ZERO DIVISORS AND FINITE NEAR-RINGS

S. LIGH and J. J. MALONE, Jr. (Received 25 March 1969, revised 6 June 1969)
Communicated by G. B. Preston

A near-ring is a triple $(R,+, \cdot)$ such that $(R,+)$ is a group, (R, \cdot) is a semigroup, and is left distributive over + ; i.e. $w(x+z)=w x+w z$ for each w, x, $z \in R$. The most comprehensive work on near-rings is [1]. A near-ring R is distributively generated if there exists $S \subset R$ such that ($S, \cdot \cdot$) is a sub-semigroup of (R, \cdot), each element of S is right distributive, and S is an additive generating set for $(R,+)$. Distributively generated near-rings, first treated in [3], arise out of consideration of the system generated by the endomorphisms of an (not necessarily commutative) additive group. A near-field is a near-ring such that the nonzero elements form a group under multiplication. Near fields are discussed in [9]. An element $x \neq 0$ in R is a left (right) zero divisor if there is $a \neq 0$ in R such that $x a=0(a x=0)$. A zero divisor is an element that is either a left or a right zero divisor. In a near-ring R it will be assumed that $0 x=0$ for each $x \in R$.

In Section 1 near-rings with no zero divisors are studied. In Section 2 it is shown that a near-ring with a finite number of zero divisors is finite. This generalizes a ring theoretic result. In Section 3 a ring theoretic result concerning elements that are not zero divisors is generalized to distributively generated near-rings.

1. Near-rings with no zero divisors

In this section it is assumed that all near-rings dealt with are finite and have no zero divisors.

Lemma 1.1. Let R be a near-ring. For each nonzero $x \in R$ there exists a least positive integer n such that $x^{n+1}=x$ and, for this n, x^{n} is a left identity. In particular, if $x^{2}=x$ then x is a left identity.

Proof. Since $\left\{x^{n} \mid n\right.$ a positive integer $\}$ is finite, it follows that for each nonzero x there exists a least positive integer n such that $x^{n} x=x$. As in the case of rings without zero divisors, one proves, by using left distributivity, that $R=x R$. But $R=x R$ and $x^{n} x=x$ imply that x^{n} is a left identity. In particular, if $n=1$ then x is a left identity.

Theorem 1.2. If R has a nonzero right distributive element, then R is a nearfield and $(R,+)$ is a commutative group.

Proof. Let $x \in R, x \neq 0$, be right distributive. By Lemma 1.1 there exists a positive integer n such that x^{n} is a left identity. From $\left(w x^{n}-w\right) x=0, w \in R$, it follows that x^{n} is also a right identity. For an arbitrary nonzero $w \in R, R=w R$ so that there exists $z \in R$ such that $x^{n}=w z$. Thus $(R-\{0\}, \cdot)$ is a group. It was proved in [8] that the additive group of a near-field is commutative. (H. Zassenhaus [10] had previously shown that the additive group of a finite near-field is commutative.)

Corollary 1.3. If R has a unique left identity, then R is a near-field.

Proof. Let e be the unique left identity. For nonzero $x \in R, x^{n} x=x=x x^{n}$ and $x^{n} y$ for each $y \in R$. Thus $e=x^{n}$ and $x=x e$ so that e is a right identity. But, as a right identity, e is right distributive.

Lemma 1.4. [5, p. 60] Let $(G,+)$ be a finite group with an automorphism α such that $\alpha^{2}=I$ and such that 0 is the only fixed point for α. Then G is commutative.

Theorem 1.5. Let R be a near-ring such that $(R,+)$ is noncommutative. Then for each $x \in R$ there is a unique $y \in R$ such that $x=y^{2}$.

Proof. Let $x \in R, x \neq 0$, and let n be the positive integer of Lemma 1.1. Assume $n=2 k$, where $k \geqq 1$. Consider the map $\alpha:(R,+) \rightarrow(R,+)$ defined by $(y) \alpha=x^{k} y$. It is immediate that α is an automorphism and that $\alpha^{2}=I$. Suppose there exists a nonzero $y \in R$ such that $x^{k} y=y$. Since $y R=R$ there exists $y^{\prime} \in R$ such that $y y^{\prime}=x^{2 k}$. Then $x^{k} y y^{\prime}=y y^{\prime}=x^{2 k}$, and $x^{k}=x^{2 k}$. From this contradiction it follows that such a y does not exist. Thus α satisfies the conditions of Lemma 1.4 and $(R,+)$ is commutative. This contradiction implies that n is odd. Thus $n+1$ is even, say $n+1=2 m$, and $\left(x^{m}\right)^{2}=x$. Also if $\left(x^{t}\right)^{2}=x$, then $t \geqq m$.

It remains to be shown that if $y^{2}=x$, then $y=x^{m}$. From the first part of the proof, there exists a least positive integer t such that $\left(y^{t}\right)^{2}=y$. Since $y^{2}=x$, it follows that $y=y^{2 t}=x^{t}$. This implies that the order of y (in the multiplicative group generated by x), namely $2 t-1$, divides $2 m-1$. Thus $t \leqq m$, so that $t=m$, and $y=x^{m}$.

