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The incompressible two-dimensional Euler equations on a sphere constitute a
fundamental model in hydrodynamics. The long-time behaviour of solutions is largely
unknown; statistical mechanics predicts a steady vorticity configuration, but detailed
numerical results in the literature contradict this theory, yielding instead persistent
unsteadiness. Such numerical results were obtained using artificial hyperviscosity to
account for the cascade of enstrophy into smaller scales. Hyperviscosity, however,
destroys the underlying geometry of the phase flow (such as conservation of Casimir
functions), and therefore might affect the qualitative long-time behaviour. Here,
we develop an efficient numerical method for long-time simulations that preserve the
geometric features of the exact flow, in particular conservation of Casimirs. Long-time
simulations on a non-rotating sphere then reveal three possible outcomes for generic
initial conditions: the formation of either 2, 3 or 4 coherent vortex structures. These
numerical results contradict the statistical mechanics theory and show that previous
numerical results, suggesting 4 coherent vortex structures as the generic behaviour,
display only a special case. Through integrability theory for point vortex dynamics on
the sphere we present a theoretical model which describes the mechanism by which
the three observed regimes appear. We show that there is a correlation between a first
integral γ (the ratio of total angular momentum and the square root of enstrophy)
and the long-time behaviour: γ small, intermediate and large yields most likely 4, 3
or 2 coherent vortex formations. Our findings thus suggest that the likely long-time
behaviour can be predicted from the first integral γ .

Key words: rotating flows, computational methods, Hamiltonian theory

1. Introduction
The motion of an ideal fluid restricted to the surface of a sphere is a fundamental

model in oceanography, meteorology and astrophysics (see Majda & Bertozzi (2002);
Dolzhansky (2012); Pedlosky (2013); Zeitlin (2018), and references therein). The
equations of motion, first studied by Euler in 1757, encode a rich geometry – a
Lie–Poisson structure – which results in conservation of energy, momentum and
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Casimir functions (see Arnold 1966; Marsden & Weinstein 1983; Arnold & Khesin
1998).

The ultimate ‘fate’ of two-dimensional (2-D) fluid motion in a bounded domain is
largely unknown (Newton 2016). Statistical mechanics theories, such as developed by
Miller (1990) and Robert & Sommeria (1991), are based on maximizing the entropy of
a coarse-grain probability distribution of the macroscopic states under conservation of
energy and (at least some of) the Casimirs. Such models predict a steady equilibrium
of large-scale coherent vortex structures, with a functional relation between vorticity
and streamfunction.

To test the statistical model of Miller, Robert & Sommeria (MRS) a natural
approach is to use long-time numerical simulations. A serious complication is the
‘inverse energy cascade’ where energy from small scales is eventually fed into large
scales whereas enstrophy cascades in the forward direction towards smaller scales.
This process was first described by Kraichnan (1967). Of course, in a numerical
simulation the spatial resolution is finite, so one can never fully resolve the fine-scale
structure. As a remedy, a common approach is to adopt a subgrid model, most often
hyperviscosity, to account for the enstrophy cascade to smaller scales (see Qi &
Marston (2014) and references therein). The inverse energy cascade is related to
the conservation of Casimirs, although the exact relation is unknown. In addition to
energy, circulation (linear Casimir) and enstrophy (quadratic Casimir), there are several
numerical investigations reporting that cubic and possibly higher-order Casimirs also
play a role in the formation of large-scale coherent vortex structures (Abramov &
Majda 2003; Dubinkina & Frank 2010). On the non-rotating sphere, Dritschel, Qi
& Marston (2015) provided numerical evidence that, for randomly generated initial
data, the long-time behaviour results in a non-steady interaction largely between two
positive and two negative coherent vortex structures (referred to as vortex blobs in this
paper) essentially governed by finite-dimensional point vortex dynamics. Seemingly
persistent unsteadiness in numerical solutions of 2-D Euler fluids was also reported
by Segre & Kida (1998) but for special initial conditions. Dritschel et al. (DQM)
argue that, in fact, the unsteady four vortex blob behaviour is generic. This statement
is in stark contrast to the previous notion that a steady equilibrium is the generic
behaviour. However, DQM used methods with hyperviscosity and in their simulations
the percentage decay in enstrophy is between 30 % and 60 %, so hyperviscosity
clearly comes into play, but precisely how and if it affects the long-time result is
unclear.

In this paper, based on a new numerical method that exactly conserves all Casimir
functions thereby eliminating the need for hyperviscosity, we give strong evidence
that neither MRS nor DQM are correct. Or, in a way, they are both correct – it
all depends on the regime of the initial conditions. Based on the non-dimensional
non-negative number γ given by the quotient between the total angular momentum
and the total enstrophy, we identify three different regimes: generically, (‘generic’
here means that the initial vorticity is sampled as a random field in the space of
L2 functions, as described in § 3.2 below) if γ . 0.15 then most likely 4 vortex
blobs form (the behaviour observed by DQM), if γ & 0.4 then most likely 2 vortex
blobs form (the behaviour suggested by MRS) and if 0.15 . γ . 0.4 we have
found a new, intermediate regime where most likely 3 vortex blobs form. The
2 vortex blob formation is steady (or at least almost steady), whereas the 3 and
4 blob formations are unsteady. Furthermore, through point vortex dynamics, we
suggest a theoretical mechanism which qualitatively explains the three regimes. This
theory, which also predicts results observed on the torus, is not based on statistical

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

94
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.944


Casimir preserving scheme for spherical ideal hydrodynamics 884 A22-3

mechanics (i.e. maximizing entropy, like MRS) but rather on integrability theory
(results on quasi-periodicity) for point vortex dynamics.

As mentioned already, the central tool in the discovery of the three regimes is
a new numerical scheme for ideal fluids on rotating or non-rotating spheres that
encapsulate the full Lie–Poisson geometry (in particular conservation of associated
Casimirs). (It is clear from the definition of γ that a scheme with hyperviscosity, such
as those used by Dritschel et al. (2015) with 30 %–60 % decay in enstrophy but no
decay in total angular momentum, could never be used to correctly identify the three
regimes.) It is based on geometric quantization theory developed by Hoppe (1982),
Hoppe & Yau (1998) in conjunction with the Lie–Poisson preserving numerical time
discretization developed by Modin & Viviani (2019). The method can be seen as a
spherical analogue of the spatial discretization of the Euler equations on the torus
suggested by Zeitlin (1991) and the associated numerical time discretization suggested
by McLachlan (1993).

We now continue the introduction with a more detailed exposition of the equations
of motion, an overview of the space and time discretization and a summary of our
main findings.

