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SOME APPLICATIONS OF
DOUBLE-NEGATION SHEAFIFICATION

by D. S. MACNAB
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1.

In this note we point out that certain algebraic-topological constructions
are particular cases of one construction, namely double-negation sheafifica-
tion. The principal cases we have in mind are concerned with boolean
powers, completions of boolean algebras, and maximal rings of quotients.
We conjecture that several other constructions—particularly completion-
type constructions—will turn out also to be examples of double-negation
sheafification.

A general acquaintance with classical sheaf theory and its generalisa-
tion to topoi is assumed. This may be found in (7), (8), (13), (14), (20), (24),
(25), (26), particularly (7) and (26) for the topos side. A discussion of the
relationship between the espace etale aspect of a classical sheaf and the
categorical aspect is contained in (3). We denote by O(X) the open set
lattice (category) of a topological space X and by Top(X) the category of
classical sheaves on X. Elements of Top(X) will be regarded categori-
cally—as contravariant set-valued functors on O(X). If A G Top(X), the
value of A at U G O(X) will be denoted by A(U), and the double-negation
sheafification of A by I—IA.

Double-negation sheaves in Top(X) may be characterised as follows.

Lemma 1. / / B GTop(X), then B is a double-negation sheaf iff, for
any U, U{&O(X) with U\ dense in U (with respect to the induced to-
pology), the canonical map B{U)-*B(U\) is a bijection.

The proof follows standard lines.
Using this we obtain the following characterisation of double-negation

sheafification.

Theorem 1. If A G Top(X), then, for U £ O(X), we have

—\—\A(U)= \hn{A(V): V is dense in [/}.

Proof. Let F(U) = lim {A(V): V is dense in U}. Then there are three

more or less independent factors to demonstrate.
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(A) The definition of F(U) actually produces an element FeTop(X) .
(B) F is a double-negation sheaf in Top(X).
(C) F is the reflection of A in the double-negation sheaf subcategory of

Top(X).
The only difficult part of (A) is to show that F is collated. This follows

from Lemma 2 below. Then (B) follows from Lemma 1, and (C) is
straightforward.

Lemma 2. If V\, V2 are any two open sets in a topological space, and if
D is a dense open subset of V, D V2 (in the induced topology), then there
exist open sets Du D2 dense in Vu V2 respectively, such that D, fl D2 = D.

Part (A) of Theorem 1 extends and simplifies that of Ellerman (4),
Appendix 1. We also note here that Theorem 1 can be extended to a wider
class of modal operators on O(X). This and other extensions of the
Theorem will appear elsewhere.

The remainder of this note is concerned with applications of Theorem 1
to various algebraic and topological constructions.

2. Boolean powers and ultrapowers

The theory of boolean powers originated with Foster (6) and was
developed by Mansfield (17), Ribenboim (21), and Daigneault (2), mainly
for model-theoretic purposes.

Given an algebraic structure A and a complete boolean algebra B, the
boolean power of A over B, denoted by A(B), is defined as the set of maps
d: A-* B such that UxeA d(x) = 1, and x^ y implies d(x) D d(y) = 0. Opera-
tions in A can be extended to A(B) as explained in (17) or (2).

If we define da, for a £ A, by da(a) = 1 and da(b) = 0 for b¥ a, then the
map a-*da is an embedding of A in A(B). If we factor out an ultrafilter D
from B we obtain the boolean ultrapower A(B)ID. From a model-theoretic
point of view, A(B)/D is an elementary extension of A. Other model-
theoretic properties of boolean ultrapowers are discussed in (17).

To see the connection between boolean powers and double-negation
sheaves, we require a representation theorem due to Ribenboim but stated
more clearly by Daigneault.

Let Z denote the dual space of the boolean algebra B, i.e. the space of
ultrafilters of B with the Stone topology.

Theorem 2. The boolean power AiB) is isomorphic to the set of func-
tions Z^*A, (discrete topology on A), which are continuous on dense open
subsets of Z and which are not continuously extendable to a larger open
subset, with the operations induced pointwise by the operations of A.

A discussion of aspects of this isomorphism is contained in (16).
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Equivalently stated, A(B) is isomorphic to lim {A(V): V is dense in Z} with
the operations induced by those of A.

Hence A(B) is isomorphic to the algebra of global sections of —I—lA*
where A* is the sheaf over Z associated with A; i.e. A*(U) = {the set of
continuous functions U -» A, where A has the discrete topology}.

We now look at the stalks of ~\~\A*.

Theorem 3. The stalks of ~~\~\A* are the boolean ultrapowers of A.

Proof. Denote —1~\A* by A. Then Ax = lim {A(U): x G U}. Since A as
a topological space is discrete, [/] = [/t] in the limit iff f(x) = f\(x), where
[ ] denotes an equivalence class. Hence, by (2) or (16), Ax is the boolean
ultrapower determined by the ultrafilter x.

Hence the boolean power A(B) is isomorphic to the algebra of global
sections of the sheaf of its boolean ultrapowers over the dual space of B.
(See also (4).)

Remark. For the subcategory of double-negation sheaves in Top(Z),
the internal logic object is fi-n whose underlying algebra = {U G O(Z):
U'° = U} = {regular open subsets of Z} = B, (since B is complete).

3. The completion of a boolean algebra

If a boolean algebra B is represented as the algebra of closed-open
subsets of its dual space Z, then the completion of B is (isomorphic to) the
algebra of regular open subsets of Z.

Now B can also be represented as the set of continuous functions
Z-»{0,1}, where {0,1} has the discrete topology. Hence B becomes a
member of Top(Z). We now show that the algebra of global sections of

I IB is the completion of B.