Example 1.6. The near-ring on $\left(Z_{5},+\right)$ gives as $\# 7$ in [2, Section 2.3] shows that Theorem 1.5 cannot be extended to near-rings defined on commutative groups.

On the elements of any group $(G,+)$ the multiplication defined by $0 g=0$ and $g_{1} g=g$ for $g_{1} \neq 0$ and $g \in G$ is such that $(G,+, \cdot)$ is a near-ring. This is one of the "trivial" multiplications discussed in [7]. For several classes of groups, this is the only near-ring with no zero divisors definable on the groups. Some such classes are given below.

Let R be a near-ring and let $x \in R, x \neq 0$. The map $\alpha_{x}: R \rightarrow R$ defined by $(y) \alpha_{x}=x y$ is an automorphism of $(R,+)$. Thus each row in the multiplication table of R may be considered to be (the images under) an automorphism. If x is
such that there exists a nonzero $y \in R$ so that $x y=y$, then $x z=z$ for each $z \in R$. This follows since $R=y R$ and z may be written as $y w$ for some $w \in R$. This leads to

Theorem 1.7. If $(R,+)$ is a complete group, then the near ring R has the trivial multiplication.

Proof. Since the inner automorphism determined by conjugation by a nonzero x leaves x fixed, this result follows from the discussion above.

It is clear that in order for R to have a non-trivial multiplication, $(R,+)$ must have at least one fixed point free automorphism. The dihedral group D_{8} has no fixed point free automorphism and so admits only the trivial multiplication. Also, a group with a unique element of order 2 such as the quaternion group Q_{8} would admit only the trivial multiplication.

Again, for $x \neq 0$, in R, let n be the positive integer of Lemma 1.1. Then for $1 \leqq t<k \leqq n$, there cannot be a nonzero y such that $x^{k} y=x^{t} y$. For if $k=t+c$, it would follow that $x^{c} y=y$, with $c \leqq n-1$. From this contradiction it is seen that $x y, x^{2} y, \cdots, x^{n} y=y$ are distinct. Recalling that the $\alpha_{x} i, i=1, \cdots, n$, where $(y) \alpha_{x} i=x^{i} y$, are automorphisms, one sees that the elements $(y) \alpha_{x} i$, $i=1, \cdots, n$, are distinct elements of order $|y|$. Therefore n is less than or equal to the number of elements of order $|y|$ for each nonzero $y \in R$. Of course, n is the order (in the group of automorphisms of $(R,+)$) of the automorphism associated with left multiplication by x.

2. Near-rings with a finite number of zero divisors

In this section the zero element is also taken to be a zero divisor. K. Koh [6] has shown that a ring having $n+1$ left (right) zero divisors, n a positive integer, is finite and does not contain more than $(n+1)^{2}$ elements. In this section Koh's result is extended to near-rings.

Theorem 2.1. Let R be a near-ring with $n+1$ right zero divisors. Then R is finite and does not contain more than $(n+1)^{2}$ elements.

Proof. For each $y \in R$, define $R_{y}=\{x \in R \mid y x=0\}$. Clearly R_{y} is a subgroup of R. Since R has $n+1$ right zero divisors, there is $a \in R$ such that $R_{a} \neq 0$ and the order of R_{a} is at most $n+1$. For otherwise R has more than $n+1$ right zero divisors. Let $w \neq 0$ be an element of R_{a}. The subgroup $w R$ is contained in R_{a} since $a(w x)=(a w) x=0 x=0$. Hence the order of $w R$ is at most $n+1$. Consider the $\operatorname{map} f: R \rightarrow w R$ defined by $(x) f=w x$ for each $x \in R$. It easily follows that f is a homomorphism, that the kernel of f is R_{w}, and that f is an onto map. Thus, using the fundamental homomorphism theorem in group theory, it follows that $R / R_{w} \cong w R$. Since the order of $w R$ is the order of R / R_{w}, the order of R is the product of the order of $w R$ and the order of R_{w}, which is less than or equal $(n+1)^{2}$.

If in Theorem 2.1 right is changed to left, the conclusion does not follow. This is illustrated by

Example 2.2. Let $(G,+$) be an infinite group. Let H be a finite subset of G which contains 0 and has nonzero elements. Define $h g=0$ for each $h \in H, g \in G$ and define $x g=g$ for each $x \in G-H, g \in G$. Then ($G,+, \cdot)$ is a near-ring [7]. Each element in H is a left zero divisor and H is finite; but G is not finite.

However, the conclusion may still be obtained if one of the left zero divisors is right distributive. This is shown in

Theorem 2.3. Let R be a near-ring with $n+1$ left zero divisors, at least one of which is right distributive. Then R is finite and does not contain more than $(n+1)^{2}$ elements.

