AN ENTIRE FUNCTION WHICH HAS WANDERING DOMAINS

I. N. BAKER

(Received 1 November 1974)

Abstract

Let $f(z)$ denote a rational or entire function of the complex variable z and $f_{n}(z), n=1,2, \cdots$, the n-th iterate of f. Provided f is not rational of order 0 or 1 , the set \mathbb{C} of those points where $\left\{f_{n}(z)\right\}$ forms a normal family is a proper subset of the plane and is invariant under the map $z \rightarrow f(z)$. A component G of \mathbb{C} is a wandering domain of f if $f_{k}(G) \cap f_{n}(G)=\varnothing$ for all $k \geqq 1, n \geqq 1, k \neq n$. The paper contains the construction of a transcendental entire function which has wandering domains.

The theory of the iteration of a rational or entire function $f(z)$ of the complex variable z deals with the sequence of natural iterates $f_{n}(z)$ defined by

$$
f(z)=z, \quad f_{1}(z)=f(z), \quad f_{n+1}(z)=f_{1}\left(f_{n}(z)\right), \quad n=0,1,2, \cdots
$$

In the theory developed by Fatou $(1919,1926)$ and Julia (1918) an important part is played by the set $\mathfrak{N}=\mathfrak{N}(f)$ of these points of the complex plane where $\left\{f_{n}(z)\right\}$ is not a normal family. Unless $f(z)$ is a rational function of order 0 or 1 , (which we henceforth exclude) the set $\mathfrak{F}(f)$ is a non-empty perfect set, whose complement $\mathfrak{C}=\mathfrak{C}(f)$ consists of an at most countably infinite collection of (open) components G_{i}, each of which is a maximal domain of normality of $\left\{f_{n}\right\}$.

It is shown by Fatou $(1919,1926)$ that $\mathfrak{N}(f)$ is completely invariant under the mapping $z \rightarrow f(z)$, i.e. if α belongs to $\mathfrak{F}(f)$ then so do $f(\alpha)$ and every solution β of $f(\beta)=\alpha$. It follows that $\mathscr{G}(f)$ is also completely invariant and, in particular, for each component G_{i} of $\mathfrak{C}(f)$ there is just one component G_{i} such that $f\left(G_{i}\right) \subset G_{j}$. By definition, the component G_{0} of $\mathfrak{C}(f)$ is a wandering domain of f if

$$
f_{k}\left(G_{0}\right) \cap f_{n}\left(G_{0}\right)=\varnothing \quad \text { for all } \quad 1 \leqq k, n<\infty, k \neq n
$$

No examples of wandering domains for either entire or rational functions seem to be known and indeed Jacobson (1969) raises the question whether they can occur at all for rational f. Pelles also discusses the notion.

In Baker (1963) an entire function $g(z)$ was constructed as follows:

Let $C=(4 e)^{-1}$ and $\gamma_{1}>4 e$. Then define inductively

$$
\begin{equation*}
\gamma_{n+1}=C \gamma_{n}^{2}\left(1+\frac{\gamma_{n}}{\gamma_{1}}\right)\left(1+\frac{\gamma_{n}}{\gamma_{2}}\right) \cdots\left(1+\frac{\gamma_{n}}{\gamma_{n}}\right), \quad n=1,2, \cdots \tag{1}
\end{equation*}
$$

Then $1<\gamma_{1}<\gamma_{2}<\cdots$ and [c.f. Baker (1963): lemmas 1 and 2]

$$
\begin{equation*}
g(z)=C z^{2} \prod_{n=1}^{\infty}\left(1+\frac{z}{\gamma_{n}}\right) \tag{2}
\end{equation*}
$$

is an entire function which satisfies

$$
\begin{equation*}
\left|g\left(e^{i \theta}\right)\right|<\frac{1}{4}, \quad 0 \leqq \theta \leqq 2 \pi \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(\gamma_{n}^{2}\right)>\gamma_{n+1}^{2}, \quad n=1,2, \cdots \tag{6}
\end{equation*}
$$

