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A near-ring is a triple (JR, +, •) such that (R, +) is a group, (R, •) is a semi-
group, and • is left distributive over +; i.e. w(x+z) = wx+wz for each w, x,
z e R. The most comprehensive work on near-rings is [1]. A near-ring R is dis-
tributively generated if there exists S <= R such that {S, •) is a sub-semigroup of
(R, •), each element of S is right distributive, and S is an additive generating set for
(R, +). Distributively generated near-rings, first treated in [3], arise out of con-
sideration of the system generated by the endomorphisms of an (not necessarily
commutative) additive group. A near-field is a near-ring such that the nonzero ele-
ments form a group under multiplication. Near fields are discussed in [9]. An
element x # 0 in R is a left {right) zero divisor if there is a # 0 in R such that
xa = 0 {ax = 0). A zero divisor is an element that is either a left or a right zero
divisor. In a near-ring R it will be assumed that Ox = 0 for each xe R.

In Section 1 near-rings with no zero divisors are studied. In Section 2 it is
shown that a near-ring with a finite number of zero divisors is finite. This gener-
alizes a ring theoretic result. In Section 3 a ring theoretic result concerning ele-
ments that are not zero divisors is generalized to distributively generated near-rings.

1. Near-rings with no zero divisors

In this section it is assumed that all near-rings dealt with are finite and have
no zero divisors.

LEMMA 1.1. Let R be a near-ring. For each nonzero x e R there exists a least
positive integer n such that x"+1 = x and, for this n, x" is a left identity. In par-
ticular, if x2 = x then x is a left identity.

PROOF. Since {xf | n a positive integer} is finite, it follows that for each non-
zero x there exists a least positive integer n such that x"x = x. As in the case of
rings without zero divisors, one proves, by using left distributivity, that R = xR.
But R = xR and x"x = x imply that x" is a left identity. In particular, if n = 1
then x is a left identity.

THEOREM 1.2. If R has a nonzero right distributive element, then R is a near-
field and {R, +) is a commutative group.
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PROOF. Let xeR, x ¥= 0, be right distributive. By Lemma 1.1 there exists
a positive integer n such that x" is a left identity. From (wx* — w) x = 0, w e R, it
follows that x" is also a right identity. For an arbitrary nonzero weR,R — wR
so that there exists zeR such that x" = wz. Thus (i?-{()}, •) is a group. It was
proved in [8 ] that the additive group of a near-field is commutative. (H. Zassenhaus
[10] had previously shown that the additive group of a finite near-field is
commutative.)

COROLLARY 1.3. If R has a unique left identity, then R is a near-field.

PROOF. Let e be the unique left identity. For nonzero xeR, xfx = x = xx*
and x"y for each yeR. Thus e = x" and x = xe so that e is a right identity. But,
as a right identity, e is right distributive.

LEMMA 1.4. [5, p. 60] Let (G, +) be a finite group with an automorphism
a such that a2 = I and such that 0 is the only fixed point for a. Then G is commutative.

THEOREM 1.5. Let R be a near-ring such that (R, + ) is noncommutative.
Then for each xeR there is a unique yeR such that x = y2.

PROOF. Let xeR, x # 0, and let n be the positive integer of Lemma 1.1.
Assume n = 2k, where k ^ 1. Consider the map a: (R, +) -* (R, +) defined by
(y)a. = x*y. It is immediate that a is an automorphism and that a2 = /. Suppose
there exists a nonzero yeR such that JC*J> = y. Since yR = R there exists y' e R
such that yy' = x2k. Then x*yy' = yy' = x2k, and x* = x2k. From this contradic-
tion it follows that such a y does not exist. Thus a satisfies the conditions of Lemma
1.4 and (R, + ) is commutative. This contradiction implies that n is odd. Thus
n+1 is even, say n +1 = 2m, and (x™)2 = JC. Also if (x?)2 = x, then t *i m.