Consider a homogeneous, incompressible, inviscid, two-dimensional fluid, con-
strained to the unit sphere S2 embedded in Euclidean R3 and possibly rotating with
constant angular speed about a fixed axis. The equations of motion are given by
Euler’s equations of hydrodynamics

v̇ + v · ∇v =−∇p− 2Ω̃ × v,

∇ · v = 0,

}
(1.1)

where v is the velocity vector field of the fluid, p is its internal pressure and Ω̃ = (Ω ·
n)n is the projection of the angular rotation vector Ω ∈R3 to the normal n. The term
−2Ω̃ × v is due to the Coriolis force. Equivalent to (1.1) is the barotropic vorticity
equation (also called the quasi-geostrophic equation in the case Ω̃ 6= 0), formulated
in terms of the vorticity variable ω= (∇× v) · n. By Stokes’ theorem we necessarily
have

∫
ω = 0 corresponding to zero circulation. Euler’s equations (1.1) can now be

written
ω̇= {ψ, ω},

1ψ =ω− f ,

}
(1.2)

where f := 2Ω · n is the Coriolis parameter, ∆ is the Laplace–Beltrami operator, {·, ·}
is the Poisson bracket and the streamfunction ψ is unique by the additional condition∫

ψ = 0. (1.3)

The vorticity equation (1.2) constitutes an infinite-dimensional Lie–Poisson system (cf.
Arnold & Khesin 1998) on the space of smooth zero mean functions

C∞0 (S
2)=

{
ω ∈C∞(S2)

∣∣∣∣∫ ω= 0
}
. (1.4)

The Hamiltonian is

H(ω)= 1
2

∫
(ω− f )ψ, (1.5)
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and the (infinitely many) Casimir functions are given, for any smooth real function
g ∈C∞(R), by

C(ω)=
∫

g(ω). (1.6)

Often g is chosen as monomials, and the corresponding Casimirs

Ck(ω)=

∫
ωk, k= 1, 2, . . . (1.7)

are called linear, quadratic, cubic, etc. Each Casimir (1.6) is indeed a first integral

d
dt

∫
g(ω)=−

∫
g′(ω)v · ∇ω=−

∫
v · ∇g(ω)=

∫
(∇ · v)g(ω)= 0, (1.8)

where we have used that

{ψ, ω}p = p · (∇ψp ×∇ωp)= (p×∇ψp) · ∇ωp =−vp · ∇ωp (1.9)

for any ψ, ω ∈ C∞(S2) and any p ∈ S2. Notice, in particular, that the Casimirs are
conserved for any choice of Hamiltonian; this reflect the underlying Lie–Poisson
geometry which is foliated in co-adjoint orbits preserved by any Hamiltonian flow
(cf. Marsden & Ratiu 1999, ch. 13–14).

The traditional approach to numerical discretization of a partial differential
equation (PDE) is to construct schemes of high local order of accuracy, using
for example finite element or finite volume schemes. Rather than focusing on
local accuracy, we take here conservation of the Casimir functions (1.6) and the
underlying geometric structure as a guiding principle for spatial discretization: we
wish to replace the infinite-dimensional Lie–Poisson structure (C∞0 (S2), {·, ·}) by a
finite-dimensional analogue. We require the number of conserved quantities to increase
with the size of the spatial discretization. This cannot be achieved by a truncated
spectral decomposition of the vorticity, essentially because the space spanned by a
truncated spectral basis is not closed under the Poisson bracket. Instead, we take the
approach proposed by Zeitlin (2004) based on the theory of geometric quantization
studied in Hoppe (1982), Bordemann et al. (1991) and Bordemann, Meinrenken
& Schlichenmaier (1994). It provides a sequence, indexed by N = 1, 2, . . . , of
finite-dimensional Lie algebras, that converges to the infinite-dimensional Lie algebra
of smooth functions on the sphere as N→∞. The sequence is given explicitly by the
Lie algebra su(N) (or sl(N,C)) (su(N) is the Lie algebra of N × N skew-Hermitian
complex matrices with trace zero, sl(N, C) is the Lie algebra of N × N complex
matrices with trace zero) for N = 1, 2, . . . . For any choice of N we get an ordinary
differential equation (ODE) which is a finite-dimensional analogue of (1.2)

Ẇ = [∆−1
N (W − F ),W ]N, (1.10)

where W ∈ su(N) (corresponding to the vorticity ω), F ∈ su(N) (corresponding to
the Coriolis parameter f ), ∆N : su(N) → su(N) is the discrete Laplace–Beltrami
operator (corresponding to ∆) and [·, ·]N is the rescaled matrix commutator
(corresponding to {·, ·}). The matrix differential equation (1.10) is an isospectral
flow, meaning that the eigenvalues of W are invariant in time. The conservation of
these eigenvalues corresponds to the conservation of the Casimirs. Exactly how W
in (1.10) approximates ω in (1.2) is described in a complicated (but explicit) linear
change of coordinates between W and a truncated spherical harmonics basis. Details
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are given in § 2.1. A feature of the spatial discretization is that W 7→ ∆−1
N (W − F )

can be computed in only O(N2) operations. Thus, the main computational complexity
is due to matrix multiplications in the bracket [·, ·] (which has complexity O(N3)).
Details on the computational complexity are given in § 2.3.

To discretize (1.10) in time we apply a Lie–Poisson preserving isospectral
symplectic Runge–Kutta integrator (Modin & Viviani 2019). These numerical methods
exactly conserve (i.e. up to rounding errors) the discrete Casimirs (eigenvalues), they
nearly conserve the Hamiltonian (‘nearly’ in the sense of backward error analysis
of symplectic integrators, cf. Hairer, Lubich & Wanner (2006)), and they exactly
conserve the Lie–Poisson flow structure (in short, this means that the time discretized
system corresponds to a continuous Lie–Poisson flow on su(N) for a slightly modified
Hamiltonian). The IsoSRK integrators are necessarily implicit, thus requiring nonlinear
root solving at each time step. As a comparison, we also employ the standard explicit
Heun method for time discretization of (1.10).

In § 3 we present numerical simulations on a non-rotating sphere (F = 0).
First, in § 3.1, we use the same randomly generated initial data as suggested by
Dritschel et al. (2015). Long-time simulations are carried out for both types of
time discretizations (IsoSRK and Heun) and various levels of spatial discretization.
Our numerical results verify, but now without hyperviscosity, the formation of
a quadruple of vortex blobs moving quasi-periodically with no sign of reaching
steadiness. However, although the DQM initial conditions were randomly generated,
we claim they cannot represent the generic behaviour because the total angular
momentum is zero. The motivation by Dritschel et al. to set momentum to zero was
‘to avoid starting with a flow organized at the largest possible scale’. Herein lies the
implicit assumption that the value of the momentum does not affect the qualitative
behaviour. On the doubly periodic square (i.e. the flat torus) the assumption is correct:
momentum does not influence the dynamics and can therefore safely be set to zero.
On the sphere, however, the momentum strongly affects the dynamics. In fact, our
results suggest that the generic qualitative behaviour on a non-rotating sphere is
essentially governed by the value of the total angular momentum. Indeed, in § 3.2
we generate 16 sets of initial vorticity as samples from a Gaussian random field
on the space of L2-functions. In the corresponding 16 long-time simulations we
observe the following qualitative behaviour: 5 of them give 4 vortex blobs, 9 of them
give 3 vortex blobs and 2 of them give 2 vortex blobs. We also observe that the
non-dimensional number γ = ‖L‖/(R

√
C2) (total angular momentum divided by the

radius of the sphere times the square root of enstrophy) gives a probabilistic indication
of which ‘qualitative regime’ the fluid configuration develops into: small values
(approximately less than 0.15) result in 4 vortex blobs, large values (approximately
larger than 0.4) result in 2 vortex blobs and intermediate values result in 3 vortex
blobs. The number γ , computable from the initial conditions, is thus implicated in
predicting the fluid’s long-time qualitative behaviour. Of the three regimes, only the
2 vortex formation is steady (up to a constant speed rotation about the momentum
axis).

It is natural to ask for a theoretical model explaining the three observed regimes.
Clearly, the statistical mechanics based MRS theory is insufficient; it incorrectly
predicts steadiness and does not predict or offer insights into why there should
be three regimes. Instead, we have found a different theory which explains the
mechanisms by which the regimes appear: it is closely related to integrability
theory for point vortex dynamics (PVD). Recall that a Hamiltonian system is called
integrable if there is a local change of variables in which the dynamics is described by
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quasi-periodic linear motion on tori. (Equivalently, integrability of a 2n-dimensional
Hamiltonian system can be characterized by the existence of n first integrals in
involution (cf. Arnold 1989).) PVD constitute a class of Hamiltonian N-particle
systems that describe, at least formally, special solutions to the Euler equations (1.1) in
the non-rotating case (Ω = 0). Aref (2007a) refers to PVD as ‘a classical mathematics
playground’: although the connection to fluid mechanics has always remained in
the background, mathematicians have studied these finite-dimensional Hamiltonian
systems in their own right, observing that ‘many strands of classical mathematical
physics come together’ (Aref 2007a, § I). A frequently addressed question is whether
a particular number of point vortices on some given geometry (for example the sphere)
yields integrable dynamics or not. In § 4 of this paper we (re)connect the mathematical
theory for integrability of PVD to the long-time behaviour of a continuous, generic
incompressible fluid, thereby obtaining an explanation of the three observed regimes.
This is briefly how the mechanism works:

(i) Smaller vortex formations of the same sign merge to larger formations when their
trajectories come close enough (the inverse energy cascade).

