information about the SUO (the coin) that could not be

discounted. The specific details of any calculation as to the likely outcome of the

eleventh throw would depend on the sort of assumptions made, such as whether

successive throws were truly independent. We shall not discuss those details

further here. Suffice it to say that prior information, or as we would put it, the

context of the eleventh throw, would have significant bearing on the probability

calculation. Also, how the coin was thrown would have an important bearing on

the probability outcome calculations and this is part of the context as well.

The pragmatic view of a person unfamiliar with the rules of probability would

be that the observation of ten successive heads is reasonably convincing evidence

for the hypothesis that the coin is in fact double-headed. On that basis, the

probability of getting a tail on the eleventh throw would be zero. A more careful
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analysis based on particular “reasonable” assumptions about the prior gives a

probability of about 0.95 of getting a head on the eleventh throw.

We see here a similarity between our approach to observation and the Bayesian

approach to probability. In both cases, prior information or context is crucial to

the predictions. Our first principle of observation is that all truths in physics are

contextual. The equivalent principle in Bayesian statistics is that all probabilities

are conditional.

Probability in process physics has a different flavor compared with probability

in block world physics. In block world physics, probability has to be discussed in

terms of limits of ratios of large numbers of outcomes, presumably counted by

some unspecified exophysical observer over some number of runs, or repetitions,

that were embedded in the Block Universe. This is the Frequentist approach to

probability and is typical of the way probability is discussed in standard QM.

In Process Time, however, we may find ourselves in a situation where we

have no more than one opportunity to throw a coin. Real life is usually like

that and it is that aspect of physics that we are trying to develop. Under

such circumstances, the term propensity may be used rather than probability.

Propensity is a gambler’s view of probability as opposed to an accountant’s view.

We shall use the term “probability” to represent both kinds of concept.

Randomness and uncertainty enter into our discussion in two ways: the

observer may be uncertain as to the initial labstate of the detector, and also be

uncertain as to which dynamical operators are acting. We need to discuss both

aspects. We consider first random labstates.

3.18 Stochastic Bits

Previously, we represented the ground state 0 and signal state 1 by column

vectors, as in (3.3). Now suppose the observer was unsure as to which initial

labstate they had started with, to the extent that they could only assign a

probability of p for it to be in the ground state 0 and a probability q ≡ 1− p to

be in its signal state 1. We shall represent such an uncertain labstate by

Ψ = p0+ q1 =
R

[
p

q

]
. (3.19)

Now suppose that the observer wanted to know if there was a signal in the

detector. They need to ask the question

1 ≡ Is the detector in its signal state? (3.20)

In our formalism, the answer is given by

1Ψ =
R

[
0 1

] [p
q

]
= q, (3.21)

where we interpret the right-hand side as a number. In this case, the answer is

not zero or one as in the classical case but interpreted as the probability of there
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being a signal in the detector. Likewise we find 0Ψ = p, which is the probability

that the detector would be found in its ground state.

The sum of the elements of the column vector (3.19) is unity. Such a vector

will be called a stochastic vector and the associated bit will be called a stochastic

bit , or s-bit. For such bits, we shall refer to expressions such as iΨ as stochastic

answers , as they are generally neither zero nor unity, and are interpreted as

probabilities.

3.19 Left-Stochastic Matrices

We turn now to the other possibility where randomness may occur: the dynamics

affecting an detector may be random. We suppose now that the observer is

uncertain as to which of the four possible evolutions I, F , D, or U actually

has occurred. Consider the operator S defined by

S ≡ pI + qF + rD + sU , (3.22)

where p, q, r, and s are probabilities summing to unity. With the matrices as

defined previously, we find

S =
R

[
a b

1− a 1− b

]
, (3.23)

where a ≡ p+ r and b ≡ q + r are in the interval [0, 1].

Such a matrix is a left-stochastic matrix , i.e., one that has the property that

each element lies in the interval [0, 1] and the sum of elements in each column is

unity.

3.20 Stochastic Jumps

We now consider stochastic labstates jumping under the influence of left-

stochastic operators, from stage to stage. The labstate at stage Σn is given by

Ψn = p0n0n + p1n1n =
1∑

i=0

pinin, (3.24)

where 0 � pin � 1 and
∑1

i=0 p
i
n = 1. This state evolves to Ψn+1 ≡ Sn+1,nΨn,

where Sn+1,n is a left-stochastic operator given by

Sn+1,n ≡
1∑

i=0

1∑
j=0

in+1S
ij
n jn, (3.25)

where Sij
n are the components of the left-stochastic matrix Sn, where

Sn ≡
[

an bn
1− an 1− bn

]
. (3.26)

Then Ψn+1 is also a stochastic labstate. The determinant |Sn| of the stochastic

matrix Sn in (3.26) is given by |Sn| = an − bn, which means that stochastic

evolution is irreversible for an = bn.
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Exercise 3.5 Prove that the product of any two left-stochastic matrices

is also a left-stochastic matrix. Prove also that the inverse of a nonsingular

left-stochastic matrix is also a left-stochastic matrix.

3.21 Stochastic Questions

In much the same way that we can ask a definite binary question about a

stochastic bit state, we may consider the possibility of asking stochastic binary

questions . By this we mean the following.

Suppose an observer has prepared a stochastic state Ψ of a system under

observation and could ask two different binary questions Q1 and Q2 in principle.

Suppose that for some reason outside their control, every time the observer asked

a question, there was a probability p that it was actually Q1 being asked and

not Q2, and a probability q ≡ 1− p that it was actually Q2 being asked and not

Q1. Suppose further that the observer asked a large number of such questions,

not knowing precisely which question was being asked each time, but observing

the answer each time. Then the average of the observed answers would be given

by pQ1Ψ + qQ2Ψ, which we could use to define the stochastic binary question

pQ1 + qQ2.
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