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Abstract

We consider growth-collapse processes (GCPs) that grow linearly between random partial
collapse times, at which they jump down according to some distribution depending on
their current level. The jump occurrences are governed by a state-dependent rate function
r(x). We deal with the stationary distribution of such a GCP, (Xt )t≥0, and the distributions
of the hitting times Ta = inf{t ≥ 0 : Xt = a}, a > 0. After presenting the general theory
of these GCPs, several important special cases are studied. We also take a brief look at the
Markov-modulated case. In particular, we present a method of computing the distribution
of min[Ta, σ ] in this case (where σ is the time of the first jump), and apply it to determine
the long-run average cost of running a certain Markov-modulated disaster-ridden system.
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1. Introduction

Growth-collapse processes (GCPs) are real-valued stochastic processes that grow (possibly
in a random fashion) between random collapse times, at which they jump down according to
some distribution depending on their current level. This pattern of behavior can be encountered
in a large variety of physical phenomena, for example the build-up of friction, earthquakes,
avalanches, and neuron firing; cf. Bak’s [7, pp. 33–48] paradigm of ‘systems of self-organized
criticality’. Also, in population growth models it seems reasonable to assume that the growth
rate and the extent of occasional ‘disasters’ (e.g. epidemics) depend on the current population
size. In the realm of operations research, GCPs occur in insurance mathematics and related
fields, and in models of production/inventory systems (see [5, Chapter VI], [6, pp. 399–406],
or [22, Chapters 5 and 11]) and queueing (see, e.g. [8]).

Eliazar and Klafter [16] considered a GCP,X = (Xt )t≥0, composed of three random sources:
(a) a steady, random inflow with stationary, independent, positive increments; (b) crash times
τ1 < τ2 < · · · that form a renewal process; and (c) crash proportions U1, U2, . . . that are
independent, identically distributed (i.i.d.) random variables on (0, 1). The three sources are
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assumed to be stochastically independent. At the nth crash time, τn, the process jumps down
by the amount UnXτn−; thus, the new system level at τn is Xτn = (1 − Un)Xτn−. Eliazar and
Klafter [16] computed several system characteristics (means, variances, Laplace transforms,
and probability tails) and focused on crash proportions governed by power law distributions.

In the spirit of [16], in this paper we study a class of [0,∞)-valued, piecewise-deterministic
Markov process, say X = (Xt )t≥0, characterized by the following features.

(i) X increases linearly at rate 1 between jumps and is right continuous.

(ii) Given that Xt = x, the probability of a jump in (t, t + η) is equal to r(x)η + o(η), as
η → 0, where r : (0,∞) → [0,∞) is a continuous function.

(iii) If a jump occurs at time t and Xt− = x, then the distribution of Xt is µx , which is a
probability measure on [0, x).

Since X is assumed to be Markovian, it follows from (ii) that the conditional probability of
having a jump in (t, t + η), given (Xs)0≤s≤t , is equal to r(Xt )η + o(η), while (iii) implies
that the conditional distribution of Xt , given that a jump occurs at t and given (Xs)0≤s<t , is
µXt− . If X0 = 0 then the function r(x) in (ii) is just the failure rate of the first jump time
σ = inf{t ≥ 0 : Xt �= Xt−}, meaning that

P(σ > t) = exp

{
−

∫ t

0
r(x) dx

}
, t ≥ 0.

It is reasonable to assume that P(σ < ∞) = 1, which is equivalent to
∫ ∞

0 r(x) dx = ∞. In
most examples the probability measureµx has a density p(x, y) on (0, x) and possibly an atom
at 0. A particularly interesting case that we will study is that of ‘uniform’ crash proportions,
i.e. in which p(x, y) = x−11(0,x)(y), where 1A denotes the indicator function of the set A.
Another example is the age process, (At )t≥0, of a standard renewal process that can be described
as follows: it starts at A0 = 0, increases at rate 1 between jumps, and returns to 0 at every
jump; and a jump occurs in (t, t + η) with probability r(At )η + o(η), as η → 0, where r(·) is
the failure rate of the underlying distribution function.

As an alternative to the growth condition (i), we also consider the case in whichX increases
linearly between jumps at a rate c(Jt ), where (Jt )t≥0 is a modulating irreducible Markov chain
having state space {1, . . . , n}, and the rates c(j) satisfy c(1) > c(2) > · · · > c(n) ≥ 0.

In a variety of examples we will in particular deal with the stationary distribution ofX and the
distribution of the hitting time Ta = inf{t ≥ 0 : Xt = a}. In Section 2 we present the general
theory of these distributions. In the subsequent sections these results are applied to important
special cases. In Section 3 we give explicit formulae in the case in which the jump rate is
proportional to the level achieved, i.e. r(x) = λx, and the jump sizes are uniformly distributed
(µx([0, y)) = min[y/x, 1]). Moreover, we prove that a−2 log Ta → λ/2 in probability as
a → ∞. In Section 4 we consider uniform cut-offs with Poisson jump arrivals. It is shown
that the stationary distribution of X is Erlang(2, λ) and that the Laplace transform (LT) of Ta
can be given in terms of degenerate hypergeometric functions. Furthermore, we derive explicit
formulae for the first two moments of the GCP at fixed time t and just after the nth jump. In
Section 5 we consider GCPs for which the time periods between the jumps are i.i.d. random
variables with an arbitrary distribution. Using a duality argument, we prove that the level of
the GCP after its nth jump has the same distribution as the level of a certain shot noise process
that has been studied before, in [8]. Using this connection, the LT of the stationary density of
the GCP can be derived. Finally, in Section 6 we take a brief look at the Markov-modulated
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case, as described above. In particular, we present a method of computing the distribution of
min[Ta, σ ] in this case, and apply it to determine the long-run average cost of running a certain
Markov-modulated disaster-ridden system.

The assumption of linear growth at rate 1 between the jumps can be extended to cover
more general rate functions g(x). This leads to a model in which, for any x0 ≥ 0 and t1 and
t0, t1 ≥ t0 ≥ 0, and conditional on Xt0 = x0 and on X not having jumps in [t0, t1), during
[t0, t1) the process evolves according to the differential equation dXt/dt = g(Xt ), Xt0 = x0.
However, it becomes much more difficult to obtain closed-form solutions.

We close this section with a brief discussion of some related GCP models. The sample
paths of GCPs of the above type look like those of risk processes. However, in classical risk
theory the surplus process of an insurance portfolio increases linearly between claims (leading
to downward jumps), and the claim sizes and claim intervals are independent. The authors
are not aware of risk studies in which the claim size depends on the size of the portfolio at
the claim time. However, several authors did recently look at more general models in which
the independence assumption is relaxed. See [5, Chapter VI] for a survey of the subject. In
[1] the distribution of the claim interval depends on the previous claim size (see [9] for a
queueing model with a similar dependence structure). In [2] a more general, semi-Markovian
dependence structure is introduced in the risk model. The claim sizes now depend on some
underlying Markov chain, but not on the size of the portfolio at the claim time.

Motivated by various applications in communications systems, there have recently been
several studies of fluid systems that alternate between ‘on-periods’ and ‘off-periods’. During
off-periods, the buffer content increases in some state-dependent way, and during on-periods
it decreases at a state-dependent rate (unless the on-period starts at 0). In [10] the off-periods
were exponentially distributed. In [11] and [23] the rate at which the system switches from on
to off (and back) depends on the actual buffer content. It should be noted that if the on-period
is compressed to be of zero duration and the state-dependent decrease rate goes to infinity in
an appropriate way, a process in which the size of the downward jump depends on the buffer
content could be obtained.