(ii) The motion of N vortex blobs is accurately described by N point vortices as long
as the blobs are well separated (so that no merging occurs). A careful, numerical
evaluation of this assumption is given in § 4.1.

(iii) If the motion of N vortex blobs is not integrable, then, sooner or later, two vortex
blobs of equal sign will reach a point in phase space where they are close enough
to merge.

(iv) If, however, the motion of the N vortex blobs is integrable (or at least close
enough to integrable in the Kolmogorov–Arnold–Moser (KAM) sense, see § 4.2)
then the motion remains quasi-periodic with well-separated trajectories and no
further merging occurs (integrability acts as a barrier in phase space, preventing
further merging of blobs). (From a mathematical viewpoint, the integrability
prevents the dynamical system from being ergodic. Ergodicity is assumed in
statistical mechanics theories such as MRS.)

To summarize, vortex blobs of equal sign continue to merge until integrability blocks
them from doing so. Thus, in order to find the long-time behaviour, one has to find the
largest possible number of point vortices for which the dynamics is integrable. Here
is the key point: on the non-rotating sphere integrability depends on the total angular
momentum. A 4-PVD system on the sphere is integrable if the momentum is zero, but
non-integrable if the momentum is non-zero (Sakajo 2007). If momentum is close to
zero one still obtains ‘integrable-like’ dynamics since integrable systems are stable in
the sense of KAM theory for small perturbations (the small momentum configuration
can be viewed as a perturbation of a zero momentum configuration). This explains
why 4 vortex blobs is the stable long-time regime for fluid configurations with a small
γ parameter. If the momentum in a 4 blob configuration is above the threshold where
KAM can be applied, the dynamics is chaotic and sooner or later two of the blobs will
merge into a 3 blob configuration. Since 3-PVD systems on the sphere are integrable
(regardless of the momentum), this explains the intermediate 3 blob regime. It remains
to explain why 2 blobs are sometimes formed. If γ is large enough, there are already
two dominant vortex blobs from the start, so the smaller vortex formations are directly
merged with these two without passing through the stable 3 vortex blob regime. We
thereby have an explanation of the mechanism leading to the three observed regimes.

Conclusions and an outlook to future research are presented in § 5. Although our
main focus is on the non-rotating sphere, we have included in appendix A numerical
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examples of Rossby–Haurwitz waves on a rotating sphere, to illustrate the usability
of the new method also in the rotating case (relevant for quasi-geostrophic flows in
atmospheric dynamics).

2. Numerical integration algorithm
For spatial discretization we use the system of differential equations developed

by Zeitlin (2004), based on the work of Hoppe et al. on the approximation of
infinite-dimensional Lie algebras (Bordemann et al. 1991, 1994). The Poisson algebra
of smooth functions on the sphere is approximated by the finite-dimensional matrix
Lie algebras sl(N,C), for the Poisson algebra C∞0 (S2,C), and su(N) for the Poisson
algebra C∞0 (S2,R). To discretize the equations in time we use the class of isospectral
symplectic Runge–Kutta methods developed by Modin & Viviani (2019).

2.1. Spatial discretization via geometric quantization
This section is devoted to the technique used to get a finite dimension analogue of
the Euler equations on a sphere. The main theoretical concept behind the approach is
the so called Lα-approximation.

2.1.1. The Lα-approximation
Consider a Lie algebra (g, [·, ·]) and a family of labelled Lie algebras (gα, [·, ·]α)α∈I ,

where α ∈ I = N or R. Furthermore, assume that, to any element of this family, a
distance dα and a surjective projection map pα : g→ gα are associated. Then an Lα-
approximation (gα, [·, ·]α)α∈I of (g, [·, ·]) should fulfil:

(i) if x, y ∈ g and dα(pα(x), pα(y))→ 0 as α→∞, then x= y;
(ii) for all x, y ∈ g we have dα(pα([x, y]), [pα(x), pα(y)]α)→ 0 as α→∞;

(iii) for α� 0 the projections pα are surjective.

The above definition is given in Bordemann et al. (1994); it is a weak requirement to
obtain a limit for a sequence of Lie algebras.

Consider now the smooth complex functions on the sphere with vanishing mean,
denoted C∞0 (S2,C). This vector space is endowed with a Poisson structure {·, ·} given
by the skew symmetric bilinear form on C∞0 (S2,C)

{f , g}(x)= |Xf (x),Xg(x), x|, (2.1)

where Xh(x) = x × ∇h(x) is the Hamiltonian vector field associated with the
Hamiltonian function h ∈ C∞0 (S2, C). With this bracket, C∞0 (S2, C) becomes an
infinite-dimensional Poisson algebra; in particular, it is an infinite-dimensional Lie
algebra.

A basis for C∞0 (S2, C) is given by the complex spherical harmonics, expressed in
the standard azimuthal-inclination coordinates (φ, θ) by

Ylm(φ, θ)=

√
2l+ 1

4π

(l−m)!
(l+m)!

Pm
l (cos θ)eimφ, l > 1, m=−l, . . . , l, (2.2)

where Pm
l are the associated Legendre polynomials (i.e. solutions to the general

Legendre equation). Using this basis, an explicit approximating sequence for
C∞0 (S2, C) was constructed by Hoppe (1982). The sequence is given by the matrix
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Lie algebras (sl(N, C), [·, ·]N)N∈N, where [·, ·]N := N3/2
[·, ·] is a rescaling of the

matrix commutator [·, ·]. The distances dN are given by suitable matrix norms, and
the projections pN are obtained by associating with each spherical harmonic Ylm a
matrix iT N

lm ∈ sl(N,C) defined by

(T N
lm)m1m2 = (−1)[(N−1)/2]−m1

√
2l+ 1

N − 1
2

l
N − 1

2
−m1 m m2

 , (2.3)

where the bracket denotes the Wigner 3j-symbols. The following Lα-convergence result
for this approximating sequence have been established:

THEOREM 1 (Bordemann et al. (1991, 1994)). Consider the Poisson algebra
(C∞0 (S2,C), {·, ·}) with Poisson bracket defined by (2.1). Then, for the projections pN
and any choice of matrix norms dN , (sl(N, C), [·, ·]N)N∈N is an Lα-approximation of
(C∞0 (S2,C), {·, ·}).

2.1.2. The quantized system
We can now derive the spatial discretization of the Euler equations via the

Lα-approximation in Theorem 1, thereby obtaining a finite-dimensional ‘quantized’
system. We begin without the Coriolis parameter.

For any N ∈ N an analogue of the Euler equations (1.2) is the following flow of
matrices

Ẇ = [∆−1
N W ,W ]N, (2.4)

where W ∈ sl(N, C) and ∆−1
N is the inverse of the discrete Laplacian, given by the

following formula of Hoppe & Yau (1998)

∆N =
N2
− 1
2

(
[X N

3 , [X
N
3 , ·]] −

1
2
[X N
+
, [X N

−
, ·]] −

1
2
[X N
−
, [X N

+
, ·]]

)
, (2.5)

where X N
±

∝ T N
1±1, X N

3 ∝ T N
10. The crucial property of ∆−1

N is that ∆−1
N T N

lm =

(−l(l + 1))−1T N
lm, for any l = 1, . . . , N, m = −l, . . . , l. That is, the basis elements

T N
lm are eigenvectors of the discrete Laplacian ∆N , which is a direct analogue to

the continuous case where the spherical harmonics Ylm are eigenvectors of the
Laplace–Beltrami operator ∆.