Theorem 4. ~\~iB(Z) is isomorphic to the set of regular open subsets
of Z.

Proof. We identify ~|—\B(Z) with the set of functions Z->{(), 1} which
are continuous on dense open subsets of Z and which are not continuously
extendable to larger open sets.

(i) For V regular open in Z, let D = VU V°. Then D is dense in Z. Now
define /:D-»{0,1} by

/ w ={ 0 ; : V
V'0'

Then / is continuous D-»{0,1} and hence (continuously extended if
necessary) belongs to ~\~\B(Z).
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(ii) Suppose / £ I \B(Z); then there exists a dense open subset D of
Z such that / is continuous D-»{0,1} and is not continuously extendable.
Hence f~\l) is closed-open with respect to the induced topology on D and
hence is regular open in this topology. We have to show that /~'(1) is
regular open in Z.

Let V = /~'(l). The closure of V in the induced topology on D is
V~ D D. Hence V is regular open in D iff (V" D D)° = V iff V~° D D = V.
Hence it is sufficient to show that V'°CD. If V~°<£D, then we can
continuously extend / to D U V"°, by setting f(x) = 1, for x e V~°\A which
contradicts the definition of /.

Hence V~° C D and hence /~'(1) is regular in Z.
The above two constructions establish a 1-1 correspondence between

elements of 1—\B(Z) and regular open subsets of Z. That this is an
isomorphism with respect to the boolean operations may easily be checked.
Hence ~1 lB(Z) is the completion of B.

Remark. For L a distributive lattice with the discrete topology and X
a topological space, the set of continuous functions X-»L has the structure
of a distributive lattice induced from L. If we denote the corresponding
sheaf by A, then, for suitable choices of X, ~~r~\A(X) is the completion of
A(X) as a distributive lattice.

4. Maximal rings of quotients

The details of the construction of maximal (or complete) rings of
quotients of commutative rings and of maximal rings of right quotients of
non-commutative rings may be found in (12) and (23). We will consider
only the case of rings of continuous functions, see (5) and also (1). From
(5) we take the following result.

Theorem 5. The maximal ring of quotients of the ring of continuous
real-valued functions over a completely regular hausdorff-space X may be
identified with the ring of real-valued functions continuous on dense open
subsets of X modulo identification on dense open sets.

Banaschewski, (1), has extended this result to show that the maximal
ring of quotients of any semi-prime commutative ring can be obtained in a
similar manner by first representing the ring as a ring of continuous
functions over its prime ideal space with the hull-kernel topology.

Hence in both these cases the maximal ring of quotients is obtainable as
the ring of global sections of a double-negation sheaf. It is shown in (12)
that the (MacNeille) completion of a boolean algebra can be identified with
the maximal ring of quotients of its associated boolean ring.
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Another extension of these results has been obtained by Mulvey (19).
To explain this we need some definitions.

Let A G Top(X) be such that for each U G O(X), A(U) carries a ring
structure and such that for VC U, the canonical map A(U)^>A(V) is a
ring homomorphism, these homomorphisms being compatible with the
functorial nature of A. Then the pair (X, A) is called a ringed space.
Suppose now that X is a hausdorff space. Then the global ring of sections
A(X) is called completely regular if (i) the canonical ring homomorphism
A(X)-» Ax is surjective, Vx G X, (ii) for each x G X and each open neigh-
bourhood U of x, there exists / £ A(X) such that {x: fx^ 0}c U and fx is
the identity of the ring Ax, where fx is the image of / under the homomor-
phism A(X)->AX. (In fact, (ii) implies (i).) If A(X) is completely regular
then (X, A) is also said to be completely regular. (X, A) is called a reduced
ringed space if, for U G O(X) and / G A(U), fx is a non-unit in Ax for each
x G U, then / is the zero element of A(U).

We now can state Mulvey's theorem.

Theorem 6. The maximal ring of right quotients of the ring of global
sections of a completely regular reduced ringed space (X, A) is isomorphic
to ]\m{A(Uy. U is dense in X}.

Hence such maximal rings of quotients are also constructible via
double-negation sheaves.

Since many types of ring can be represented as rings of global sections
of sheaves over suitable spaces, (see (11)), we conjecture that further
maximal rings of quotients will turn out to be rings of global sections of
double-negation sheaves, see also (22), §3.

5. Further applications

(1) The ultrasheaves of (4) are essentially double-negation sheaves. This
observation makes some of the stated properties of such sheaves and their
stalks, (called ultrastalks in (4)), more obvious.

(2) Given a sheaf space (S, TT) over a topological space X, we can
construct its section functor sheaf T and hence I IF*. From I IF* we can
construct a new sheaf space over X which we will denote by ( \~~\SX, TT'). Then
~l~i5x can be regarded as a new topological space constructed from S with the
aid of X. For suitable choices of S and X we conjecture that the construction is
an already known one—for example, a compactification or completion
construction—thus bringing topological constructions also under the double-
negation umbrella.

I should like to thank Dr H. Simmons for much helpful advice and in
particular for encouraging me to prepare this paper for publication.
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Note: I am indebted to the referee for bringing to my attention the following
two related articles which are available as preprints.

(a) Boolean Powers as Algebras of Continuous Functions, B. Banas-
chewski and E. Nelson, Dept. of Mathematics, MacMaster University,
Hamilton, Ontario, Canada.

(b) A Remark on the Prime Stalk Theorem, C. J. Mulvey, Dept. of
Mathematics, Columbia University, New York.
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