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Maximal normal subgroups of the

integral linear group

of countable degree

R.G. Burns and I.H. Farouqi

This paper continues the second author's investigation of the

normal structure of the automorphism group T of a free abelian

group of countably infinite rank. It is shown firstly that, in

contrast with the case of finite degree, for each prime p every

linear transformation of the vector space of countably infinite

dimension over Z , the field of p elements, is induced by an

element of V . Since by a result of Alex Rosenberg GL(N Z )

has a (unique) maximal normal subgroup, it then follows that T

has maximal normal subgroups, one for each prime.

0. Introduction

Let A be a free abelian group of countably infinite rank. This

paper continues the investigation, begun in [2], of the lattice of normal

subgroups of the automorphism group of A , which, following [2], we shall

denote briefly by F rather than> say, GL(N , Z) . To be explicit, we

prove here that T has maximal normal subgroups, one for each prime.

Our proof involves the quotient group A/pA , p prime, which can

also be regarded as a vector space of countably infinite dimension over the

field of p elements. Every automorphism of A induces an automorphism
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- linear transformation from the other point of view - of A/pA . Using

results of Rosenberg [4] we show that, in perhaps surprising contrast with

the ease of finite dimension, the converse is true:

THEOREM 0.1. Every automorphism of A/pA is induced by an

automorphism of A .

Thus the homomorphism \p .say, from T to the automorphism group of

A/pA , defined in the obvious way, is onto. Since, again by a result of

Rosenberg [4], the automorphism group of A/pA has a unique maximal normal

subgroup, it follows immediately that:

COROLLARY 0.2. The group T has maximal normal subgroups, one for

each prime.

We remark that while the group F/ker \p (ĉ  aut A/pA ) has modulo its

centre only one proper nontrivial normal subgroup (Rosenberg [4]), on the

other hand there is a profusion of normal noncongruence subgroups of T

contained in the principal congruence subgroup ker ^ ([2]). This

contrasts also with the situation for SL(n, Z) , n finite (see [3]).

An explicit description of the maximal normal subgroups whose

existence we show, can be deduced from the description in [2] of the unique

maximal normal subgroup of F/ker ty

We write briefly A for A/pA and r [A ) for the automorphism group

of A . Following [4] we call an element y of V [A ) locally algebraic

if for all x (. A , the subspace spanned by {xy1 \ i = 0, 1, 2, .. .} is

finite-dimensional. As a special case of Theorem A of [4] we have that

F {A ] is generated by the elements of the form 1 + p where 1 denotes

2
the identity map and p is an endomorphism of A such that p = 0 .

Such automorphisms are easily seen to be locally algebraic, so that

certainly T [A ] is generated by its locally algebraic elements. Thus to

prove Theorem 0.1 it suffices to prove the following result.

THEOREM 0.3. Every locally algebraic element of T[A ) is induced

by an element of F .
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The remainder of the paper is devoted to proving this. In Section 1

we state the two lemmas we need for the proof (Lemmas 1.1, 1.2), prove one

of them (Lemma 1.1), and deduce Theorem 0.3. The proof of Lemma 1.2 is

relegated to Section 2. This lemma states that any basis of A can,
P

after minor modification, be lifted to a free basis of A ; the finite

dimensional analogue of this is well-known.

1. Lemmas and proof of Theorem 0.3

We shall say that an automorphism <j> of A is finitary if there is

a direct decomposition of A , A = H © K say, such that H has

P P P P P
finite dimension, H <j> = H and (j> restricted to K is the identity

map.

LEMMA 1.1. Every finitary automorphism of A is induced by an

automorphism of A .

For the proof of this (and also for the proof of Theorem 0.3) we need

the following lemma about lifting a basis of A to one of A . See

Section 2 for its proof.

LEMMA 1.2. Let n be the natural map from A to A . Given any

basis V-., v_, ... of the vector space A there is a free basis

e l ' C 2 ' '•' °f *^e free abelian group A 3 and integers k , fe?, ... such

that

c_.n = kiVi (i = 1, 2, ...) .

COROLLARY 1.3. Let A =H @K be any direct decomposition of

A . Then there is a direct decomposition of A , A = H © K say, such

that HT\ = H , Kn = K 3 where r\ : A -*• A is the natural map.