Let us again, now explicitly, discuss the connection between the continuous vorticity
equation (1.2) and the quantized version (2.4). First, notice that (2.4) is an isospectral
flow; it preserves the eigenvalues of W =W (t). This isospectral property is a direct
analogue of preservation of Casimirs in the continuous flow (1.2). Given a continuous
vorticity function expanded in the spherical harmonics basis, ω =

∑
ωlmYlm, the

projection operator pN is given by

pN(ω)=

N−1∑
l=1

l∑
m=−l

iωlmT N
lm. (2.6)

If the continuous vorticity ω is real valued, then the spherical harmonics coefficients
fulfil ωlm

= (−1)mωl(−m). The corresponding condition on the matrix W ∈ sl(N) is W +
W †
= 0, i.e. it belongs to the subalgebra su(N) of trace-free skew Hermitian matrices.

Thus, we need to restrict the quantized flow (2.4) to su(N), which is possible since
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su(N) is a matrix Lie algebra (so it is closed under the matrix commutator [·, ·]) and
since the discrete Laplacian ∆N restricts to an operator su(N)→ su(N) (corresponding
to the fact that the continuous Laplace–Beltrami operator ∆ on C∞(S2,C) restricts to
real functions C∞(S2,R)).

Recall from the introduction that the continuous vorticity equation (1.2) is a Lie–
Poisson system with Hamiltonian given by (1.5). Likewise, the quantized equation
(2.4) is a Lie–Poisson system on the dual of su(N) with Hamiltonian given by

H(W )= 1
2 Tr(∆−1

N WW †). (2.7)

The continuous Casimir functions Ck(ω) for (1.2) correspond, up to a normalization
constant depending on N, to the following Casimir functions for (2.4)

Ck(W )= Tr(W k) for k= 2, . . . ,N. (2.8)

As N → ∞ we have convergence to the corresponding moments Ck(ω) of the
continuous vorticity (see Rios & Straume 2014, Corollary 8.1.2). We remark that the
matrices T N

lm, with the Frobenius inner product, share the orthogonality properties of
Ylm, with the L2(S2,C) inner product. Therefore, if the initial vorticity ω is represented
by a finite linear combination of spherical harmonics, then choosing N sufficiently
large, the continuous Hamiltonian H(ω) and enstrophy (quadratic Casimir) C2(ω)
exactly coincide with the quantized analogues H(W ) and C2(W ).

In the rotating case the quantized system is

Ẇ = [∆−1
N (W − F ),W ]N, (2.9)

where F = 2ΩiT N
10 represents the discrete Coriolis parameter. The Hamiltonian in this

case is given by
H(W )= 1

2 Tr(∆−1
N (W − F )(W − F )†). (2.10)

2.2. Time discretization
To obtain a complete algorithm we also have to discretize time. For this, we use two
different schemes. The first is implicit and preserves the Lie–Poisson structure. The
second is explicit but does not preserve the Lie–Poisson structure.

2.2.1. Isospectral midpoint method
To take advantage of the quantization of the original equations, it is preferable to

solve the quantized system (2.4) in time using a Lie–Poisson integrator, i.e. a time
stepping scheme that preserves the Lie–Poisson structure (cf. McLachlan, Modin &
Verdier 2014, 2016). This way we obtain exact conservation of the Casimir functions
and near conservation of the Hamiltonian (in the sense of backward error analysis of
symplectic integrators (cf. Hairer et al. 2006)). Since (2.4) is a Hamiltonian isospectral
flow we can apply the Lie–Poisson schemes developed by Modin & Viviani (2019).
We use here the second-order isospectral midpoint rule (IsoMP). Given a time step
parameter h> 0 it is given by

W n =

(
I −

h
2
∆−1

N W̃

)
W̃

(
I +

h
2
∆−1

N W̃

)
,

W n+1 =

(
I +

h
2
∆−1

N W̃

)
W̃

(
I −

h
2
∆−1

N W̃

)
,

 (2.11)
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where I is the identity matrix. The matrix W̃ is an auxiliary variable implicitly defined
(together with W n+1) by the two equations in (2.11). For further details on the method
(2.11) we refer to Viviani (2019).

In presence of the Coriolis parameter F the IsoMP scheme is

W n =

(
I −

h
2
∆−1

N (W̃ − F )

)
W̃

(
I +

h
2
∆−1

N (W̃ − F )

)
,

W n+1 =

(
I +

h
2
∆−1

N (W̃ − F )

)
W̃

(
I −

h
2
∆−1

N (W̃ − F )

)
.

 (2.12)

The IsoMP method (2.11) (and (2.12)) exactly conserves angular momentum and
the Casimirs Ck(W ), and nearly conserves the Hamiltonian H(W ) (its value oscillates
in time without drift).

2.2.2. Heun’s method
As an alternative to the Lie–Poisson preserving time discretization just described,

we also consider the explicit Heun method. Explicit methods, such as Heun’s, exhibit
linear drift in the first integrals. However, if the linear drift is slow in comparison with
the total simulation time, an explicit method might be the most competitive choice
since it avoids nonlinear root solving. An efficient implementation of Heun’s method
for the quantized system (2.4) is the following:

K 1 =∆
−1
N W nW n,

W̃ =W n + h
(

K 1 − K †
1 −

1
N

Tr(K 1 − K †
1)I

)
,

K 2 = K 1 +∆
−1
N W̃W̃ ,

W n+1 =W n +
h
2

(
K 2 − K †

2 −
1
N

Tr(K 2 − K †
2)I

)
.


(2.13)

In the presence of the Coriolis parameter F the scheme becomes

K 1 =∆
−1
N (W n − F )W n,

W̃ =W n + h
(

K 1 − K †
1 −

1
N

Tr(K 1 − K †
1)I

)
,

K 2 = K 1 +∆
−1
N (W̃ − F )W̃ ,

W n+1 =W n +
h
2

(
K 2 − K †

2 −
1
N

Tr(K 2 − K †
2)I

)
.


(2.14)

2.3. Complexity
At first sight, it looks like the most demanding computational operation is the
inversion of the discrete Laplacian ∆N : it is a linear operator on sl(N,C) and thus a
fourth-order tensor, so dense linear algebra would require O(N4) operations. This is
clearly not possible, even for moderate values of N. However, from the formula (2.5)
of Hoppe and Yau one can deduce
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(∆N)
M′1M′2
M1M2
= 2δM′1

M1
δ

M′2
M2
(s(s+ 1)−M1M2)

− δ
M′1
M1+1δ

M′2
M2+1

√
s(s+ 1)−M1(M1 + 1)

√
s(s+ 1)−M2(M2 + 1)

− δ
M′1
M1−1δ

M′2
M2−1

√
s(s+ 1)−M1(M1 − 1)

√
s(s+ 1)−M2(M2 − 1), (2.15)

for M1, M′1, M2, M′2 = 1, . . . , N and s = (N − 1)/2. Notice that the tensor ∆N is
tridiagonal over the diagonal M1=M′1 and M2=M′2, i.e. it is sparse and contains only
O(N2) non-zero entries; we store ∆N as an N2

× N2 sparse matrix. Remarkably, this
sparse matrix also admits a sparse LU-factorization, i.e. a factorization of upper and
lower diagonal matrices L and U which are also sparse with O(N2) non-zero entries.
Thus, to compute the inverse ∆−1

N W requires just a single LU-factorization (which is
O(N3) operations) and thereafter only O(N2) operations every time ∆N is applied. In
essence, since the number of time steps for long-time simulations typically are of the
order O(106), this means that inversion of the discrete Laplacian only counts as O(N2)
operations.