Altman et al. [4] studied GCPs in relation to the transmission control protocol of the Internet.
Variants of the transmission control protocol lead to adaptive window protocols under which
the window size alternately grows for a certain period and decreases instantaneously according
to some function of the present window size. For example, under the additive-increase–
multiplicative-decrease protocol the window size grows linearly, but at jump epochs decreases
in proportion to its present size. For a quite general adaptive window protocol, Altman et
al. [4] obtained stability conditions and derived the steady-state window size distribution in
analytic form. See [3], [12], and [19] for studies of the additive-increase–multiplicative-
decrease protocol. As will be shown in Section 5, there is a one-to-one correspondence between
a particular GCP and the well-known shot noise process. This particular GCP corresponds to
the additive-increase–multiplicative-decrease rule, except that the decrements at jump epochs
are not deterministically, but rather stochastically, proportional to the level before the jump (for
example being uniformly distributed between 0 and that level).

2. GCPs as piecewise-deterministic Markov processes

Piecewise-deterministic Markov processes in general were analyzed by Davis [14], [15,
Sections 1–3]; also see the presentation in [22, pp. 444–482]. We will specialize this theory to
the growth-collapse processes defined by (i)–(iii) above. This yields the following key results.
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Proposition 1. The infinitesimal generator of X is given by

(Gf )(x) = f ′(x)+ r(x)

∫
[0,x)

(f (y)− f (x))µx(dy), (1)

where a prime denotes differentiation. Its domain, D(G), contains all functions f : R+ → R

that are locally bounded and absolutely continuous.

Proof. This follows from Theorem 11.2.2 of [22].

In the following we denote by Px(·) and Ex(·) the conditional probability and conditional
expectation given that X0 = x, respectively, and by �x	 the integer part of x.

Proposition 2. The hitting times Ta satisfy

Ex(Ta) ≤ E0(Ta) < ∞ for all a > x.

Proof. The first inequality is obvious. Regarding the integrability of Ta under P0, ob-
serve that Ta > t implies that there occurs at least one jump in each of the time intervals
(0, a], (a, 2a], . . . , ((�t/a	 − 1)a, �t/a	a] if t ≥ a, and that P0(Ta > t) = 1 for t < a.
Indeed, if Ta > (k− 1)a and there are no jumps in ((k− 1)a, ka] for some k ∈ {1, . . . , �t/a	},
then 0 ≤ X(k−1)a < a and Xka = X(k−1)a + a > a; thus, Xt = a for some t ∈ ((k− 1)a, ka).
It follows that

P0(Ta > t) ≤
(

1 − exp

{
−

∫ a

0
r(s) ds

})(
1 − exp

{
− min

0≤x≤a

∫ x+a

x

r(s) ds

})�t/a	−1

≤ (1 − ra)
�t/a	,

where

ra = exp

{
− min

0≤x≤a

∫ x+a

x

r(s) ds

}
.

Thus, ra ∈ (0, 1) and

E0(Ta) =
∫ ∞

0
P0(Ta > t) dt ≤

∫ ∞

0
(1 − ra)

t/a dt = a

| log(1 − ra)| .

Proposition 3. Define ρ(x) = r(x)
∫ x

0 µx([0, u)) du. If, for some ε > 0 and some a > 0,

ρ(x) > 1 + ε for all x ≥ a,

then
Ex(Ta) < ∞ for all x ≥ a.

Proof. Let i(x) = x be the identity function and note that, by Dynkin’s formula, the process

Xt∧Ta −
∫ t∧Ta

0
(Gi)(Xs) ds (2)

is a Px-martingale for every x ≥ a. By Proposition 1, we have (Gi)(x) = 1 − ρ(x), and (2)
and the definition of Ta thus yield

x = Ex(X0)

= Ex

(
Xt∧Ta −

∫ t∧Ta

0
(1 − ρ(Xs)) ds

)

≥ a + ε Ex(t ∧ Ta) for all x ≥ a.

Letting t → ∞ leads to Ex(Ta) ≤ (x − a)/ε.
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Proposition 4. If Q is a stationary distribution of X, then Q has a density q(x) satisfying the
integral equation

q(x) =
∫ ∞

x

r(t)µt ([0, x))q(t) dt. (3)

Proof. It follows from [14] that if Q is a stationary distribution, then
∫
(Gfs)(x) dQ(x) = 0 for all s > 0,

where fs(x) = e−sx . Substituting using (1) and integrating by parts yields

∫ ∞

0

(
f ′
s (x)− r(x)

∫ x

0
f ′
s (u)µx([0, u)) du

)
dQ(x) = 0,

which is tantamount to
∫ ∞

0
e−sx dQ(x) =

∫ ∞

0
e−su

(∫ ∞

u−
r(x)µx([0, u)) dQ(x)

)
du

for all s > 0. It follows that Q has a density q satisfying (3).

Proposition 5. If
lim inf
x→∞ ρ(x) > 1 (4)

then X has exactly one stationary distribution Q, and Xt → Q weakly as t → ∞.

Proof. Since the expected recurrence times for any a > 0 are finite, by Propositions 2 and 3,
this follows from the ergodic theorem for regenerative processes [6, p. 170].

Now let us turn to the hitting time Ta . To determine its Laplace transform, Ex(e−αTa ), in
the sequel we use the method presented in [18], which requires us to find a solution fα to the
equation

αf (x) = (Gf )(x) (5)

that is positive and bounded on [0, a], for any α > 0. Then, by [18], the LT is simply given by

Ex(e
−αTa ) = fα(x)

fα(a)
, 0 ≤ x < a.

Example 1. Let µx(dy) have a probability density of the form

p(x, y) = a(x)b(y)1(0,x)(y),

for certain Borel-measurable functions a : (0,∞) → [0,∞) and b : (0,∞) → [0,∞). In
particular, this covers the case p(x, y) = x−11(0,x)(y), in which at every crash a uniformly
distributed piece of Xt− is ‘cut off’.

With B(x) = ∫ x
0 b(y) dy, we have a(x) = 1/B(x) and µt([0, x)) = B(x)/B(t). By

Proposition 5, X has a stationary distribution if

lim inf
x→∞

r(x)

B(x)

∫ x

0
B(u) du > 1.
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By Proposition 4, for the stationary density we obtain the integral equation

q(x) = B(x)

∫ ∞

x

r(t)

B(t)
q(t) dt,

which is easily solved:

q(x) = CB(x) exp

{
−

∫ x

0
r(u) du

}
,

where the normalizing constant C is given by

C =
(∫ ∞

0
B(x) exp

{
−

∫ x

0
r(u) du

}
dx

)−1

.

To find the LT of Ta we have to solve the integral equation

αf (x) = f ′(x)− r(x)

B(x)

∫ x

0
f ′(u)B(u) du. (6)

Assuming that r(x) is differentiable, we obtain from (6) the second-order differential equation

f ′′(x)− [α + r(x)+ g(x)]f ′(x)+ αg(x)f (x) = 0.

Below we will find the suitable solution in some special cases.