Proof of Lemma 1.1. Let <j> be a f in i ta ry automorphism of A and

le t A = H © K , where H , K are as in the definition given above of

a f in i tary automorphism (so tha t , in par t i cu la r , H has f i n i t e

dimension).
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Let H ® K be a corresponding direct decomposition of A as in

Corollary 1.3- Let {o , c , ...} be a free basis of A such that

{c±, ..., on) is a free basis of H , and {en+1» C M + 2. •••} is a free

basis of K . Writing u. = o.x\ , we then have that {u , .. . , u } is a

basis of H , and {u , u ...} is a basis of K ; also, for

i = 1, ..., n , we have

for some a. . € Z , while for t > w we have u.$ = u. . Since

H § = H , the matrix (a. .] x has nonzero determinant d say, where

0 < d < p (taking Z = {o, 1, ..., p-l} J. Consider the automorphism <)>

of A defined by

wi*l = Ui ^ = lj • • • ' " ) '

uA = da. (i > n) .

We shall show that <f> is induced by an element of F .

To this end we write \b. .1 for the infinite matrix over Z

representing (j) relative to the basis {u1 , wo, ...} ; thus b.. = a..

, a

m be a positive integer such that a = 1 (in Z J . Writing

m + « - 1 = t , define the matrix (c. .) . to be the t x t upper left

hand corner of [b. .) ; that is, a. . = b. . (l 5 t, j 5 t) . Clearly

det(c..). , = a = 1 , and therefore (see, for example, [?, Lemma 13l)

there is a matrix [a. .) , . over Z such that o. . = e. . mod p , and

det(8. 0+x* ~ ^ ^in ^ '̂ N o w l e t ^ - 0 xm t>e t n e m X m s c a l a r matrix

over Z with all diagonal entries equal to d (and O's elsewhere).

Since det(c£. - ) m X m = a = 1 , we have again that there is a matrix

(1 S i, j 5 n) , b.. = d (i > n) , and all other entries are zero. Let
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[d.j)mm over Z whose determinant is 1 (in Z ), such that

d. . = d. . mod p . Clearly the infinite matrix [b. .) is the direct sum of

the matrix (e..J, , and infinitely many copies of [d. .) . Define

the infinite integral matrix (o . .) to be the direct sum of the matrix

[p • •) +x+ and infinitely many copies of (d. .) . Since these matrices

are all unimodular, it follows that relative to the basis {a , cp, ...} ,

(b. .) represents an automorphism of A , which we denote by (j>. . Clearly

<(>, induces ()>. .

Similarly we define another automorphism (j>? of A by

"i*2 = Ui {i = 1, ..., n) ,

"i*2 = ^"~ ui (̂  > ") •

We now imitate in part the above procedure to produce an element of F

inducing (fu . Thus let [h. • ) m x m be the m x m scalar matrix with

diagonal entries all a . As before, since det [h. .) = (a ) = 1 ,

there is a matrix f«. .] over Z with determinant 1 such thatv %3'mixm

h. . = h. . mod p . Since det [h. .) = 1 , the infinite matrix over Z

obtained by taking the direct sum of the n x n identity matrix with

infinitely many copies of (fl. .) , represents an automorphism <)>„ say,

of A , relative to the free basis {e.., a , . . . } . It follows that (L

induces <)>„ , since the infinite matrix over Z representing <j>? relative

to {uu ...} is just the direct sum of the n x « identity matrix

over Z with infinitely many copies of [h. .) .

Finally it is easily verified from their construction that <(><)>„ = <)> .

Hence <j> is induced by the element 'K'f'p °f T • This completes the

proof.

Proof of Theorem 0.3. Let y be a locally algebraic element of
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T[A ) . By imitating the proof of Lemma" 2. k of [4] we shall show that y

can be factorized into a product of two elements of T[A ) which are

relatively easily seen to be induced by elements of T .

Choose any nonzero element a of A and write V. for the subspace

of A spanned by {ay1' \ i - 1, 2, } . Since Y is locally

algebraic, V has finite dimension. Next choose any element of

A - V ; the orbit of this element under y , together with V. spans a

finite-dimensional subspace V, © V~ which is invariant under y .

Continuing in this way we obtain for every i - 1 a finite dimensional

subspace V © Vo © . . . © V. , invariant under y . If we take care to do

this in such a way as to ensure that every element of A is in some

V © Vo © . .. © V. , then the union of bases for the V. is a basis for

A . By Lemma 1.2 we can choose bases for the V. so that the union of
P •*-

these bases can be lifted under n to a free basis of A . Let X be a

basis for A obtained as such a union, and let X be a free basis of A

such that Xr\ = X . Relative to X , y is represented by the infinite

matrix

P =

where the blocks M. (i = 1, 2, ...) are finite, square, nonsingular

matrices over Z , and all entries above these blocks are zero. If we

denote by M the direct sum of the M. , it is clear that M represents

an automorphism of A , and that

P = MQ ,

where Q is obtained from P by replacing the M. by identity matrices

of the appropriate size (and leaving the blocks indicated by asterisks as
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they are). It is clear that Q is invertible over Z , since if we regard

A as the group of all finitary sequences of integers, then the rows of Q

generate A . Hence the element of T\A ) represented by Q relative to

the basis X is induced by the element of T represented by Q relative

to X . Hence the proof will be complete if we can show that the element

y say, of T(A ) , represented by M , is induced by an element of V .