We solve the nonlinear equation (2.11) with Newton iterations. Thus, under the
assumption that the average number of iterations per step is independent of N, the
global complexity of the algorithm per time step is first O(N2) (for applying ∆−1

N )
and then O(N3) (for the two matrix multiplications corresponding to computing the
commutator [·, ·]). In summary, this means that the full complexity of the algorithm,
per time step, is O(N3).

2.4. Time scaling
Recall that the correspondence between the matrix commutator on su(N) and the
Poisson bracket on C∞(S2, R) is N3/2

[·, ·] ≈ c{·, ·} for some constant c. The
requirement that 1 time unit of the vorticity equation (1.2) corresponds to 1 time
unit of the quantized system (2.4) as N→∞ implies c=

√
16π. In our simulations

below we normalize the time scaling of the quantized equations by rescaling the
initial conditions by ‖W 0‖ and setting [·, ·]N = [·, ·]. This way, the non-dimensional
time step h corresponds to

δt=
h
√

16π

N3/2‖W0‖
(2.16)

seconds of real time. In all our simulations below we use the non-dimensional
time step h = 0.1. A summary of the complete algorithm is given in Algorithm 1;
it is implemented using MATLAB and available online. (The code is available at
bitbucket.org/kmodin/euler-sphere-quantization.)

3. Simulation results
3.1. Initial data with zero momentum

We run our method with the same (randomly generated but zero momentum) initial
data suggested by DQM, i.e. Dritschel et al. (2015). We use N = 501, [·, ·]N = [·, ·],
and a dimensionless time step of h= 0.1. With these parameters, the simulation time
tk at step k in the original units of time is computed by the formula tk = k/13 643,
(derived from the formula in § 2.4). We simulate with both the IsoMP and the Heun
time integration. For IsoMP, we use Newton-type iterations with a tolerance of 10−13.

As already discussed in the introduction, the numerical results by DQM show
that steady state is not reached, but rather four main vortex formations that move
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around the sphere, surrounded by smaller-scale vortices. Let us now compare with our
results. The vorticity at various output times is displayed, using spherical coordinates,
in figure 1 for the two different time integration methods (IsoMP and Heun).

At time t = 4 our simulations and those in DQM give visually indistinguishable
results. At the early–intermediate vorticity, at time t = 40, there is already a clear
visible difference to DQM. However, there is no visible difference between our two
numerical time-integration schemes. This indicates that, for time step lengths in the
selected range, the choice of discretization in space, rather than time, dominates the
numerical errors.

At t = 400 s all simulations show the same qualitative feature: four large vortices
moving about in the domain. The exact positions of the vortices are different between
all the simulations (also between IsoMP and Heun). There are two positive and two
negative vortex blobs. The exact strengths vary slightly between the blobs (see § 4 for
further discussion about the vortex strengths).

When we run the simulation, either IsoMP or Heun, for long times a clear
pattern emerges: the 4 vortex formations are moving quasi-periodically. The
initial vortex mixing phase, up until the four vortex blobs have been formed
at approximately t = 200, is captured in Movie 1 of the supplementary material,
available at https://doi.org/10.1017/jfm.2019.944. (All the movies are also available
at bitbucket.org/kmodin/euler-sphere-quantization.) The fast-forward Movie 2 of the
whole simulation shows a short emerging phase of vortex mixing followed by a
stable but unsteady large-scale quasi-periodic interaction of the four vortices. In § 4
we discuss in detail the relation to stability of quasi-periodic point vortex solutions.
Movie 3 shows a simulation with the same initial conditions, but at the higher spatial
resolution N = 1001. The qualitative behaviour is the same, with four vortex blobs
forming and then circulating about each other in a quasi-periodic fashion. However,
the distribution of vortex formation is different in the high resolution simulation, with
the positive instead of the negative blobs closer to the poles.
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IsoMP time integration

Heun time integration

FIGURE 1. Simulation with two different time integration methods: IsoMP (2.11) and
Heun (2.13). Vorticity ω(x, t) clockwise from the top left at t= 0 s, 4 s, 40 s, 400 s, for
the initial data in DQM. The horizontal axis is the azimuth ϕ ∈ [0, 2π] and the vertical
axis is minus the inclination θ ∈ [0, π]. The results are visually indistinguishable up to
t = 40. At t = 400 there are some differences in the positions of the vortex blobs. See
also Movies 1, 2 and 3 of the supplementary material.

Let us continue the discussion here with the conservation properties of our method.
Figure 2 shows the variation of the energy and enstrophy during the simulation. For
IsoMP, the energy is nearly conserved by a factor 10−6 with no sign of drift, whereas
the enstrophy has the same variation as the Newton tolerance we have used, 10−13. For
Heun, we see that, albeit energy and enstrophy have linear drifts from their original
values, the variation is quite small and, in particular, the energy changes less than
with IsoMP. The negligible drift of energy and enstrophy is likely the reason why
Heun perform so well. We stress, however, that there is a drift, so at some point the
numerics will break down, whereas with IsoMP such a breakdown will not occur since
symplecticity is preserved.

The difference between IsoMP and Heun is more pronounced for the higher-order
Casimir functions of (2.4). In fact, computing the maximal absolute variation of the
eigenvalues of W, after 5× 106 time steps, we get with IsoMP a value of the order
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FIGURE 2. Hamiltonian variation |H − H0| (a,c) and enstrophy variation |E − E0| (b,d)
with the IsoMP (a,b) and Heun (c,d) time integrators.

10−12, whereas with Heun a value of the order 1. Even considering only the third
and fourth momenta of the vorticity, the Heun scheme has an absolute variation, after
5× 106 time steps, of the order 10−3.

In addition to integral invariants, such as energy and enstrophy, the continuous
vorticity equation (1.2) also conserves pointwise measures, such as the maximum
vorticity

‖ω‖∞ := sup
x∈S2
|ω(x)|. (3.1)

Formally, the conservation of ‖ω‖∞ follows from conservation of the Casimir
functions Ck(ω) as k→∞. Indeed, since the corresponding Casimir functions Ck(W )

of the quantized system approximate Ck(ω) one can deduce (formally) that ‖ω‖∞ is
nearly conserved without any drift (just like the energy). In fact, this result follows
rigorously from a theorem by Bordemann et al. (1994, Theorem 4.1), who proved
that there is a constant c > 0, independent of N, such that

‖W‖6 ‖ω‖∞ 6 ‖W‖ +
c
N
, (3.2)

where ‖W‖ is the matrix (operator) norm of W ∈ su(N) and ω is the vorticity function
corresponding to W. Since ‖W‖ is the largest eigenvalue (in magnitude) of W , and
since all the eigenvalues are conserved by the quantized flow (the isospectral property),
we get that ‖ω‖∞ is nearly conserved in the quantized system (i.e. it is an adiabatic
invariant for the quantized flow).

To measure the unsteadiness in the simulated flow we look at the relation between
the vorticity ω and the streamfunction ψ at t = 400. The MRS theory predicts a
steady flow determined by a functional relation ω = F(ψ) between the vorticity and
streamfunction. Figure 3 contains a scatter plot of ψ and ω for both IsoMP (2.11) and
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IsoMP time integration(a) Heun time integration

ø

(b)

ø

¥ ¥

FIGURE 3. Scatter plots of vorticity ω versus streamfunction ψ at t= 400. (a) Using the
IsoMP time integrator (2.11), and (b) using the Heun time integrator (2.13).