Proof. For each $x \in R$, define $L_{x}=\{y \in R \mid y x=0\}$. Note that L_{x} is a subgroup if x is right distributive. Let w be a right distributive element that is a left zero divisor. Then there is $z \neq 0$ in R such that $w z=0$. Since there is only a finite number of left zero divisors, it is seen that the order of L_{z} is less than or equal to $n+1$. Since w is right distributive, $R w=\{x w \mid x \in R\}$ is a subgroup of R. Furthermore, $R w \subseteq L_{z}$ since $(x w) z=x(w z)=x 0=0$. Hence the order of $R w$ is less than or equal to $n+1$. Consider the map $f: R \rightarrow R w$ defined by $(x) f=x w$. Because w is right distributive, f is a homomorphism from R onto $R w$. Thus $R / \operatorname{Ker} f \cong R w$. But $\operatorname{Ker} f=R_{w}$. Since the order of L_{w} is less than or equal to $n+1$, it follows that the order of $\operatorname{Ker} f$ is less than or equal $n+1$. Consequently the order of R is less than or equal to $(n+1)^{2}$. This completes the proof.

3. Integral elements

In this section a result of \mathbf{N}. Ganesan [4] is generalized.
Definition 3.1. Let R be a near-ring. An element $x \neq 0$ in R is said to be an integral element if x is not a zero divisor.

Ganesan showed that the integral elements of a finite ring R determine a multiplicative group whose identity is also the identity element for R. This result cannot be extended to arbitrary near-rings (see Example 3.3 below) but can be extended to distributively generated near-rings.

Theorem 3.2. Let R be a distributively generated near-ring with a finite number of right zero divisors and at least one integral element. Then the set of integral elements of R is a multiplicative group whose identity is also the identity element for R.

Proof. According to Theorem 2.1, R is finite. If x is an integral element, then $x R=R$ and there is $e \in R$ such that $x e=x$. But $x(e x-x)=0$ and this implies that $e x=x$. Hence e is an identity for x. For each $y \in R, x(e y-y)=0$ and this implies ey $=y$. Since R is a distributively generated near-ring, $x=x_{1}+x_{2}+\cdots$
$+x_{n}$ where x_{i} is either a right or anti-right distributive element. Thus

$$
\begin{aligned}
(y e-y) x & =(y e-y) x_{1}+(y e-y) x_{2}+\cdots+(y e-y) x_{n} \\
& = \pm\left(y e x_{1}-y x_{1}\right) \pm\left(y e x_{2}-y x_{2}\right) \pm \cdots \pm\left(y e x_{n}-y x_{n}\right) \\
& = \pm\left(y x_{1}-y x_{1}\right) \pm\left(y x_{2}-y x_{2}\right) \pm \cdots \pm\left(y x_{n}-y x_{n}\right) \\
& =0
\end{aligned}
$$

with + chosen if x_{i} is right distributive and - chosen if x_{i} is anti-right distributive. The fact that x is not a zero divisor implies that $y e=y$. Thus e is an identity element for R.

It remains to be shown that the set N of integral elements forms a multiplicative group and e is the identity. Suppose $z, w \in N$. If there is $y \in R$ such that ($z w) y$ $=0$, then either z or w is a zero divisor. Thus N is closed under multiplication. Since e is an identity for R and $e \in N$, it follows that e is the identity for N. Now suppose $w \in N$. Since R is finite, $w R=R$ and there is a $z \in R$ such that $w z=e$. Since $w(z w-e)=0$, it follows that z is the multiplicative inverse of w. Suppose there is $x \neq 0$ in R such that $z x=0$. Then $x=w z x=w 0=0$, which is a contradiction. Thus N is a multiplicative group and the theorem is proved.

If a near-ring is not d.g. then the integral elements may not form a multiplicative group. This is shown by

Example 3.3. In the near-ring given as $\# 10$ in [2, Section 2.1] the elements 1 and 3 are the integral elements, but they do not determine a multiplicative group.

References

[1] J. C. Beidleman, On near-rings and near-ring modules, Doctoral dissertation, The Pennsylvania State University, 1964.
[2] J. R. Clay, 'The near-rings on groups of low order', Math. Z. 104 (1968), 364-371.
[3] A. Fröhlich, 'Distributively generated near-rings', Proc. London Math. Soc. (3) 8 (1958), 76-108.
[4] N. Ganesan, 'Properties of rings with a finite number of zero divisors', Math. Ann. 157 (1964) 215-218.
[5] I. N. Herstein, Topics in algebra (Blaisdell, New York, 1964).
[6] K. Koh, 'On properties of rings with a finite number of zero divisors', Math. Ann. 171 (1967), 79-80.
[7] J. J. Malone, 'Near-rings with trivial multiplications', Amer. Math. Monthly 74 (1967), 1111-1112.
[8] B. H. Neumann, 'On the commutativity of addition', J. London Math. Soc. 15 (1940), 203208.
[9] H. Wefelscheid, 'Vervollstầndigung topologischer Fastkörper', Math. Z. 99 (1967), 279— 298.
[10] H. Zassenhaus, 'Über endliche Fastkörper', Abh. Math. Sem. Univ. Hamburg 11 (1935), 187-220.

Department of Mathematics, Texas A \& M University
College Station, Texas 77843, United States of America

