
4 
Scalar fields 

The simplest quantum field theory is that of a free scalar particle. On a 
lattice this becomes the Gaussian model of statistical mechanics. Here we 
will solve this system exactly to introduce lattice field theory. As with the 
conventional continuum theory, Fourier transform techniques are the key 
to this solution. We conclude this chapter with some general remarks on 
interacting scalar fields. 

We begin with the standard Lagrangian density for a self-conjugate free 

field !i' = 1(a,.~)2+im2~2. (4.1) 

Here ~(x) is a real function of the four space-time coordinates xI'" The 
discussion here is easily generalized to an arbitrary number of dimensions 
and complex fields. The Greek indices denoting vector quantities run from 
one to four. A repeated index, as implied in eq. (4.1), is understood to be 
summed; however, as we work in Euclidian space, no metric tensor is 
implied. To every field configuration corresponds an action 

S = f d'x!i'. (4.2) 

The Feynman path integral is a sum over all configurations 

Z= f[d~]e-S, (4.3) 

where, as in the previous chapter, the integration measure needs definition. 
We proceed directly to a four-dimensional hypercubic lattice. Thus we 

restrict our coordinates to the form 
x,. = an,.. (4.4) 

where a is the lattice spacing and n,. has four integer components. As an 
infrared cutoff, we allow the individual components of n to assume only 
a finite number N of independent values 

-Nj2 < n,. ~ Nj2. (4.5) 

Outside this range we assume the lattice is periodic; we identify n with 
n+N. Thus our lattice has N' sites. We now replace the derivatives of ~ 
with nearest neighbor differences 

a,.~(xv)~(~nv+8vl' -~n)la, (4.6) 
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Scalar fields IS 

where the Kronecker function is defined 

8 ={I, p=v} 
pv 0, p =+= v. (4.7) 

The action is a sum 

S = a4 [ I (<Pm -<Pn)2 j(2a2)+ I m2<p~j2], (4.8) 
{m,n} n 

where {tn, n} represents the set of all nearest-neighbor pairs of lattice sites. 
The path integration measure is now simply defined as an ordinary integral 
over each of the lattice fields 

Z = IO:; d<Pn)e-s . (4.9) 

At this point we observe that the action is a quadratic form in the field 

variables S = i<Pm M mn <Pm (4.10) 

where M is an N4-dimensional square matrix and we adopt the usual 
summation convention on repeated indices. The integral in eq. (4.9) is of 
the standard Gaussian form and has the value 

Z = I Mj21T1-l, (4.11) 

where the vertical bars denote the determinant of the enclosed matrix. We 
will now introduce a Fourier transform on the lattice. This will diagonalize 
M and make the determinant trivial. 

Letln be an arbitrary complex function on the lattice sites. Its Fourier 
transform is defined 

!k = Fknln = Ilne27rikp,np,/N. 
n 

(4.12) 

The index k also carries four integer valued components, each in the range 
of eq. (4.5). This linear transform is easily inverted with the identity 

Thus we have 

Ie-21fik'n/N = N4II8 == N48'! . k P np,.o n,o (4.13) 

(4.14) 

or In = N-4IAe-27rik·n/N. (4.15) 
k 

The utility of the Fourier series appears when we consider sums of local 
quadratic forms, such as appear in our lattice action. In particular, the 

useful identities If: gn = N-4 IJ:gk (4.16) 

and 

reduce the action to 

n k 

S = a4N-4 IlMk I iPk 12, 
k 

(4.17) 

(4.18) 
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16 Quarks, gluons and lattices 

where Mk = m2+2a-2I;(l-cos(21TkJl/N». 
Jl 

The Fourier transform has diagonalized M 

Mmn = a4N-4I;F!k Fnk M k' 
k. 

(4.19) 

(4.20) 

To evaluate the determinant of this matrix, first note that eq. (4.14) implies 

IN-4F*1 = IFI-1• (4.21) 

Thus we have the exact expression for our path integral 

Z = IM/21TI-I = TI(a4M k/21T)-!. (4.22) 
k 

This equation is not very useful as it stands. To obtain Green's functions, 
we consider external sources I n on the lattice sites and coupled to the field 
ifJ. Consequently we generalize our action to 

S(J) = iifJm Mmn ifJn -In ifJn' (4.23) 

The partition function now depends on the sources 

Z(J) = f[difJ]e-S(J). (4.24) 

This quantity is a generating function for the Green's functions, which 
follow from differentiation with respect to the sources 

< ifJn, ... ifJnl) = Z-1 f [difJ] e-sifJn, ... ifJnll J-O 

= Z-1 L~ ... d~ Z(J)} I (4.25) 
~ ~ J-O 

Completing the square in eq. (4.23) and shifting the integration in eq. (4.24) 
gives the exact expression for this free-field generating function 

(4.26) 

where Z(O) is given in eq. (4.22). From this we see that the propagator or 
two-point function is simply the inverse of the matrix M 

<ifJm ifJn) = (M-l)mn' 

Momentum space makes this inversion trivial 

<ifJmifJn) = a-4N-4 I; M,/e21Tik ·(m-n)/N. 
k 

(4.27) 

(4.28) 

To put this expression into a more familiar form, we first take N to infinity 
and change the momentum sum into an integral with the replacements 

qJl = 21TkJl /(Na), (4.29) 

(4.30) 
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Here each component of q runs over the finite range 

-11/a < qp ~ 11/a. 