Moreover, if A_{n} denotes the annulus

$$
\begin{equation*}
A_{n}: \gamma_{n}^{2}<|z|<\gamma_{n+1}^{1 / 2} \tag{7}
\end{equation*}
$$

then by Baker (1963) Theorem 1, there is an integer N such that for all $n>N$ the mapping $z \rightarrow g(z)$ maps A_{n} into A_{n+1}, so that $g_{k}(z) \rightarrow \infty$ uniformly in A_{n} as $k \rightarrow \infty$. Since by (3) $g_{k}(z) \rightarrow 0$ uniformly for $|z| \leqq 1$, it is clear that each A_{n}, $n>N$, belongs to a multiply connected component C_{n} of $\mathfrak{C}(g)$ and that C_{n} does not meet $\{z:|z| \leqq 1\}$, which belongs to a component of $\mathscr{C}(g)$ which we designate C_{0}. It is natural to ask whether the $C_{n}, n>N$, are all different, but this question was left unanswered in Baker (1963). The solution is given by the

Theorem. For $n>N$ the components C_{n} of $\mathfrak{C}(g)$ described above are all different and each is a wandering domain of g.

Proof. Suppose that there are two values of $n>N$ for which A_{n} belong to the same component of $\mathfrak{G}(g)$. Suppose $n=m>N$ and $n=m+l, l>0$, are such values. Then there is a path Γ in $\left(\zeta(g)\right.$ which joins a point of A_{m} to a point of A_{m+1}. The path Γ must meet A_{m+1}, which therefore belongs to the same component of $\mathfrak{G}(g)$ as A_{m}. So we may take $l=1$. By the complete invariance of $\mathfrak{S}(g)$ the path $g_{k}(\Gamma)$ lies in $\mathscr{S}(g)$ and it joins A_{m+k} to $A_{m+k+1}, k=1,2, \cdots$. Thus all $A_{n}, n>m$, belong to the same component of $[\mathcal{F}(g)$, which is therefore multiply-connected and unbounded.

It suffices to show that for all sufficiently large n the annuli A_{n} and A_{n+2} cannot be joined in $\left(\mathscr{C}(g)\right.$. Now for all sufficiently large $n\left(>N_{0}\right)$ we have, since $\gamma_{n} \rightarrow \infty$ in (1) that,

$$
\begin{equation*}
4 \gamma_{n}^{2}<\gamma_{n+1}^{1 / 2} . \tag{8}
\end{equation*}
$$

Take any $n>\operatorname{Max}\left(N, N_{0}\right)$ and assume that A_{n}, A_{n+2} can be joined in $\mathcal{G}(g)$. Then $z_{1}=2 \gamma_{n}^{2} \in A_{n}$ and $z_{2}=\frac{1}{2} \gamma_{n+3}^{1 / 2} \in A_{n+2}$. There is then a simple polygon joining z_{1} and z_{2} in $\mathscr{C}(g)$ and so z_{1}, z_{2} belong to a simply-connected subdomain, say H, of $\mathscr{F}(g) . H$ may be mapped conformally by $z=\psi(t)$ onto $|t|<1$ so that $\psi(0)=z_{1}$ and $\psi(u)=z_{2}$ where u is some value for which $|u|<1$.

Since $g_{k}(z) \rightarrow \infty$ locally uniformly, as $k \rightarrow \infty$ for $z \in A_{n}$, the same is true locally uniformly in the component G of $\left(S(g)\right.$ to which A_{n} belongs. Thus for each integer $p>0, g_{p}(G)$ is a domain in which $G_{k}(z) \rightarrow \infty$ locally uniformly, so $g_{p}(G)$ does not meet the component G_{0} of $\left.(G) g\right)$ which includes the disc $\{z:|z| \leqq 1\}$, as $g_{k}(z) \rightarrow 0$ in G_{0}. Thus in G, and in particular in $H, g(z)$ omits the values 0,1 . Similarly the functions $F_{p}(t)=g_{p}\{\psi(t)\}$ omit the values 0,1 in $|t|<1$. By Schottky's theorem there is a constant B, independent of p, such that

$$
\begin{align*}
\left|g_{p}\left(z_{2}\right)\right| & =\left|F_{p}(u)\right| \\
& \leqq \exp \left[\left(\frac{1}{1-|u|}\right)\left\{(1+|u|) \log \max \left(1,\left|F_{p}(0)\right|\right)+2 B\right\}\right] \tag{9}
\end{align*}
$$

Now $g_{p}\left(z_{1}\right)$ is positive and $\rightarrow \infty$ as $p \rightarrow \infty$. so for all sufficiently large p (9) gives, noting $F_{p}(0)=g_{p}\left(z_{1}\right)$,

$$
\left|g_{p}\left(z_{2}\right)\right| \leqq k\left|g_{p}\left(z_{1}\right)\right|^{L}
$$

where L, K are constants which depend on z_{1}, z_{2} but not on p. Thus for all sufficiently large p we have

$$
\begin{equation*}
0<g_{p}\left(\frac{1}{2} \gamma_{n+3}^{1 / 2}\right) \leqq K\left\{g_{p}\left(2 \gamma_{n}^{2}\right)\right\}^{L} \tag{10}
\end{equation*}
$$

