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1. Introduction

The Fitting class <Sn of finite soluble 7r-groups, where n is an arbitrary set
of primes, has the property that each complement of an S^-avoided, comple-
mented chief factor of any finite soluble group G contains an (5,,-injector of G.
In other words, each Sn-avoided, complemented chief factor of G is (^-com-
plemented in the sense of Hartley (see [2]).

In general, for a Fitting class X of finite soluble groups, none of the com-
plements of an ^-avoided, complemented chief factor of a finite soluble group
G may contain an X-injector of G, as an example in Section 2 of [3] shows. As
in [3], we will call an ^-avoided, complemented chief factor of G a partially
iE-complemented chief factor of G if at least one of its complements contains an
iE-injector of G. Moreover,

DEFINITION. A Fitting class X of finite soluble groups will be said to have
the property (A) ((A*)) if in each finite soluble group G every 3C-avoided, comple-
mented chief factor of G is necessarily a partially ^-complemented (an jE-com-
plemented) chief factor of G.

For the rest of the terminology used here we refer the readers to Hartley [2].
All groups considered here are finite and soluble.

Our main purpose of this note is to show that

THEOREM 1.1. A Fischer class has the property (A) if and only if it is the
Fischer class of n-groups for some suitable set n of primes.

In general, one can have a Fitting class which has the property (A) but which
is not <Sn for any set n of primes. The normal Fitting class § defined in Satz 3.2
of Blessenohl and Gaschiitz [1] provides an example of such a Fitting class.
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The ^-injector V of any group G has index at most 2 in G. Hence, if RjS is an
^-avoided chief factor of G, then V = VS complements RjS in G, and so RjS
is also a partially ^-complemented chief factor of G, Thus, §> has the property
(A), but it is easy to check that § is not (5, for any set n of primes.

Theorem 1.1 is proved in Section 3 and in Section 2 we discuss Fitting classes
with the property (A*).

2. Fitting classes with the property (A*).

In this section, we show that a Fitting class with the property (A*) is neces-
sarily ®n for some suitable set n of primes.

THEOREM 2.1. Let g be a Fitting class with the property (A*). Then g = (»„
for some suitable set n of primes.

PROOF. Let n be the uniquely determined set of primes such that 3lK £ % £ S ,
where 5Rn is the class of all finite nilpotent rc-groups (see Remark 1 of Section 3.3
in Hartley [2]). We show that g = SK • Assume to the contrary that 3 <= S ,
and let GeS^XHf be of minimal order. Since both £>„ and $ are Fitting classes,
it is clear that G has a unique maximal normal subgroup M of index p, say, which
belongs to $ . Consider the group H = G x GjM. Clearly M x GjM is the 3-in-
jector of H. Let G* be the subset of H which consists of all elements (x, xM),
where x e G . Then G*«=iH and H = GG*. In particular, G * n G = M. Thus, G*
complements; G/M in H. Since G/JVf is an ^-avoided, complemented, and hence
^-complemented chief factor of H, it follows then that G* contains the 2f-injector
M x GjM of H. But this is impossible. Hence, we must have G 6 5 , and so
8f = S B , as required.

In view of Theorem 2.1 and the remark at the beginning of Section 1, we
immediately have

COROLLARY 2.2. A Fitting class has the property (A*) if and only if it is
the Fitting class of n-groups for some suitable set n of primes.

3. Proof of the main theorem

In order to prove Theorem 1.1 we will need the following lemma.

LEMMA 3.1. Let g be a Fischer class with the property (A), let <3p s g
and let G be a semidirect product of an ff-group A by a cyclic group B = <6>
of order p", n Si 1. Then G is an ft-group.

PROOF. Let C = <c> be a cyclic group of order pn+i, let H = B x C and
let K be the subgroup of H generated by be". Consider the twisted wreath
product (see Neumann [4]) W of A by H over B x K with the action o f B x X
on A being defined as follows: Let B act on A as in the semidirect product G
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of A by B, and let K act trivially on A. Since H is abelian, it is easy to check
that K acts trivially on the base group D — At x Ac x ••• x AcP-i which is the
direct product of p copies of A indexed by the coset representatives {1, c, •••, cp~1}
ofB x K in H, and also Ac, is B-invariant and |ylc<]5 = Gfor i = 0, 1, •••,p— 1.
In particular, D x K is contained in the g-injector V of W. But then, we must
have that DB/D^b"} is an ^-covered chief factor of W; for, otherwise, it would
be an g-avoided, complemented chief factor of W which is not partially g-com-
plemented in W since DK(b"} is not contained in any complement of
DBjD{bpy in W. Thus, V covers DB/£><6P>. However, since D<fep>/D
is the Frattini subgroup of DB/D, it follows now that V, in fact, covers DB/D,
and so V 2: DB. In particular, DBe$ since D B « V. Finally, since A± is B-in-
variant, and hence also DB-invariant, since A±B\AX is a p-group and since 5 is
a Fischer class, it follows that G^ [ y l j j B e ^ , and the lemma is proved.

We can now complete the proof of Theorem 1.1 as follows:

PROOF OF THEOREM 1.1. In view of the remark at the beginning of Section 1,
it remains to show that if 5 is a Fischer class with the property (A), then 5 is
the Fischer class of ?r-groups for some set n of primes. Let n be the uniquely
determined set of primes such that 9iK £ 5 — S* ( s e e the proof of Theorem 2.1)
We will show that § = S* • Assume to the contrary that 5 c ®K > and let
G e S , \ 5 be of minimal order. Then G has a unique maximal normal subgroup
M which lies in 5 • Let | G: M | = p and let x e G be of p-power order such that
<M,x> = G. Consider the semidirect product W of G by a cyclic group <a>
of order p" = | x | , the order of x in G, with the action of <a> on G being
given by g" = g* for each geG. Clearly M is <a>-invariant, and so, by
Lemma 3.1, [M]<a>e2f . Similarly, [ M ] < a x > e g . But then

whence, in particular, GeSN^ = 5 , a contradiction. With this contradiction,
the proof is complete.
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