Example 2. Let r(x) ≡ λ be constant. Condition (4), sufficient for the existence and unique-
ness of a stationary distribution, becomes

lim inf
x→∞ E(Jx) > λ−1,

where Jx is the size of a generic jump starting from level x. Formula (3) for the stationary
density transforms into

q(x) = λ

∫ ∞

x

µt ([0, x))q(t) dt.

This integral equation can be solved in terms of a Neumann series.
Regarding the LT of Ta , (1) becomes

(α + λ)f (x) = f ′(x)+ λ

∫
[0,x)

f (y)µx(dy).

If µx has a density p(x, y) on (0, x) and an atom of mass p0(x) at 0, we obtain

(α + λ)f (x) = f ′(x)+ λ

∫
[0,x)

f (y)p(x, y) dy + p0(x)f (0).

Example 3. In the standard renewal age process we have µx = ε0, the point mass at 0. The
well-known stationary density q(x) = P0(σ > x)/E0(σ ) can be easily derived from (3).
Formula (5) takes the form

αf (x) = f ′(x)+ r(x)(f (0)− f (x)), (7)
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a first-order linear differential equation that can be easily solved explicitly. Let R(x) =∫ x
0 r(u) du. The function

fα(x) = eαx+R(x)
[

1 −
∫ x

0
r(u)e−αu−R(u) du

]

is a positive solution to (7) such that the LT of Ta is given by

E(e−αTa ) = exp{α(x − a)+ R(x)− R(a)}[1 − ∫ x
0 r(u)e

−αu−R(u) du]
1 − ∫ a

0 r(u)e
−αu−R(u) du

.

Example 4. Let µx = εc(x), for some strictly increasing continuous function c : (0,∞) →
(0,∞) satisfying c(x) < x for all x > 0. This is the situation in additive-increase–multi-
plicative-decrease window protocols, as studied in [4]. By Propositions 4 and 5, X has a
stationary distribution if lim infx→∞ r(x)(x − c(x)) > 1, and if this holds then the stationary
density q(x) satisfies

q(x) =
∫ c−1(x)

x

r(t)q(t) dt,

an equation that does not easily admit closed-form solutions. However, in the special case
in which r(x) ≡ λ and c(x) = cx for some constant c ∈ (0, 1), the stationary distribution
has a simple representation. Let X be in steady state. Then, if σ1 and σ2 denote the times
of the first and second jumps, respectively, it follows from the PASTA (‘Poisson Arrivals
See Time Averages’) property that the left-hand limitsXσ1− andXσ2− both have the stationary
distribution. Next, note thatXσ2− = cXσ1−+Y , whereY is Exp(λ)-distributed and independent
ofXσ1−. Now letXe be a random variable having the stationary distribution and let Y1, Y2, . . .

be i.i.d., Exp(λ)-distributed, and independent of Xe. Then

Xe
d= cXe + Y1

d= c2Xe + cY2 + Y1
d= · · · .

It follows that the stationary distribution of X is equal to that of
∑∞
i=0 c

iYi .

3. Uniform cut-offs and proportional jump intensity

A very nice special case of Example 1 is the following:

(a) p(x, y) = x−11(0,x)(y);

(b) r(x) = λx.

Thus, the jump rate at time t is proportional to Xt− and at a jump time a uniformly distributed
piece of Xt− is cut off. In this case the generator is of the form

(Gf )(x) = f ′(x)+ λ

∫
[0,x)

(f (y)− f (x)) dy.

Propositions 4 and 5 immediately yield the following theorem.

Theorem 1. The stationary density of X and the LT of Ta are respectively given by

q(x) = λxe−λx2/2 and (8)

Ex(e
−αTa ) = 1 + α

∫ x
0 eαy+(λy2/2) dy

1 + α
∫ a

0 eαy+(λy2/2) dy
, (9)

for 0 ≤ x < a.

https://doi.org/10.1239/aap/1143936148 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1143936148


228 O. BOXMA ET AL.

Proof. By (3), the stationary density of X satisfies

q(x) =
∫ ∞

x

λt

(
x

t

)
q(t) dt = λx

∫ ∞

x

q(t) dt, (10)

and the right-hand side of (8) is the only density solving (10).
Formula (5) becomes

αf (x) = f ′(x)+ λ

∫ x

0
f (y) dy − λxf (x). (11)

Taking the derivative in (11) yields

αf ′(x) = f ′′(x)− λxf ′(x). (12)

It follows that f is of the form

f (x) = C +D

∫ x

0
eαy+(λy2/2) dy. (13)

To find Ex(e−αTa ) we may assume that f (0) = 1 (in view of (5)), i.e. C = 1. It follows from
(12) that αf (0) = f ′(0), whence f ′(0) = α. Hence, D = 1 and, thus, (13) is equal to the
numerator of (9) and provides a solution, fα(x), to (5) that is positive and bounded on [0, a].
Formula (9) now follows from (5).

The following theorem describes the asymptotic behavior of Ta as a → ∞.

Theorem 2. As a → ∞,
log Ta
a2 → λ

2
in probability. (14)

Proof. Let Mt = max0≤s≤t Xs . We will show that

(log t)−1/2Mt
d= (2/λ)1/2 as t → ∞. (15)

Relation (15) implies (14). Indeed, let g(t) = [(2/λ) log t]1/2. Then, by (15),

lim
t→∞ P0(Mt ≥ (1 + δ)g(t)) = 0, (16)

lim
t→∞ P0(Mt ≥ (1 − δ)g(t)) = 1, (17)

for every δ > 0. Because Ta ≤ t if and only if Mt ≥ a, (16) and (17) are tantamount to

lim
t→∞ P0(T(1+δ)g(t) ≤ t) = 0, (18)

lim
t→∞ P0(T(1−δ)g(t) ≤ t) = 1. (19)

By first letting a = (1 − δ)g(t) and then letting a = (1 + δ)g(t), from (18) and (19) we obtain

lim
a→∞ P0(Ta ≤ exp{(1 + ε)(λ/2)a2}) = 0, (20)

lim
a→∞ P0(Ta ≤ exp{(1 − ε)(λ/2)a2}) = 1, (21)
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for all ε > 0. Relations (20) and (21) immediately yield (14). Thus, it is sufficient to prove
(15). We will now actually show that

lim
t→∞ E0(([(2/λ) log t]−1/2Mt)

n) = 1 for all n ∈ N. (22)

By (22), all moments of [(2/λ) log t]−1/2Mt converge to 1. This implies (15).
We know from (9) that

E0(e
−αTa ) =

(
1 + α

∫ a

0
eαy+(λy2/2) dy

)−1

.

Let ν be the measure on [0,∞) defined by ν([0, t]) = E0(M
n
t ). Because {Ta ≤ t} = {Mt ≥ a},

we have ∫ ∞

0
e−αt dν(t) =

∫ ∞

0
e−αt d

dt
E0(M

n
t ) dt

=
∫ ∞

0
e−αt

(
d

dt

∫ ∞

0
nan−1 P0(Mt ≥ a) da

)
dt

=
∫ ∞

0

∫ ∞

0
nan−1e−αt P0(Ta ∈ dt) da

= n

∫ ∞

0
an−1 E0(e

−αTa ) da

= n

∫ ∞

0
an−1

(
1 + α

∫ a

0
eαy+(λy2/2) dy

)−1

da. (23)

We now prove that

lim
α↘0

(
2

λ
| logα|

)−n/2 ∫ ∞

0
e−αt dν(t) = 1 for all n ∈ N. (24)

As | logα| is slowly varying at 0, the standard Tauberian theorem yields

lim
t→∞

(
2

λ
| log(1/t)|

)−n/2
ν([0, t]) = 1 for all n ∈ N,

which is what we desired to show.
Of course, we have to consider the right-hand integral in (23) as α → 0. Its integrand tends

to the nonintegrable an−1, which is why we have to introduce an appropriate normalizing factor.
Denote the right-hand side of (23) byHn(α). We have to estimateHn(α) from below and from
above. For any b > 0, we have

1 + α

∫ a

0
eαy+(λy2/2) dy ≤ 1 + αbeαb+(λb2/2) for all a ∈ [0, b].