We proceed to show this. Let d. € Z be the determinant of M.
i p ^

{i = 1, 2, ...) . It is not too difficult to show that the sequence

{d_, dp, ...} of elements of Z (in fact any sequence of such elements)

can be reordered to give a sequence {d', dl, •••} say, with the property

that

FT d1 = i a = i, 2, ...)
3

for some strictly increasing sequence {n. , n , ...} of positive integers.

(Note that no condition is placed on the product of d', ..., d' .) It

follows from this that there is an automorphism 7r of A which simply

permutes X , such that the matrix N representing Try is the direct sum

of the blocks M. in such an order, say {Ml | i = 1, 2, ...} , that

det M\ = d\ . In view of the special property of the sequence {d'.\ , it

follows by grouping finite numbers of consecutive M'. , that N is the

direct sum of finite matrices N , N , ... , where N. is the direct sum

\
of finitely many of the M\ , det N = J~f d\ # 0 , and det N. = 1

-7=1 " ^

{i — 2) . Thus Try can be factorized as <f>\> , where <J> is a finitary

automorphism of A (represented relative to X by the direct sum of N

and the infinite identity matrix), and V is represented by the direct sum

D say of the n x n identity matrix and the matrices N , N ,

Since, for i - 2 , det N. = 1 in Z , we can find (as in the proof of
% p
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Lemma 1.1) integer matrices N , N , ... of determinant 1 (in Z ) such

that the entries of N. are congruent modulo p to the corresponding

entries of N. . Define D to be the integer matrix obtained as the

direct sum of the n x n. identity matrix and AL, N , ... . Clearly D

represents an automorphism of A relative to X , and since Xr\ = X , this

automorphism induces V .

Since, by Lemma 1.1, <j> is induced by an element of T , and since

TI~ is clearly induced (by the automorphism in F which permutes X

appropriately), it follows that IT" <f>v = p is induced by an element of

F , as required.

2. Proof of Lemma 1.2

We have to show that, given any basis {y , y , ...} of A , there

is a free basis {a-,, Cp, — } of A and integers fc , &„, ... such that

a .r\ - k .V. (•£ = 1, 2, ...) . For convenience we shall understand A in

this section to be the group of all finitary sequences of integers (that

is, infinite sequences with finite support), A to be the vector space of

all finitary sequences of elements of Z , and n : A •*• A to be the map

P P
replacing members of each sequence in A by their images under the natural
map from Z to Z

P

We shall need some further notation. For each nonzero

x = {x. | i = 1, 2, ...} € A , write X(x) for the "length" of x ; that

is, for the largest integer i such that x. + 0 . Write also u(x) for

x, / \ ; that is, u(x) is the last nonzero member of the sequence x .

Define X, \i for nonzero sequences in A similarly.

We isolate part of the proof as a lemma. This lemma says that, given

m > 1 sequences from A such that:

(1) their images under r) are linearly independent;

(2) they can be ordered so that their lengths are strictly
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increasing except for the last two, which have the same

length; and

(3) the last entries of the first (m-l) sequences are all 1 ,

then the mth sequence can be replaced by a linear combination of the m

sequences plus an element in ker ri , which:

(1) is of smaller length;

(2) differs in length from the first (m-l) sequences; and

(3) has last entry 1 .

The notation used in the following statement of the lemma is chosen for

ease of application to the proof of Lemma 1.2.

LEMMA 2.1. Let a., , a be m > 1 sequences from A

satisfying the following three conditions:

a.n, — , a n are linearly independent;

X K ) < ••• <XKJ = X(*J *
v[a.) = 1 (i = 1, ..., m-1) .a.

Then there exist integers I , , I , k , a sequence a in ker n

and an integer r , l S r S m ^ such that the sequences a.