Heun (2.13). We notice that the shape of the resulting diagrams has branches, similar
to those in DQM, indicating unsteadiness. Our branches are more diffuse than those
in DQM since no artificial dissipation is added in our model. We also see a slight
difference between IsoMP and Heun: the one obtained with IsoMP has more defined
branches.

3.2. Generic initial data
In this section we present the results obtained with our numerical scheme on randomly
generated initial conditions. We show that the generic behaviour for long times
described by Dritschel et al. (2015) it is not attained for non-zero angular momentum
of the fluid. In our simulations we use N = 501, [·, ·]N = [·, ·], and a dimensionless
time step of h = 0.1. Again, with these parameters the simulation time at step k in
the original units of time is computed by the formula t = k/13 643. We simulate
with the Heun time integration as it is faster; for time evolutions as long as 400 real
seconds the decay in enstrophy is negligible (see figure 2).

The generic random initial vorticity is obtained as follows. Consider the expansion
of the vorticity function in terms of spherical harmonics

ω(x)=
∞∑

l=1

l∑
m=−l

ωlmYlm(x). (3.3)

Then, ω ∈ L2(S2) means that
∑
∞

l=1

∑l
m=−l |ω

lm
|
2 <∞. We set the level of truncation

lmax = N − 1 = 500 and we generate the coefficients as random variables such that
ωlml1+ε

∼N (0, 1), where N (0, 1) is the normal Gaussian distribution and ε = 10−3.
We stress that L2(S2) as the space for initial conditions is a natural choice in terms of
Fourier analysis. Generating random initial conditions as just described corresponds
mathematically to drawing samples from the isotropic Gaussian random field on
L2(S2) as described by Lang & Schwab (2015).

In this setting, we run 16 simulations on a cluster for long times. The vorticity for
the simulations are given in figure 4 at time t = 0 and t = 400 real seconds. From
the initially chaotic vorticity we see at time t= 400 three qualitatively scenarios, with
either 2, 3 or 4 persistent coherent vortices. In § 4 we explain this phenomenon in
terms of integrability of point vortex dynamics and KAM theory. Movies 5, 6 and 7
of the supplementary material show the complete evolution of simulations 1 (giving
2 blobs), 4 (giving 3 blobs) and 7 (giving 4 blobs).
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FIGURE 4. Pairs of initial (upper) and final (lower) vorticities for the 16 generic
simulations with L2(S2) random initial data. The numbers labelling the simulations
correspond to those in figure 9.

4. Relation to point vortex dynamics

We now explain the connection between the long-time behaviour of the Euler
equations (1.1) on a non-rotating sphere and integrability theory of point vortex
dynamics. Recall from the introduction that our theory is based on the following two
assumptions:

(i) The inverse energy cascade operates in such a way that smaller vortex formations
of the same sign merge into larger ones when they get close enough.

(ii) PVD describes the motion of vortex blobs well, as long as the blobs are well
separated so that no merging occurs.

Based on the simplest, zero momentum case, we first give a detailed numerical
verification of the second of these assumptions. We then give the connection to
integrability. After that, we address the generic case of non-zero momentum and we
show how our simulation results, with the three observed regimes, is a consequence
of our theory.
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FIGURE 5. Behaviour of the vortex blobs for the same initial data as in figure 1. The
quasi-periodic motion of the blobs is tracked in the scatter plots.

4.1. Zero momentum case
In this section we give a detailed study of the relation of our simulation results to
the dynamics of four point vortices on the sphere, following up the brief study in
Dritschel et al. (2015). For a detailed treatment of point vortex dynamics, we refer to
the monograph of Newton (2016) or the survey paper by Aref (2007b).

Already Helmholtz (1858) knew that the incompressible Euler equations admit
solutions with vorticity supported on single points. Such solutions also appear for the
vorticity equations (1.2) on a sphere in the non-rotational case (Bogomolov 1977).
That is, vorticity is a finite sum of n Dirac delta distributions

ω=

n∑
i=1

Γiδxi, (4.1)

where Γi ∈ R are the strengths and xi ∈ S2 are the positions of the point vortices.
The solutions evolve according to an ordinary differential equation known as the point
vortex equation

ẋi =
1

4π

∑
i6=j

Γj
xj × xi

1− xi · xj
, (4.2)

for i= 1, . . . , n. Notice that multiplying all Γi by a factor does not change the phase
space trajectories (only their speed), so only relative strengths are of importance to us.
Our aim is to extract the positions and relative strengths of the vortex blobs in the
DQM simulation, to compare their motion with the corresponding system of n = 4
point vortices.

To extract the trajectories on the sphere of the 4 vortex blobs in the simulation from
the previous § 3.1, we use a tracking algorithm based on Python/SciPy. The result is
given in figure 5.

Now, for the Euler equation on a non-rotating sphere, the total angular momentum
L is conserved

d
dt

L=
d
dt

∫
ωn= 0. (4.3)
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The DQM simulation is set up with vanishing total angular momentum, L= 0. Thus,
the point vortex solutions should fulfil∫ n∑

i=1

Γiδxin=
n∑

i=1

Γixi = 0. (4.4)

If we set Γ1 = 1 (since we are only looking for relative strengths), then, for generic
positions xi, this yields a linear set of equations from which Γ2, Γ3, Γ4 can be
determined from the positions alone. The computed relative strengths thereby obtained
correspond well with those obtained by numerical integration over circular domains
covering the blobs. In summary, we have the following extracted positions (expressed
in inclination ϕ and azimuth θ ) and corresponding computed relative strengths

ϕ = [2.3218,−0.9638,−2.5283, 0.8511],
θ = [1.3017, 1.8837, 1.577, 1.5896],
Γ = [1, 0.9002,−0.5436,−0.4178].

 (4.5)

To obtain the absolute strengths, i.e. to determine the scaling, one might use the
total energy integral, noting that the point vortex Hamiltonian is quadratic in the
strengths.

Remark 1. The fact that the relative strengths of the point vortices are uniquely
determined (in the generic case) by the positions given vanishing total angular
momentum is interesting. It shows that there is a connection between the strengths
and the positions. One may ask to what extent the strengths determine the positions
for zero momentum configurations. That is, what is the dimension of the manifold of
four point vortices with vanishing total angular momentum. Heuristically, just counting
constraints, one gets the dimension of all possible four point vortex configurations,
8, minus the dimension of the 3 angular momentum constraints, which gives 5
dimensions. To investigate this question in detail, one can use symplectic reduction
theory (cf. Marsden & Ratiu 1998).

We run the point vortex dynamics simulation with data from (4.5) using the
symplectic Lie–Poisson integrator by McLachlan et al. (2016). Let us now compare
this point vortex simulation with the tracked blob motion in figure 5.

In the chosen spherical coordinates, the motion of the tracked blobs in figure 5
looks complicated, but, in fact, when plotted on the sphere, one can see that it is
almost a steady rigid rotation about a fixed axis. By least squares we find the best
approximating rotation axis, and we use new spherical coordinates with the new
rotation axis as the north pole. The resulting trajectories, of both the tracked blobs
and the computed four point vortex dynamics with data (4.5), are given in figure 6.
We see that the motion between the point vortices and the tracked blobs are in good
agreement, as also reported by Dritschel et al. (2015).