It remains to be shown that if y2 = x, then y = x™. From the first part of the
proof, there exists a least positive integer t such that (y1)2 = y. Since JF2 = x, it
follows that y = >>2' = x*. This implies that the order of y (in the multiplicative
group generated by x), namely 2t— 1, divides 2 m - 1 . Thus < g m, so that t = m,
and >» = x".

EXAMPLE 1.6. The near-ring on (Z5, + ) gives as # 7 in [2, Section 2.3]
shows that Theorem 1.5 cannot be extended to near-rings defined on commutative
groups.

On the elements of any group (<7, + ) the multiplication denned by Og = 0
and g^g = g for gl # 0 and g e G is such that (G, +, •) is a near-ring. This is
one of the "trivial" multiplications discussed in [7]. For several classes of groups,
this is the only near-ring with no zero divisors definable on the groups. Some such
classes are given below.

Let R be a near-ring and let x e R, x ^ 0. The map ax: R -> R defined by
(j>)<xx = xy is an automorphism of (R, +). Thus each row in the multiplication
table of R may be considered to be (the images under) an automorphism. If x is

https://doi.org/10.1017/S1446788700006807 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006807


376 S. Ligh and J. J. Malone, Jr. [3]

such that there exists a nonzero y e R so that xy = y, then xz = z for each ze R.
This follows since R = yR and z may be written as yw for some w e R. This
leads to

THEOREM 1.7. •//" (i?, + ) is a complete group, then the near ring R has the
trivial multiplication.

PROOF. Since the inner automorphism determined by conjugation by a
nonzero x leaves x fixed, this result follows from the discussion above.

It is clear that in order for R to have a non-trivial multiplication, (R, + ) must
have at least one fixed point free automorphism. The dihedral group Ds has no
fixed point free automorphism and so admits only the trivial multiplication. Also,
a group with a unique element of order 2 such as the quaternion group Q8 would
admit only the trivial multiplication.

Again, for x ^ 0, in R, let n be the positive integer of Lemma 1.1. Then
for 1 5S t < k ^ n, there cannot be a nonzero y such that x*y = x*y. For if
k = t + c, it would follow that x°y = y, with c ^ n — 1. From this contradiction it
is seen that xy, x2y, • • •, x"y = y are distinct. Recalling that the <xxi,i = 1, • • •, n,
where (y)xxi = x'y, are automorphisms, one sees that the elements (y)<xxi,
i = 1, • • •, n, are distinct elements of order \y\. Therefore n is less than or equal
to the number of elements of order \y\ for each nonzero y e R. Of course, n is the
order (in the group of automorphisms of (R, + )) of the automorphism associated
with left multiplication by x.

2. Near-rings with a finite number of zero divisors

In this section the zero element is also taken to be a zero divisor. K. Koh [6]
has shown that a ring having n +1 left (right) zero divisors, n a positive integer, is
finite and does not contain more than (« + l)2 elements. In this section Koh's
result is. extended to near-rings.

THEOREM 2.1. Let R be a near-ring with n + 1 right zero divisors. Then R is
finite and does not contain more than (n+1)2 elements.

PROOF. For each >» e R, define Ry = {x e R\yx = 0}. Clearly Ry is a subgroup
of R. Since R has n +1 right zero divisors, there is a e R such that Ra ¥= 0 and the
order of Ra is at most n+1. For otherwise R has more than n+1 right zero divi-
sors. Let w # 0 be an element of Ra. The subgroup wR is contained in Ra since
a(wx) = (aw)x = Ox = 0. Hence the order of wR is at most n + 1. Consider the
map f:R-* wR defined by (x)f = wx for each xeR. It easily follows that / i s
a homomorphism, that the kernel o f / i s Rw, and tha t / i s an onto map. Thus,
using the fundamental homomorphism theorem in group theory, it follows that
R/Rw = wR. Since the order of wR is the order of R/Rw, the order of R is the product
of the order of wR and the order of Rw, which is less than or equal («+1)2.
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If in Theorem 2.1 right is changed to left, the conclusion does not follow. This
is illustrated by

EXAMPLE 2.2. Let (G, + ) be an infinite group. Let H be a finite subset of G
which contains 0 and has nonzero elements. Define hg = 0 for each he H, g e G
and define xg = g for each x e G-H, geG. Then (G, +, •) is a near-ring [7].
Each element in if is a left zero divisor and H is finite; but G is not finite.