Hence,

Hn(α) ≥ n

∫ b

0
an−1

(
1 +

∫ a

0
eαy+(λy2)/2 dy

)−1

da

≥ bn

1 + αbeαb+(λb2/2)
for all b > 0. (25)
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Let δ ∈ (0, 1) and set b ≡ b(δ, α) = [(1 − δ)(2/λ)| logα|]1/2 in (25). It follows that

Hn(α)b(δ, α)
−n ≥ [1 + αδb(δ, α)eαb(δ,α)]−1. (26)

Because limα↘0 α
δb(δ, α) = 0, (26) yields

lim inf
α↘0

(1 − δ)−n/2
(

2

λ
| logα|

)−n/2
Hn(α) ≥ 1

for all δ ∈ (0, 1) and all n ∈ N. Thus,

lim inf
α↘0

(
2

λ
| logα|

)−n/2
Hn(α) ≥ 1. (27)

To find an upper bound, we use∫ a

0
eαy+(λy2)/2 dy ≥

∫ a

0
eλy

2/2 dy

≥
∫ a

a−1
eλy

2/2 dy

≥ eλ(a−1)2/2,

which holds for all a ≥ 1. Hence, for any b > 0,

Hn(α) ≤
∫ b+1

0
an−1 da + α−1n

∫ ∞

b+1
an−1e−λ(a−1)2/2 da

≤ (b + 1)n + α−1n

∫ ∞

b+1

(
b + 1

b
(a − 1)

)n−1

e−λ(a−1)2/2 da

= (b + 1)n + α−1n(1 + b−1)n−1λ−(n−1)/2
∫ ∞

λ1/2b

xn−1e−x2/2 dx. (28)

The integral on the right-hand side of (28) is bounded as follows: for every N ∈ N, there is a
constant CN > 0 such that∫ ∞

t

xNe−x2/2 dx ≤ CNt
N−1e−t2/2 for all t > 0. (29)

By (28) and (29),

Hn(α) ≤ (b + 1)n + α−1n(1 + b−1)n−1λ−(n−1)/2Cn−1(λ
1/2b)n−2e−λb2/2 (30)

for all b > 0. Now set b ≡ b(α) = [(2/λ)| logα|]1/2. From (30) we conclude that

b(α)−nHn(α) ≤ (1 + b(α)−1)n + nCn−1(1 + b(α)−1)n−1λ−1/2α−1b(α)−2e−λb(α)2/2

= (1 + b(α)−1)n−1[1 + b(α)−1 + 1
2nCn−1λ

1/2| logα|−2]
→ 1 as α ↘ 0.

Thus, lim supα↘0 b(α)
−nHn(α) ≤ 1, which, together with (27), yields

lim
α↘0

b(α)−nHn(α) = 1

for every n ∈ N. This is equivalent to (24).
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4. Poisson jump times with uniform cut-offs

We now consider the case in which

(a) p(x, y) = x−11(0,x)(y);

(b) r(x) ≡ λ > 0.

Thus, jumps arrive at Poisson times with intensity λ and the cut-off mechanism is the same as
in Section 3.

Theorem 3. The stationary distribution of X is Erlang(2, λ), i.e. has density

q(x) = λ2xe−λx. (31)

The LT of Ta is given by Ex(e−αTa ) = fα(x)/fα(a), 0 ≤ x < a, where fa(x) is the unique
solution to the differential equation

xf ′′(x)+ (1 − (λ+ α)x)f ′(x)− αf (x) = 0, x ≥ 0, (32)

with initial conditions

f (0) = 1, f ′(0) = α. (33)

Proof. By (3), the stationary density of X satisfies

q(x) =
∫ ∞

x

λ

(
x

t

)
q(t) dt = λx

∫ ∞

x

q(t)

t
dt. (34)

The right-hand side of (31) is the only density solving (34).
Formula (5) becomes

αf (x) = f ′(x)+ λ

x

∫ x

0
f (y) dy − λf (x). (35)

Multiplying by x and taking the derivative in (35) yields (32). The initial condition f (0) = 1
can be fixed arbitrarily, and the condition f ′(0) = α then follows by letting x tend to 0 in (35).

Formula (32) is a variant of the degenerate hypergeometric differential equation. Its general
solution is given by

f (x) = e(λ+α)x
[
C1


(
λ

2(λ+ α)
, 1; −2(λ+ α)x

)
+ C2�

(
λ

2(λ+ α)
, 1; −2(λ+ α)x

)]
.

Here


(a, b; x) = 1 +
∞∑
k=1

(a)k

(b)k

xk

k!
is Kummer’s series (in which (a)k = a(a + 1) · · · (a + k − 1), with (a)0 = 1) and

�(a, 1; x)

= 1

�(a − 1)

{

(a, 2; x) log x +

∞∑
r=0

[ψ(a + r)− ψ(1 + r)− ψ(2 + r)] (a)rx
r

r! (r + 1)!
}

+ 1

�(a)
,
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where ψ(z) = �′(z)/�(z) is the logarithmic derivative of the gamma function (see [21,
Equations 2.1.2.103 and 2.1.2.65]). In our case we can also use the formula


(a, 1; x) = 1

�(a)�(1 − a)

∫ 1

0
etx ta−1(1 − t)−a dt, 0 < a < 1.

The constants C1 and C2 are uniquely determined by the initial conditions (33), which become
transcendental equations involving the functions 
 and �.

Next, we derive the expected value and the variance of Xt . Let X0 = 0. We can write Xt in
the form

Xt = t −
N(t)∑
n=0

τnW
(N(t))
n .

Here (N(t))t≥0 is a homogeneous Poisson counting process with rate λ, τ0 ≡ 0, and τ1, τ2, . . . ,
with 0 < τ1 < τ2 < · · · , denote the jump times of (N(t))t≥0. Furthermore, W(m)

0 ≡ 1 and

W(m)
n = 1(n = m)(1 − Um)+ 1(n < m)(1 − Un)

m∏
j=n+1

Uj , n ≥ 1,

where U1, U2, . . . are i.i.d. random variables that are independent of {N(t), t ≥ 0} and have
the uniform distribution on (0, 1). By 1(A) we denote the indicator function of the event A.

Let Yt = t −Xt . Clearly, Yt is the sum of the sizes of all jumps in [0, t].

Theorem 4. For every t ∈ [0,∞),

E(Xt ) = 2

λ
(1 − e−λt/2). (36)

Proof. We have

E(Xt ) = t − E(Yt )

= t − E(E(Yt | N(t) = n)).