(i = 1, . . . , m) given by

(1)

a ^ = a. (i = 1, . . . , r -1) ;

(1)
ar -kam + a + ^ ljaj >

a,. = a. (i = r+1, . . . , m) ,

satisfy the following two conditions

(3)

Proof. Write briefly X. for A(a.] (i = 1, ..., m) . There are
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integers n n such that

b = am + V l + n2a2 + • • • + V l V l

has i t s X.th components (i = 1, . . . , m) a l l zero. Not every component
If

of b is divisible by p since the a.r| (i = 1, ..., m) are linearly

independent. Let j be the largest integer such that the jth. component

of b is not divisible by p , and let k be an integer such that the

jth component of kb is congruent to 1 modulo p . Define a € A to be

such that a € ker X] (that is, its components are all divisible by p ),

and kb + a has its X.th components (•£ = 1, ..., m) all zero, all its
If

components after the jth zero, and its jth component 1 . There is an

integer r with 1 5 r < m such that

X , < j < X
r-1 r

(where X is defined to be 0 ) . Set I. = kn. (i = 1, ..., m-l) .

With these definitions of k, I , ..., I ,, a, r , the conclusion of the

lemma is readily verified.

Proof of Lemma 1.2. We may assume that the v. have been ordered so

that Xfu.) 5 Xfv. ) (i = 1, 2, ...) . We define a sequence

{m , m , ...} (which may be finite or even empty) of integers as follows:

let rrt-, be the smallest integer such that Xfy ,l=Xfv ) , and for
x >• m -x-7 K m-.J

•i > 1 , define m. inductively to be the smallest integer greater than
1

m. -, such that \(v ,] = \[v ] . For each i > 1 which is not an m.
t-1 *• m.-V K m.' j

for any j , define k. to be an integer such that fe.u(u.) is the

identity element of Z . Corresponding to each such y. choose a. € A
p v i

such that a.n = k.v. and ufa.) = 1 . For each i > 1 that is an m.
v ^ v K v' j

for some j , choose a. £ A such that a.r\ - v. and Xfa.) = X(u.) .

[Thus for these i , although u(<3.) ̂ 0 mo<i p j we may not have that
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We now define a sequence

( U ) « ( 1 ) . a ( 2 ) , . - .

(possibly finite or even empty) of elements of A , all in ker n , and a

sequence

of integers, as follows: the elements a., ..., a of A satisfy the

hypotheses of Lemma 2.1 (with m replacing m ) , so that there is a

sequence a (corresponding to a in Lemma 2.1), an integer k

(corresponding to k ), and sequences a , ..., a , satisfying the

conclusion. Then <zl , , a , a , ..., a again satisfy the

(i) U)
hypotheses of Lemma 2.1. Suppose inductively that a , — , a have

been defined so that

(i) (i)
al ' •••' am. ' V + l » •••' am. n^ ^ t+1

satisfy the hypotheses of Lemma 2.1; we define a , k , and
m

a: , ..., a as in the conclusion. It then follows that
1r> J.

again satisfy the hypotheses of Lemma 2.1. This completes the definition

of the sequences (k) and (5) and of the elements a. (for sufficiently

large j ).

For each i > 1 let r{i) be the least of the integers j for which

a. is defined. [Thus m,.s.<i'Sm/.s .) From the definition of

the a. fl S i £ m. ) in terms of both the a.*7 (l 5 i S m.) and
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the a^ (m. < i £ mJ+1) » a s in (1)> and the fact (corresponding to (2))m. < i £ mJ+1

that

< ... < Xl/i^'l (j = 1, 2, ...) ,

it follows that the sequence

becomes constant after at most A a. •'I steps. Hence for each i - 1
I *• J

there is a 3 such that for all s 2 1 , a."" = a. + S (= b. say). This

together with (l) implies that the sets

B = [bt I i = 1, 2, ...}

and

C = {a. I i = 1, 2 £ # m. for any j} u

^-"'l'-' }
generate the same subgroup of A . Now the set C has one of the

properties demanded in Lemma 1.2, namely, if we define a. = a. [i / m.

for any j } , o = k a + a , then for all i , e.r\ = k.v. . To
T* 1^ If

complete the proof we shall show that B , and hence C , generates the

whole of A .

Since Cr\ spans A , and B and C generate the same subgroup of

A , we have that Br\ also spans A . Now (2), (3) imply that

(6) x(*g < \[bi+1) {i = 1,2, ...) ,

and

(T) u(i.) = 1 (£ = 1, 2, ...) .

From (6) and (7) it follows that the vectors b r\, b r\, ... , are also "in

echelon"; that is, that A(^n) < A(^.+ln) (£ = 1, 2, ...) . This and
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t he f ac t t h a t the b .r) span A t oge the r imply t h a t X(b.n) = i

(£ = 1, 2 , . . . ) , whence by ( 7 ) , a l so Xffc.) = i . This and (7) imply t h a t
Is

B is a free basis for 4 , as required.
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