17 

(4.31 ) 

This explicitly shows the momentum space effect of the lattice cutoff. The 
propagator now assumes the form 

f1T1a d4q e-iq -x 

~m~>= . 
-1T/a (211)4 m2 + 2a-2 ~ [1- cos (aq,,)] 

(4.32) 

" 
where (4.33) 

For the continuum limit a-+O we expand the cosine 

2a-2~(I-cos(aq,,» = q2+O(a2) (4.34) 

" 
and obtain (4.35) 

This is the familiar Feynman propagator function in Euclidian space. 
Up to this point we have been considering a free field. Now we add an 

interaction term to our action 

(4.36) 

The full potential felt by the field ep includes the mass term from eq. (4.8) 

Veep) = im2ep2+ J;[(ep). (4.37) 

The minima of this function form the basis for semiclassical treatments, 
with which we will not concern ourselves here. As a concrete example, the 

usual ep4 theory takes J;[( ep) = go ep4. (4.38) 

Here go is the bare coupling with the lattice cutoff in place. The full 
generating function of the interacting theory is stiII 

Z(J) = f[dep]e-S(J). (4.39) 

Note that the potential Veep) must be bounded below if this integral is to 
make any sense. In particular, the ep4 theory with negative coupling is sick, 
and therefore we do not expect analyticity at vanishing go. Perturbation 
in go yields at best an asymptotic series (Dyson, 1952). 

The usual perturbation expansion follows from a formal exploitation 
of eq. (4.25) to give 

Z(J) = exp(~ J;[(d/dJn»Zo(J), (4.40) 
n 

where Zo(J) is the free-field generating function from eq. (4.26). An 
expansion of the exponent in this equation gives the Feynman series in 
terms of vertices from the interaction term and propagators from Zo(J)· 
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18 Quarks, gluons and lattices 

The Green's functions, which follow by differentiating Z with respect 
to the sources, are the full n-point functions and include, in general, 
disconnected pieces. In particular, if ¢> has a vacuum expectation value, 
one might prefer to subtract this and study the connected propagator 

<¢>m ¢>n>c = <¢>m ¢>n> - <¢>m> <¢>n>· (4.41) 

A general connected Green's function is defined through the corresponding 
generating function, which is simply the logarithm of Z 

F(J) = In (Z(J», (4.42) 

<¢>n, ... ¢>nJ>c = (d~ ... d~ F(J») I· (4.43) 
n, nj J-o 

Note that in the statistical mechanical analog F(J) is proportional to the 
free energy. 

We conclude this chapter with some brief remarks on the strong 
coupling expansion for this scalar theory. Considering the ¢>4 theory of eq. 
(4.38), we change integration variables in the path integral from ¢> to gl¢>, 
and we perform a similar formal manipulation to that giving eq. (4.40). 
Thus we find 

Z(gIJ) = goN4/4 f[d¢>l e-!go\~M¢ e-l:n(¢~-Jn¢n) 

=goN4/4exp( -ig"o! :JM :Jr;J(Jn), (4.44) 

where J(J) is an ordinary one-dimensional integral 

J(J) = f:~ d¢>e-(¢4-J¢). (4.45) 

An expansion ofthe exponential on the right hand side ofeq. (4.44) forms 
the basis for a strong coupling expansion in powers of got. Unfortunately, 
in the continuum limit the matrix M grows, and therefore for fixed 
coupling we are no longer expanding in a small quantity. As we are more 
interested in gauge theories, we will not discuss here the techniques 
invented in attempts to overcome this problem. We only wish to emphasize 
that a strong coupling series is quite natural when the lattice is in place 
(Baker and Kincaid, 1979; Bender et al., 1981). 

Problems 

1. Verify equation (4.19). 
2. Show that a rescaling of the field normalization puts the action in 

the form S = l: ¢>':n + K l: ¢>m ¢>n. 
m {mn} 
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Show that in the continuum limit the 'hopping constant' K goes to unity 
at a rate dependent on the mass. 

3. One might consider as a non-perturbative cutoff disregarding a field's 
Fourier components which carry momentum larger than some cutoff 
parameter. How does this compare to the lattice cutoff in real space? 
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