Looking at the almost pure rotational trajectories in figure 6, it is natural to
ask if there is an underlying relative equilibrium, i.e. a close-by solution given by
a simultaneous, steady rotation of all the four point vortices. The answer is no:
that relative equilibrium is in fact a static equilibrium, because the total angular
momentum is zero. Thus, the ‘wobbling’ in figure 6 is necessary for unsteadiness to
occur. Continuing this train of thought, we may look for static, non-stable equilibria
for zero momentum four point vortex dynamics with arbitrary strengths. Based on
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FIGURE 6. Motion of point vortices (a,c) versus tracking of vortex blobs in the simulation
in figure 5 (b) and in the simulation at low resolution (N= 51), as described in (4.6) (d).

symmetry considerations, a general study of equilibria for point vortex dynamics on
the sphere is carried out by Laurent-Polz, Montaldi & Roberts (2011). For general
strengths there does not seem to exist equilibria, but for pairs of two equal positive
and two equal negative strengths there are, given by staggered rings (see Laurent-Polz
et al. 2011, § 8). Since the computed strengths (4.5) almost come in such pairs, and
since at any instance in time the configuration of the vortex blobs in figure 5 is almost
given by such staggered rings, we are, in this sense, always close to equilibria, but
they are unstable. That the strength of the vortex blobs almost comes in pairs is
likely not a coincidence.

The simulation in § 3.1 generating the blob formation is long enough to cover about
3 revolutions of the blobs about each other. Although this is considered a ‘long-time’
simulation of the Euler equations, it is not very long if one wants to study the
stability of the quasi-periodic trajectories. If we run the point vortex simulation for
approximately 30 revolutions, we see in figure 6(c) that the trajectories appear to
keep on wobbling about the zonal lines. But even 30 revolutions is not much. With
a much longer simulation of about 2800 revolutions, we see, as plotted in figure 7,
a different pattern emerge: the positions of the vortices are spreading out by a very
slow precession. These numerical experiments indicate that the dynamics of the four
point vortices restricted to the submanifold of vanishing total angular momentum is
integrable, or at least quasi-integrable in the KAM sense. The frequencies would then
be the oscillations within each revolution (highest), the rotation (intermediate) and one
or two much lower frequencies for the precession. In general, the dynamics of four
point vortices is not integrable. However, the submanifold of vanishing total angular
momentum is special, as it is the only submanifold of fixed angular momentum that
is invariant under arbitrary rotations (if you rotate a configuration of zero momentum,
it still has zero momentum). Indeed, Sakajo (2007) showed that the dynamics of
four point vortices with zero angular momentum is integrable. As a theoretical
approach aiming to prove integrability, one could also proceed by zero momentum
Hamiltonian reduction (cf. Marsden et al. 2007). Roughly, it goes as follows. The
Lie group SO(3) of rotations acts on the configuration space (S2)4 of point vortices.
The corresponding Nöther integrals are the total angular momentum. Since the area
form on S2 is preserved by rotations, the action is symplectic. By Poisson reduction
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FIGURE 7. Long-time behaviour (about 2800 revolutions) of the four point vortex
simulation. The axis of rotation is slowly drifting, yielding a precession of the trajectories.
The indicated lines show the motion in the last simulated period. These numerical results
verify that the motion is integrable, i.e. quasi-integrable, with three or four frequencies: the
wobbling during each rotation (highest frequency), the rotation about the axis (intermediate
frequency) and the precession of the rotation axis (lowest frequency/frequencies).

we thereby obtain a new Hamiltonian system on the Poisson manifold (S2)4/SO(3)
of dimension 5. Now, every Poisson manifold is foliated in symplectic leaves. In
particular, we have the special zero momentum leaf, given by restriction to the zero
set of the total angular momentum. We thereby obtain a Hamiltonian system on the
symplectic manifold given by the zero momentum leaf of dimension 2, which is
always integrable.

Our findings in this section show that the initial conditions used by DQM, although
random in the higher-order spherical harmonics, is special since it has zero angular
momentum. That is, one cannot expect the long-time behaviour obtained with the
DQM initial conditions to be generic for initial conditions with non-zero angular
momentum. Indeed, if four vortex blobs in a non-zero momentum configuration
are formed, there might be further mixing, since their motion most likely will be
chaotic. For zero momentum, however, the quasi-periodic behaviour acts as a barrier,
preventing further mixing. We thus predict that for vanishing angular momentum,
quasi-periodic asymptotics is the generic behaviour. To investigate this question in
detail is yet another future topic.

We now want to illustrate how the quasi-periodic motion of the blobs can be
obtained even for a very coarse spatial discretization N = 51. The initial vorticity
here is:

ω0(x)=
4∑

i=1

Γi exp(−20|x− xi(ϕi, θi)|
2)+C(x), (4.6)

for Γ , ϕ, θ as in (4.5), and C(x) such that ω0 integrate to zero and has momentum
L = 0. The result is given in figure 8 and Movie 4, and the resulting vortex blob
motion tracking (in adapted spherical coordinates) is given in figure 6(d). We obtain
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FIGURE 8. Motion of initially Gaussian blobs discretized with low spatial discretization
(N=51). The shape, strengths, initial positions of the blobs are given by (4.6). The tracked
motion of the blobs is in good agreement with the N=501 simulation and the point vortex
dynamics (compare with figure 5).

good agreement with both the point vortex simulation and the full high resolution
simulation with N = 501. That Gaussian vortex blob simulations can be carried with
small discretization parameters N is important, because it opens up for much longer
simulations studying the stability of quadruple vortex blob formations. We anticipate
that the slow precession seen in point vortex dynamics also happens in vortex blob
dynamics.

4.2. Generic case
The ideas presented in the previous paragraph can be extended to the non-zero
momentum vorticity. Our simulations in § 3.2 suggest that the four blob formation in
Dritschel et al. (2015) is specific for initial conditions with small angular momentum.
In fact, as already mentioned in the introduction, there is a correlation between the
first integral γ := ‖L‖/(R

√
C2) and the number of coherent vortices that persist in

the final state (see figure 9). As can be seen in the simulations, there exists a finite
range for γ (approximately 0.15 . γ . 0.4) for which the mixing of vortex blobs
is continuous until the dynamics reaches a quasi-periodic motion of three blobs and
no more mixing occurs after that. Above this range, the momentum prevails on the
other modes, allowing only the persistence of two large vortices. To the best of our
knowledge this phenomenon has not been previously described.

Based on the two assumptions presented at the beginning of this section, an
explanation for the observed phenomenon is offered through integrability properties
of point vortex dynamics as already laid out in the introduction. Indeed, it is known
that for non-zero momentum the three point vortex dynamics is integrable, whereas
it is not integrable in general for four point vortices (Sakajo 2007). In § 3.2 our
numerical simulations show that when the angular momentum L is non-zero there
may occur further mixing from the four vortices found by Dritschel et al. (2015),
leading to a final state of three or two vortices. This can be understood in terms of
perturbation of an integrable configuration of point vortices. In fact, starting from
the zero momentum four blobs, one can understand the modification of momentum
L to a non-zero value as a perturbation of the zero-level set. As noticed in § 3.2,
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FIGURE 9. Values of γ = ‖L‖/(R
√
C2) for the simulations of § 3.2. The grey scale

correspond to the number of vortex blobs observed in the final state: 2, 3 or 4. Notice
that the value of γ largely determines the number of vortex blobs in the final state: 4
when γ . 0.15, 3 when 0.15 . γ . 0.4 and 2 when γ & 0.4.

up to the critical value of γ ∼ 0.15, the four point vortex dynamics persists and is
quasi-periodic. The reason for such a situation is that the momentum L is a small
perturbation, in the sense of the KAM theory (cf. Sevryuk 1995), of an integrable
system of point vortices, and small perturbations do not destroy the invariant tori, so
the quasi-periodicity is still intact, acting as a barrier for further mixing. However,
when γ & 0.15, the perturbation from zero momentum is large enough to destroy
the four point vortex integrable state, leading to chaotic trajectories of the blobs and
therefore further mixing up to the next integrable configuration of three point vortices.
Eventually, increasing the magnitude of the momentum L over a certain threshold
(γ & 0.4), the final state of the vorticity can be described by two antipodal point
vortices only, aligned in the direction of the momentum L. These two vortices are
now so large from the start that they tend to directly swallow the smaller vortices
without passing through the quasi-periodic three blob formation (although, if one
looks carefully in simulations 1 and 8 corresponding to the higher values of γ , one
can trace a small third vortex blob which does not affect the dynamics).