Obviously, E(Yt | N(t) = 0) = 0. For n ≥ 1, it is well known that the conditional distribution
of τi , given that N(t) = n, is Beta(i, n + 1 − i). Accordingly, due to the independence of τi
and W(n)

i , for all n ≥ 1 we obtain

E(Yt | N(t) = n) = E

( n∑
i=1

τiW
(n)
i

∣∣∣∣ N(t) = n

)

= t

n∑
i=1

i

n+ 1

(
1

2

)n+1−i

= t

(
1 − 2

n+ 1

(
1 −

(
1

2

)n+1))
. (37)
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With p(n; λt) = e−λt (λt)n/n!, n = 0, 1, . . . , we find that

E(Xt ) = t − E(Yt | N(t))

= 2t E

(
1

N(t)+ 1

(
1 −

(
1

2

)N(t)+1))

= 2t
∞∑
n=0

p(n; λt) 1

n+ 1

(
1 −

(
1

2

)n+1)

= 2

λ

∞∑
n=1

p(n; λt)
(

1 −
(

1

2

)n)
. (38)

Formula (36) is easily obtained from (38).

Theorem 5. For fixed t , the variance of Xt is

var{Xt } = 1

λ2 (2 − 4e−λt − 16e−λt/2 + 18e−2λt/3). (39)

Proof. We have

var{Xt } = var{Yt }

= var

{N(t)∑
n=0

τnW
(N(t))
n

}

= E

(
var

{N(t)∑
n=0

τnW
(N(t))
n

∣∣∣∣ N(t)
})

+ var

{
E

(N(t)∑
n=0

τnW
(N(t))
n

∣∣∣∣ N(t)
)}
. (40)

Since var{E(Yt | N(t))} = var{E(Xt | N(t))}, we find from (37) that the second term on the
right-hand side of (40) is

var{E(Xt | N(t))} = 4t2 var

{
1

N(t)+ 1

(
1 −

(
1

2

)N(t)+1)}

= 4t2
∞∑
n=0

p(n; λt)
[

1

(n+ 1)2

(
1 −

(
1

2

)n+1)2]
− 4

λ2 (1 − e−λt/2)2.

(41)
Regarding the first term on the right-hand side of (40), we notice that

var

{N(t)∑
n=0

τnW
(N(t))
n

∣∣∣∣ N(t) = 0

}
= 0

and, for n ≥ 1,

var

{ n∑
i=1

τiW
(n)
i

∣∣∣∣ N(t) = n

}
= var

{
E

( n∑
i=1

τiW
(n)
i

∣∣∣∣ N(T ) = n, W (n)

) ∣∣∣∣ N(t) = n

}

+ E

(
var

{ n∑
i=1

τiW
(n)
i

∣∣∣∣ N(t) = n, W (n)

} ∣∣∣∣ N(t) = n

)
.

(42)
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Furthermore, due to the independence of W (n) and N(t), we have

var

{
E

( n∑
i=1

τiW
(n)
i

∣∣∣∣ N(t) = n, W (n)

) ∣∣∣∣ N(t) = n

}

= var

{
t

n+ 1

n∑
i=1

W
(n)
i

}

= t2

(n+ 1)2

[ n∑
i=1

(n+ 1 − i)2
((

1

3

)i
−

(
1

4

)i)

+ 2
n−1∑
i=1

i

n∑
j=i+1

j

(
1

2

)j−i(1

6

(
1

3

)n−j
− 1

4

(
1

4

)n−j)]

= t2

2(n+ 1)2

(
1 − 4

(
1

2

)n
+ 5

(
1

3

)n
− 2

(
1

4

)n)
. (43)

To obtain the second term on the right-hand side of (42), we start with

var

{ n∑
i=1

τiW
(n)
i

∣∣∣∣ N(t) = n, W (n)

}
=

n∑
i=1

(W
(n)
i )2 var{τi | N(t) = n}

+ 2
∑ ∑
1≤i<j≤n

W
(n)
i W

(n)
j cov(τi, τj | Nt = n). (44)

Moreover,

var{τi | N(t) = n} = t2
i(n+ 1 − i)

(n+ 1)2(n+ 2)
, i = 1, . . . , n, (45)

and, for i < j ,

cov(τi, τj | N(t) = n) = t2
i(n+ 1 − j)

(n+ 1)2(n+ 2)
. (46)

By substituting (45) and (46) into (44) and taking expectations, we obtain

E

(
var

{ n∑
i=1

τiW
(n)
i

∣∣∣∣ N(t) = n, W (n)

} ∣∣∣∣ N(t) = n

)

= t2

(n+ 1)2(n+ 2)

[
n

2

(
3 −

(
1

3

)n)
− 3

(
1 +

(
1

3

)n)
+ 6

(
1

2

)n]
. (47)

By summing (43) and (47), for n ≥ 1 we obtain

var

{ n∑
i=1

τiW
(n)
i

∣∣∣∣ N(t) = n

}
= t2

(n+ 1)2(n+ 2)

[
2n

(
1 +

(
1

3

)n)
− n

(
2

(
1

2

)n
+

(
1

4

)n)

− 2

(
1 +

(
1

4

)n)
+ 2

((
1

3

)n
+

(
1

2

)n)]
.

(48)
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Finally, (41) and (48) yield

var{Xt } = t2
∞∑
n=1

p(n; λt)
[

2(n− 1)

(n+ 1)2(n+ 2)

(
1 −

(
1

2

)n)

+ 2

(n+ 1)(n+ 2)

(
1

3

)n
− 1

(n+ 1)2

(
1

4

)n]

+ 4t2
∞∑
n=0

p(n; λt) 1

(n+ 1)2

(
1 −

(
1

2

)n
+ 1

4

(
1

4

)n)
− 4

λ2 (1 − e−λt/2)2

= 6t2
∞∑
n=1

p(n; λt) 1

(n+ 1)(n+ 2)
− 6t2

∞∑
n=1

p(n; λt) (1/2)n

(n+ 1)(n+ 2)

+ 2t2
∞∑
n=1

p(n; λt) (1/3)n

(n+ 1)(n+ 2)
+ t2e−λt − 4

λ2 (1 − e−λt/2)2. (49)

Careful simplification of (49) yields (39).

Corollary 1. As a consequence of Theorem 5, we find that

lim
t→∞ E(Xt ) = 2

λ
and lim

t→∞ var{Xt } = 2

λ2 .

The distribution function of Yt , for fixed t , is

H(y; t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−λt , y = 0,

e−λt +
∞∑
n=1

p(n; λt)Hn(y; t), 0 < y ≤ t,

1, y > t,

where, for n ≥ 1,

Hn(y; t) = P

( n∑
i=1

τiW
(n)
i ≤ y

∣∣∣∣ N(t) = n

)
.

Denote by h(y; t) the density of H(y; t). Another important function is

P(Yt ≤ y | Ys = x), 0 ≤ s < t.