However, the conclusion may still be obtained if one of the left zero divisors
is right distributive. This is shown in

THEOREM 2.3. Let Rbe a near-ring with n +1 left zero divisors, at least one of
which is right distributive. Then R is finite and does not contain more than (n+1)2

elements.

PROOF. For each x e R, define Lx = {ye R\yx = 0}. Note that Lx is a sub-
group if x is right distributive. Let w be a right distributive element that is a left
zero divisor. Then there is z # 0 in R such that wz = 0. Since there is only a finite
number of left zero divisors, it is seen that the order of Lz is less than or equal to
n+1. Since w is right distributive, Rw = {xw\x e R] is a subgroup of R. Further-
more, Rw £ Lz since (xw)z = x(wz) = xO = 0. Hence the order of Rw is less
than or equal to n + l. Consider the map f:R-* Rw defined by (x)f = xw.
Because w is right distributive, / is a homomorphism from R onto Rw. Thus
R/Kerf ^ Rw. But Ker/ = Rw. Since the order of Lw is less than or equal to
n + l, it follows that the order of Ker/ is less than or equal n+l. Consequently
the order of R is less than or equal to («+1)2. This completes the proof.

3. Integral elements

In this section a result of N. Ganesan [4] is generalized.

DEFINITION 3.1. Let Rbe a near-ring. An element x # 0 in R is said to be an
integral element if x is not a zero divisor.

Ganesan showed that the integral elements of a finite ring R determine a
multiplicative group whose identity is also the identity element for R. This result
cannot be extended to arbitrary near-rings (see Example 3.3 below) but can be
extended to distributively generated near-rings.

THEOREM 3.2. Let Rbe a distributively generated near-ring with a finite number
of right zero divisors and at least one integral element. Then the set of integral ele-
ments of R is a multiplicative group whose identity is also the identity element for R.

PROOF. According to Theorem 2.1, R is finite. If x is an integral element, then
xR = R and there is e e R such that xe = x. But x(ex-x) = 0 and this implies
that ex = x. Hence e is an identity for JC. For each y e R, x(ey-y) = 0 and this
implies ey = y. Since R is a distributively generated near-ring, x = xt + x2+ • • •
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+xn where xt is either a right or anti-right distributive element. Thus

(ye-y)x = (ye-y)x1 + (ye-y)x2 + • • • +(ye-y)xn

= ±(yex1-yxl)±(yexz-yx2)± ••• ±(yexn-yxn)

= ±(yx1-yx1)+(yx2-yx2)± • • • ±(yxn-yxn)

= 0,

with + chosen if xt is right distributive and — chosen if xt is anti-right distributive.
The fact that x is not a zero divisor implies that ye = y. Thus e is an identity
element for R.

It remains to be shown that the set N of integral elements forms a multiplica-
tive group and e is the identity. Suppose z, w e N. If there is y e R such that (zw)y
= 0, then either z or w is a zero divisor. Thus N is closed under multiplication.
Since e is an identity for R and e e N, it follows that e is the identity for N. Now sup-
pose w e N. Since R is finite, wR = R and there is a z e R such that wz = e. Since
w(zw-e) = 0, it follows that z is the multiplicative inverse of w. Suppose there is
x / 0 in R such that zx = 0. Then x = wzx = wO = 0, which is a contradiction.
Thus N is a multiplicative group and the theorem is proved.

If a near-ring is not d.g. then the integral elements may not form a multi-
plicative group. This is shown by

EXAMPLE 3.3. In the near-ring given as # 10 in [2, Section 2.1 ] the elements 1
and 3 are the integral elements, but they do not determine a multiplicative group.
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