By (8), however, we have

$$
2 \gamma_{n}^{2}<\gamma_{n+1}^{1 / 2}<\gamma_{n+1}
$$

and every iterate g_{k} is positive and increasing on the positive real axis, so for $k \leqq 1$

$$
\begin{aligned}
g_{k}\left(2 \gamma_{n}^{2}\right) & <g_{k}\left(\gamma_{n+1}\right)=g_{k-1}\left\{g\left(\gamma_{n+1}\right)\right\} \\
& <g_{k-1}\left(2 \gamma_{n+2}\right)<g_{k-1}\left(\frac{1}{2} \gamma_{n+3}^{1 / 2}\right.
\end{aligned}
$$

using (4) and (8). For all sufficiently large x one has $g(x)>K x^{L}$ and so for all sufficiently large k

$$
g_{k}\left(\frac{1}{2} \gamma_{n+3}^{1 / 2}\right)=g\left\{g_{k-1}\left(\frac{1}{2} \gamma_{n+3}^{1 / 2}\right)\right\}>g\left\{g_{k}\left(2 \gamma_{n}^{2}\right)\right\}>K\left\{g_{k}\left(2 \gamma_{n}^{2}\right)^{L}\right\},
$$

which contradicts (10). Thus the first assertion of the theorem is established: for $n>N$ the components C_{n} of $\mathscr{G}(g)$ which contain A_{n} are all different, and each is a bounded domain.

It follows at once that each C_{n} is a wandering domain for g. If this is not the case, then there exist integers $n>N, k>0, l>0$ such that $g_{k}\left(C_{n}\right)$ meets $g_{k+1}\left(C_{n}\right)$, i.e. since $g_{k}\left(C_{n}\right) \subset C_{n+k}, g_{l}\left(G^{\prime}\right) \subset G^{\prime}$, where $G^{\prime}=C_{n+k}$. The sequence $\left\{g_{i n}(z)\right\}, n=1,2, \cdots$ is bounded in G^{\prime}, taking values only in G^{\prime}. But this contradicts the fact that the whole sequence $\left\{g_{k}\right\}, k=1,2, \cdots$, tends locally uniformly to ∞ in G^{\prime}, as in every $C_{n}, n>N$.

The theorem is now established and clears up the problem of the existence of wandering domains, at least in the case of entire functions. It adds a little to the discussion of Baker (1963) where it was shown that, if for entire g the set ${ }^{(5}(g)$ has a multiply-connected component, G, then there are just two alternatives, namely:
I. G is unbounded and completely invariant and every other component of $\mathfrak{G}(f)$ is simply-connected, or
II. All components of $\mathfrak{E}(f)$ are bounded and infinitely many of them are multiply-connected.

It was conjectured in Baker (1963) that alternative II occurred in the case of the g of our theorem and this is now established. It is interesting to note [c.f Baker (1963)] that truncating the infinite product in (2) gives a polynomial

$$
P(z)=C z^{2} \prod_{n=1}^{k}\left(1+\frac{z}{\gamma_{n}}\right)
$$

such that alternative I applies to $(\mathbb{C}(P)$ which has an unbounded and multiplyconnected component.

References

I. N. Baker (1963), 'Multiply connected domains of normality in iteration theory', Math. Zeitschrift 81, 206-214.
P. Fatou (1919) (1920), 'Sur les équations fonctionelles', Bull. Soc. Math. France 47, 161-271 and 48, 33-94, 208-314.
P. Fatou (1926), 'Sur l'itération des fonctions transcendantes entières', Acta Math. 47, 337-370.
M. V. Jacobson (1969) 'On the problem of the classification of polynomial endomorphisms of the plane', Math U.S.S.R. Sbornik 9, 345-364 = Engl. transl. of Mat. Sbornik 80, (122) No. 3 (Russian).
G. Julia (1918), 'Mémoire sur l'itération des fonctions rationelles', J. de Math. Pures et Appliquées (8) 1, 47-245.
D. A. Pelles (1974), Iteration of endomorphisms of $P^{n}(C)$, Univ. of North Carolina (mimeographed).

Department of Mathematics
Imperial College of Science \& Technology
London, SW7. 2RH
England