To compute it, we start from

P(Yt ≤ y | Y (s) = x, N(s) = m, N(t) = n, τm)

= P

(
xW

(n−m)
1 + τm

n−m∑
i=1

W
(n−m)
i +

n−m∑
i=1

W
(n−m)
i Ui:n−m(t − s) ≤ y

)
,

m ≤ n, s < t, (50)

where Ui:n−m(t − s) is the ith order statistic of n − m i.i.d. random variables distributed
uniformly on (0, t − s). As before, W(n−m)

i = (1 − Ui)
∏n−m
j=i+1Uj , i = 1, . . . , n−m− 1,
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and W(n−m)
n−m = 1 − Un−m, where U1, . . . , Un−m are i.i.d., uniformly distributed on (0, 1), and

independent of Ui:n−m(t − s), i = 1, . . . , n−m.
The conditional distribution of τm/s, given that N(s) = m, is Beta(m, 1). Also, τm is

independent of {W(n−m)
i , i = 1, . . . , n−m} and {Ui:n−m(t − s), i = 1, . . . , n−m}. Hence,

by (50),

P(Yt ≤ y | Ys = x)

=
∞∑
m=0

p(m; λs)
∞∑
l=0

p(l; λ(t − s))

× 1

sB(m, 1)

∫ s

0
zm−1 P

(
xW

(l)
1 + z

l∑
i=1

W
(l)
i +

l∑
i=1

W
(l)
i Ui:l (t − s) ≤ y

)
dz.

(51)

The probability in the integrand on the right-hand side of (51) can essentially be written as the
Lebesgue measure of a 2l-dimensional set.

Another quantity of interest is the embedded Markov chain X(n) = Xτn , i.e. the sequence
of levels just after jumps.

Theorem 6. The stationary distribution of X(n) is Exp(λ).

Proof. By the PASTA property, the levelsXτn− just prior to jumps have the same stationary
distribution as the continuous-time process {Xt, t ≥ 0}, which is Erlang(2, λ) by Theorem 3.
Therefore, the stationary distribution of X(n) is equal to that of VU , where V is Erlang(2, λ)-
distributed, U is uniformly distributed on (0, 1), and U and V are independent. The stationary
density of X(n) is thus given by

p(x) =
∫ ∞

x

λ2ve−λv 1

v
dv = λe−λx, x > 0.

We now compute the expected value and variance of X(n). Notice that, for every n ≥ 1,

X(n) = UnX(n− 1)+ (τn − τn−1)Un,

where X(0) ≡ X0 = 0. Furthermore, τn − τn−1
d= Exp(λ), n ≥ 1. Hence, we can write

X(n) =
n∑
i=1

RiW̃
(n)
i , n ≥ 1,

where R1, R2, . . . are i.i.d. and Exp(λ)-distributed, W̃ (n)
i = ∏n

j=i Uj , i = 1, . . . , n, and
R1, R2, . . . are independent of {W̃ (n)

i , i = 1, . . . , n, n ≥ 1}.
Theorem 7. For each n ≥ 1,

E(X(n)) = 1

λ

(
1 −

(
1

2

)n)
(52)

and

var{X(n)} = 1

λ2

(
1 − 2

(
1

2

)n
+ 2

(
1

3

)n
−

(
1

4

)n)
. (53)
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Proof. Since Ri is independent of W(n)
i , we have

E(X(n)) = E

( n∑
i=1

RiW̃
(n)
i

)

=
n∑
i=1

E(Ri)E(W̃ (n)
i )

= 1

λ

n∑
i=1

(
1

2

)n+1−i

= 1

λ

(
1 −

(
1

2

)n)
, n ≥ 1,

namely (52).
To prove (53), we let W̃ (n) = (W̃

(n)
1 , . . . , W̃

(n)
n ) and compute the variance in two parts,

according to

var

{ n∑
i=1

RiW̃
(n)
i

}
= E

(
var

{ n∑
i=1

RiW̃
(n)
i

∣∣∣∣ W̃ (n)

})
+ var

{
E

( n∑
i=1

RiW̃
(n)
i

∣∣∣∣ W̃ (n)

)}
. (54)

Due to independence,

var

{ n∑
i=1

RiW̃
(n)
i

∣∣∣∣ W̃ (n)

}
= 1

λ2

n∑
i=1

( n∏
j=i

U2
j

)
.

Hence,

E

(
var

{ n∑
i=1

RiW̃
(n)
i

∣∣∣∣ W̃ (n)

})
= 1

λ2

n∑
i=1

(
1

3

)n+1−i
= 1

2λ2

(
1 −

(
1

3

)n)
. (55)

To calculate the second term of (54), we start with

E

( n∑
i=1

RiW̃
(n)
i

∣∣∣∣ W̃ (n)

)
= 1

λ

n∑
i=1

W̃
(n)
i .

It follows that

var

{
E

( n∑
i=1

RiW̃
(n)
i

∣∣∣∣ W̃ (n)

)}
= 1

λ2 var

{ n∑
i=1

W̃
(n)
i

}

= 1

λ2

[ n∑
i=1

var{W̃ (n)
i } + 2

∑ ∑
1≤i<j≤n

cov(W̃ (n)
i , W̃

(n)
j )

]
. (56)

In addition,

var{W̃ (n)
i } =

(
1

3

)n+1−i
−

(
1

4

)n+1−i
, i = 1, . . . , n.
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Similarly, for i < j ,

cov(W̃ (n)
i , W̃

(n)
j ) =

(
1

2

)j−i[(
1

3

)n+1−j
−

(
1

4

)n+1−j]
.

Substituting this into (56) and summing shows that

1

λ2 var

{ n∑
i=1

W̃
(n)
i

}
= 1

λ2

[
1

2
− 2

(
1

2

)n
+ 5

2

(
1

3

)n
−

(
1

4

)n]
. (57)

Finally, from (55), (56), and (57) we obtain (53).

Corollary 2. The asymptotic mean and variance of X(n) are respectively

lim
n→∞ E(X(n)) = 1

λ
and lim

n→∞ var{X(n)} = 1

λ2 .

Finally, we develop recursive formulae for the distribution of X(n), n = 1, 2, . . . . We start
with the transition function

K(y; x) = P(X(n) ≤ y | X(n− 1) = x)

and its density k(y; x).
Theorem 8. For each n ≥ 1,

K(y; x) = 1 − exp(−λ(y − x)+)+ λeλxy
∫ ∞

max[x,y]
1

u
e−λu du, (58)

where x+ = max[x, 0], and

k(y; x) = λeλx
∫ ∞

max[x,y]
1

u
e−λu du. (59)

Proof. We have

K(y; x) = P(X(n) ≤ y | X(n− 1) = x) = P(U(x + R) ≤ y),

where U
d= uniform(0, 1), R

d= Exp(λ), and U is independent of R. Notice that

P

(
U ≤ y

x + R

∣∣∣∣ R
)

= 1(x + R ≤ y)+ 1(x + R > y)
y

x + R
.

This implies (58). Formula (59) is obtained by differentiating (58) with respect to y.

Let fn(x) denote the density function of X(n). We can immediately prove that

f1(y) = λ

∫ ∞

y

1

u
e−λu du, 0 < y < ∞.

Theorem 9. For each n ≥ 2,

fn(y) = f1(y)

∫ y

0
eλxfn−1(x) dx +

∫ ∞

y

eλxf1(x)fn−1(x) dx. (60)

Proof. For each n ≥ 2,

fn(y) =
∫ ∞

0
k(y; x)fn−1(x) dx. (61)

By substituting (59) into (61) we obtain (60).
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5. The generalized uniform cut-off process and its relation to the shot noise process

In this section we consider the following GCP, (Xt )t≥0. As before, Xt increases linearly, at
rate 1, between downward jumps. This time, however, the intervals B1, B2, . . . between the
downward jumps are i.i.d. random variables with a general distribution with Laplace–Stieltjes
transform β(·). The downward jump Zn after Bn depends on Sn, where Sn is the level of
the Xt -process just before the nth jump. We generalize the uniform cut-off procedure of the
previous sections in the following way. The remainder after the jump,Wn = Sn −Zn, is given
by Wn = Ua(0, Sn), where Ua(0, b) denotes a random variable with density ata−1/ba on
(0, b). (Of course, a = 1 yields the uniform cut-off procedure.) We want to analyze Wn, the
state of Xt immediately after the nth jump. Since Sn = Wn + Bn, we have

Wn+1 = Ua(0,Wn + Bn), n = 1, 2, . . . . (62)

We can show that the steady-state distribution of theWn-process exists for all traffic parameters;
see Remark 1, below.

It follows from (62) that the steady-state variable We of the sequence Wn satisfies

E(e−αWe) =
∫ ∞

0
e−αx

∫ ∞

x

axa−1

ya
P(W + B ∈ dy) dx

=
∫ ∞

0

1

ya
P(W + B ∈ dy)

∫ y

0
axa−1e−αx dx. (63)

We differentiate both sides of (63) with respect toα and use partial integration in the last integral,
to obtain

d

dα
E(e−αWe) = −a 1 − β(α)

α
E(e−αWe).

The solution to this differential equation is readily verified to be given by

E(e−αWe) = exp

{
−a

∫ α

0

1 − β(u)

u
du

}
. (64)

Let us now point out a relation between the above growth-collapse process and the so-called
shot noise process, which has been extensively studied in the literature on queueing models with
workload-dependent service speed (see, e.g. [8], [13, pp. 558–559], and [17]). First transform
Xt into a ‘dual’ workload process following a procedure in [20]. This is done in two steps.

1. Construct a ‘mountain’ process by changing the negative jumps into negative slopes with
gradient −1.

2. Construct a workload process by changing the positive slopes into positive jumps of sizes
B1, B2, . . . .

The resulting process has paths that are linearly decreasing between positive jumps; its workload
just before the nth jump (which is of size Bn) is Wn.

Next consider the following shot noise process. Upward jumps, of sizes B1, B2, . . . , occur
after independent, Exp(λ)-distributed time intervals. Between jumps, the process decreases at
rate rx, where x is the process level and r > 0 is some constant. We can now interpret

R(y, x) =
∫ x

y

1

rw
dw (65)
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as the time it takes for this shot noise process to decrease from level x to level y, when no jumps
occur.

Finally consider the following transformation:

Yn = −1

r
log

(
Wn

Sn

)
. (66)

A simple calculation shows that Yn is Exp(ra)-distributed. Taking a = λ/r results in Yn being
Exp(λ)-distributed. However, from (65) and (66) it is also clear that Yn, as defined above,
represents the time taken to decrease from Sn toWn in the dual workload process, as well as an
interarrival time in the shot noise process. It is thus seen that the level of the shot noise process
just before the nth upward jump has exactly the same distribution as Wn in the dual process
and the original GCP.

The shot noise process just described has been analyzed in [8]. On p. 546 of [8] it was
shown that it has a steady-state density v(·) whose LT is given by (64). Because of the PASTA
property, this is also the LT of the density of the shot noise process just before jump epochs,
and the above construction confirms that this is also the LT of We. See pp. 546–547 of [8] for
special cases (in which, for instance, λ = r and B1 is exponentially distributed, resulting in an
exponential workload density).

Remark 1. The shot noise process not only never reaches 0, but is also known to be stable for
all offered traffic loads. The relation to the special process described above implies that the
same properties hold for this latter process.

6. The Markov-modulated case

Now let us look at the Markov-modulated case, as described in Section 1. The underlying
Markov process is two-dimensional: Zt = (Xt , Jt ); and the generator is

(Gf )(x, i) = c(i)f ′(x, i)+
∑
j �=i

qij f (x, j)− (qi + r(x))f (x, i)

+ r(x)

∫
[0,x)

f (y, i)µx(dy), i = 1, . . . , n,

or, in matrix form,

(Gf )(x) = Cf ′(x)+ (Q − r(x)E)f (x)+ r(x)Df (x),

where

(a) f (x) = (f (x, 1), . . . , f (x, n))�;

(b) Q = (qij )i,j∈{1,...,n} is the generator of the Markov chain Jt , and qi = −qii ;
(c) C and Df (x) are diagonal matrices with diagonal entries c(i) and

∫
[0,x) f (y, i)µx(dy),

respectively;

(d) E is the n× n identity matrix.

We can now derive the stationary distribution of Zt and the LT Ex(e−αTa ) in terms of integral
and differential equations.
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Instead of developing this generalization, we finally consider the following problem: what
is the distribution of Ta ∧σ? To see that this is a relevant question, let us, for example, interpret
σ as the time at which disaster occurs in some ‘system’, say some technical item. Assume that
the system has to run indefinitely; upon any disaster it has to be replaced by a new, identical
one, but it can also be replaced preventively when its age reaches a certain threshold a > 0,
which has to be specified by the controller. Thus, the first replacement takes place at time
Ta ∧ σ . Suppose that after replacement the modulating chain is restarted at some fixed state i0.
If a replacement of a functional system costs $C1 and a replacement upon disaster (of a thus
nonfunctional system) costs $C2 (where C1 < C2), then the long-run average cost of running
the system when using the policy Ta is given by

C(a) = C1 P0,i0(Ta ∧ σ = Ta)+ C2(1 − P0,i0(Ta ∧ σ = Ta))

E0,i0(Ta ∧ σ) ,

where Px,i(·) and Ex,i(·) respectively denote conditional probability and conditional expectation
given that Z0 = (x, i). Hence, Px,i(Ta ∧ σ = Ta) and Ex,i(Ta ∧ σ) are important quantities;
once they are known as functions of a we can try to minimize C(a).

We deal with this problem as follows. Suppose that the process is killed at time σ by entering
a coffin state ∂ . By Dynkin’s formula, we have

f (x, i) = Ex,i

(∫ T

0
(Gf )(Zt ) dt

)
− Ex,i(f (ZT )) (67)

for a bounded function f in the domain of G and any integrable stopping time T . Now apply
(67) to T = Ta ∧ σ in two cases:

(i) f = f1, such that (Gf1)(x, i) = 0, x ∈ (0, a), with f1(∂, i) = 0 and f1(a, i) = 1.

(ii) f = f2, such that (Gf2)(x, i) = −1, x ∈ (0, a), with f2(∂, i) = 0 and f2(a, i) = 0.

A moment’s reflection shows that if f1 and f2 have these properties, then

f1(x, i) = Px,i(Ta ∧ σ = Ta),

f2(x, i) = Ex,i(Ta ∧ σ).
Hence, we have to solve

Cf ′(x)+ (Q − r(x)E)f (x) = (0, . . . , 0)�, (68)

subject to the condition that
f (a, ·) = (1, . . . , 1)�, (69)

and
Cf ′(x)+ (Q − r(x)E)f (x) = (−1, . . . ,−1)�, (70)

subject to the condition that
f (a, ·) = (0, . . . , 0)�. (71)

Let us finally show that, for n = 2 (when there are two modulating states), these systems of
linear differential equations can be solved in special cases.
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Example 5. Let n = 2 and set q12 = µ1, q21 = µ2, and f (x, i) = hi(x), i = 1, 2. Then, for
x ∈ (0, a], (68) and (69) become

c(1)h′
1(x)− (µ1 + λ(x))h1(x)+ µ1h2(x) = 0,

c(2)h′
2(x)− (µ2 + λ(x))h2(x)+ µ2h1(x) = 0,

(72)

subject to

h1(a) = h2(a) = 1, (73)

and (70) and (71) become

c(1)h′
1(x)− (µ1 + λ(x))h1(x)+ µ1h2(x) = −1,

c(2)h′
2(x)− (µ2 + λ(x))h2(x)+ µ2h1(x) = −1,

(74)

subject to

h1(a) = h2(a) = 0. (75)

Formulae (72)–(73) can be transformed into the two second-order linear differential equations

0 = c(1)c(2)h′′
i (x)− [(c(1)+ c(2))λ(x)+ µ1c(2)+ µ2c(1)]h′

i (x)

+ [λ(x)2 + (µ1 + µ2)λ(x)]hi(x), i = 1, 2, x ∈ (0, a], (76)

with the boundary conditions

hi(a) = 1, h′
i (a) = λ(a), i = 1, 2. (77)

Similarly, (74)–(75) lead to

0 = c(1)c(2)h′′
i (x)− [(c(1)+ c(2))λ(x)+ µ1c(2)+ µ2c(1)]h′

i (x)

+ [λ(x)2 + (µ1 + µ2)λ(x)]hi(x)− µ1 − µ2 − λ(x), i = 1, 2, x ∈ (0, a], (78)

with the boundary conditions

hi(a) = 0, h′
i (a) = −1, i = 1, 2. (79)

Now consider the proportional jump intensity r(x) = λx, which we assumed to hold in
Section 3. In this case, (76) takes the form

h′′
i (x)+ [d1x + d2]h′

i (x)+ [d3x
2 + d4x]hi(x) = 0, i = 1, 2, x ∈ (0, a], (80)

where
d1 = −(c(1)c(2))−1[c(1)+ c(2)λx],
d2 = −(c(1)c(2))−1[µ1c(2)+ µ2c(1)],
d3 = (c(1)c(2))−1λ2,

d4 = (c(1)c(2))−1(µ1 + µ2)λ.

The general solution to (80) can be given as a linear combination of the degenerate hypergeo-
metric functions 
 and � that we used in Section 3 (see [21, Equation 2.1.2.103]), for certain
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arguments, and the boundary conditions (77) then uniquely determine the coefficients. We will
not write down the exact formulae, as they are lengthy. Let 
0(x) and �0(x) be two linearly
independent solutions to (80). The corresponding general solution to the inhomogeneous
equation (78) is given by

C1
0(x)+ C2�0(x)+ (c(1)c(2))−1
[
�0(x)

∫ x

0


0(u)(µ1 + µ2 + λ(u))

W(u)
du

−
0(x)

∫ x

0

�0(u)(µ1 + µ2 + λ(u))

W(u)
du

]
,

where W(u) = 
0(u)�
′
0(u) − �0(u)


′
0(u) and the constants C1 and C2 can be determined

from (79).

References

[1] Albrecher, H. and Boxma, O. J. (2004). A ruin model with dependence between claim sizes and claim
intervals. Insurance Math. Econom. 35, 245–254.

[2] Albrecher, H. and Boxma, O. J. (2005). On the discounted penalty function in a Markov-dependent risk
model. Insurance Math. Econom. 37, 650–672.

[3] Altman, E., Avrachenkov, K., Barakat, C. and Núñez-Queija, R. (2001). State-dependent M/G/1 type
queueing analysis for congestion control in data networks. In Proc. IEEE INFOCOM 2001 (Anchorage, AK,
April 2001), IEEE, Piscataway, NJ, pp. 1350–1359.

[4] Altman, E., Avrachenkov, K., Kherani, A. A. and Prabhu, B. J. (2005). Performance analysis and stochastic
stability of congestion control protocols. In Proc. IEEE INFOCOM 2005 (Miami, FL, March 2005), eds K. Makki
and E. Knightly, IEEE, Piscataway, NJ.

[5] Asmussen, S. (2000). Ruin Probabilities (Adv. Ser. Statist. Sci. Appl. Prob. 2). World Scientific, Singapore.
[6] Asmussen, S. (2003). Applied Probability and Queues, 2nd edn. Springer, New York.
[7] Bak, P. (1996). How Nature Works: The Science of Self-Organized Criticality. Copernicus, New York.
[8] Bekker, R., Borst, S. C., Boxma, O. J. and Kella, O. (2003). Queues with workload-dependent arrival and

service rates. Queueing Systems 46, 537–556.
[9] Boxma, O. J. and Perry, D. (2001). A queueing model with dependence between service and interarrival times.

Europ. J. Operat. Res. 128, 611–624.
[10] Boxma, O. J., Kella, O. and Perry, D. (2001). An intermittent fluid system with exponential on-times and

semi-Markov input rates. Prob. Eng. Inf. Sci. 15, 189–198.
[11] Boxma, O. J., Kaspi, H., Kella, O. and Perry, D. (2005). On/off storage systems with state-dependent input,

output and switching rates. Prob. Eng. Inf. Sci. 19, 1–14.
[12] Budhiraja, A., Hernandez-Campos, F., Kulkarni, V. G. and Smith, F. D. (2004). Stochastic differential

equation for TCP window size: analysis and experimental validation. Prob. Eng. Inf. Sci. 18, 111–140.
[13] Cohen, J. W. (1982). The Single Server Queue. North-Holland, Amsterdam.
[14] Davis, M. H. A. (1984). Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic

models. J. R. Statist. Soc. B 46, 353–388.
[15] Davis, M. H. A. (1993). Markov Models and Optimization. Chapman and Hall, London.
[16] Eliazar, I. and Klafter, J. (2004). A growth-collapse model: Lévy inflow, geometric crashes, and generalized

Ornstein–Uhlenbeck dynamics. Physica A 334, 1–21.
[17] Keilson, J. and Mermin, N. D. (1959). The second-order distribution of integrated shot noise. IRE Trans. Inf.

Theory 5, 75–77.
[18] Kella, O. and Stadje, W. (2001). On hitting times for compound Poisson dams with exponential jumps and

linear release. J. Appl. Prob. 38, 781–786.
[19] Kherani, A. A. and Kumar, A. (2002). Stochastic models for throughput analysis of randomly arriving elastic

flows in the Internet. In Proc. IEEE INFOCOM 2002 (New York, June 2002), IEEE, Piscataway, NJ.
[20] Perry, D. and Stadje, W. (2003). Duality of dams via mountain processes. Operat. Res. Lett. 31, 451–458.
[21] Polyanin, A. D. and Zaitsev, V. F. (1995). Handbook of Exact Solutions for Ordinary Differential Equations.

CRC, Boca Raton, FL.
[22] Rolski, T., Schmidli, H., Schmidt, V. and Teugels, J. (1999). Stochastic Processes for Insurance and Finance.

John Wiley, New York.
[23] Scheinhardt, W., van Foreest, N. and Mandjes, M. (2005). Continuous feedback fluid queues. Operat. Res.

Lett. 33, 551–559.

https://doi.org/10.1239/aap/1143936148 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1143936148

	1 Introduction
	2 GCPs as piecewise-deterministic Markov processes
	3 Uniform cut-offs and proportional jump intensity
	4 Poisson jump times with uniform cut-offs
	5 The generalized uniform cut-off process and its relation to the shot noise process
	6 The Markov-modulated case
	References