Remark 2. We point out that the relation of the final state of the total vorticity
to the point vortex dynamics strongly depends on the manifold where the equations
take place. On a torus, in fact, the total angular momentum does not play any
role for the integrability of the point vortex dynamics. Instead, the total circulation
of the point vortices (i.e. the sum of the vortices’ strengths) is determinant. With
zero circulation, three point vortex dynamics on the torus is integrable, whereas for
non-zero circulation only two point vortex dynamics is integrable. This explains why
the latter configuration of two large blobs has been extensively observed (see for
example Qi & Marston 2014), whereas no three large blobs on a torus appear in the
simulations. Indeed, prescribing a final state of zero circulation of three blobs (notice,
not only a zero circulation of the total vorticity since one has to subtract the constant
background circulation) is not possible, unlike prescribing zero momentum. Hence,
on a torus, our theory predicts that the generic behaviour is the formation of two
steady point vortices, as also observed numerically. We hypothesize that our theory,
connecting long-time behaviour with integrability of point vortex dynamics, is valid
for the Euler equations on any 2-D surface. To investigate, and possibly verify, this
claim in full detail is a future research topic.
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5. Conclusions and outlook
We have developed a new numerical algorithm for the Euler equations on a sphere

that preserves, up to machine precision, the Casimir functions of (2.4)–(2.9) and nearly
conserves the Hamiltonian (see § 2). The spatial discretization is based the work of
Hoppe (1982) on geometric quantization of the infinite-dimensional Poisson algebra
of smooth functions on the sphere by matrix Lie algebras su(N) for an increasing N
(corresponding to the spatial discretization parameter), and the suggestion of Zeitlin
(2004) to use this quantization for Euler fluids. The resulting finite-dimensional
dynamical system on su(N) is isospectral, corresponding to conservation of Casimir
functions, and preserves a Lie–Poisson structure, corresponding to the Hamiltonian
structure of ideal fluids.

On the one hand, long-time simulations on a non-rotating sphere for zero
momentum initial vorticity confirm the results in Dritschel et al. (2015) of a quadruple
of coherent vortex formations, but now without introducing artificial hyperviscosity
into the equations (see § 3.1). On the other hand, for non-zero momentum vorticity,
our results show that the generic behaviour suggested in Dritschel et al. (2015) is
incorrect: the situation is more complicated yielding either 2, 3 or 4 coherent vortex
formations.

In § 4, comparing the motion of the obtained vortex blob formations with point
vortex dynamics, we presented a theoretical explanation describing the mechanism for
the asymptotic behaviour of the solutions to the Euler equations: the inverse energy
cascade continues until two, three or four vortex blobs have been formed, with the
number of vortices correlated to the ratio between the magnitude of the momentum
and the square root of the enstrophy. After that, the vortex blob formation is blocked
from further mixing by the quasi-periodic motion imposed by the integrability of
the point vortex dynamics. This way, we establish integrability theory of point
vortex dynamics together with KAM perturbation theory as the fundamental theory
underlying the formation of unsteady but quasi-periodic coherent vortex formations.

As an outlook, the connections to integrability theory could be studied in much
more detail, for example, the relation between the regularity of the generic initial
data and the qualitative properties of the final state of the system, e.g. the size of
the vortex blobs. Perhaps more pressing is to get better statistics for the correlation
between γ and the long-time behaviour: instead of just 16 simulations, we aim
to run 512 or more simulations to collect statistics from. One could also try with
initial vorticity from the more regular Gaussian random field on the Sobolev space
Hs(S2). Another aspect to investigate is the long-time behaviour of the vorticity
on a rotating sphere. In appendix A, we present some numerical results indicating
that quasi-periodic behaviour can also be reached, but is now more complicated
than what can be achieved by point vortex dynamics. One could also look deeper
at the mechanism behind the inverse energy cascade in the quantized equations.
For example, the standard Poisson bracket between two spherical harmonics feeds
into harmonics with larger wavenumbers l. In the quantized bracket, however, high
wavenumber harmonics are fed to lower wave numbers. This might explain why the
inverse energy Cascade works well despite spatial truncation. Another benefit of the
quantized fluid model is that it is possible to introduce viscosity while still preserving
all of the Casimirs. Indeed, one can add a gradient term of (some approximation of)
the entropy functional in such a way that isospectrality is preserved; an example is
the Brockett flow (Brockett 1991) which is known to correspond to a gradient flow of
entropy on the space of multivariate Gaussian probability distributions (Modin 2017).
If viscosity is added to the quantized vorticity equations in such a way, the resulting
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model can be seen as a mix of computational ideal fluid dynamics (corresponding
to the conservative part of the dynamics) and the MRS statistical mechanics model
(corresponding to the pure spectral preserving entropy maximizing gradient flow).

Acknowledgements

The work was supported by EU Horizon 2020 grant no. 691070, by the Swedish
Foundation for International Cooperation in Research and Higher Eduction (STINT)
grant no. PT2014-5823, by the Swedish Foundation for Strategic Research grant
ICA12-0052 and by the Swedish Research Council (VR) grant no. 2017-05040. The
authors would also like to thank D. Dritschel for providing us with the code ‘Hydra’.

Declaration of interests

The authors report no conflict of interest.

Supplementary movies

Supplementary movies are available at https://doi.org/10.1017/jfm.2019.944.

Appendix A. Rotating sphere: Rossby–Haurwitz waves

Although the main focus of this paper is on the non-rotating sphere, we like
to stress that the numerical method also works well for rotating spheres, of high
relevance in geophysical flows. Indeed, we demonstrate in this appendix how our
spatial–time discretization also captures typical features of the quasi-geostrophic
equations on a rotating sphere. A well-known class of exact solutions to the vorticity
equation (1.2) on a rotating sphere are the Rossby–Haurwitz (RH) waves. In terms
of spherical harmonics the general formula is

ω(φ, θ, t)=Cf +
l∑

m=−l

ωlmYlm(φ + 2Ωαlt, θ), (A 1)

where αl =
1
2((2C/(l(l+ 1)))−C+ 1), ωlm

∈C, C ∈R and l= 1, 2, . . . . In particular,
for C= (l(l+ 1))/(l(l+ 1)− 2), we get αl = 0 corresponding to stationary RH waves.

That (A 1) are exact solutions to (1.2) depends only on the algebraic properties
of the Poisson bracket of the spherical harmonics. Indeed, it is not hard to check
(a direct computation, together with the fact that exp(−T 10)∆

−1
N (A) exp(T 10) =

∆−1
N (exp(−T 10)A exp(T 10)) and F ∝ T 10) that we get an analogous class of exact

solutions to (2.9) in terms of T N
lm:

W (t)=C · F + exp(−αlN3/2F · t)
l∑

m=−l

W lmiT N
lm exp(αlN3/2F · t), (A 2)

where αl=
1
2((2C/(l(l+ 1)))−C+ 1), W lm

∈C, C ∈R and l= 1, 2, . . . ,N and exp is
the usual matrix exponential. We call these solutions quantized RH waves.

The stability of RH waves is studied by Skiba (2008). In essence, they are stable
only if they exhibit zonal symmetry. We have carried out several simulations with our
method verifying that the stable exact RH waves correspond to stable quantized RH
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FIGURE 10. Unsteady quantized RH wave, for the initial conditions as in (A 2) with
parameters (A 3). Due to numerical rounding errors, the wave eventually breaks up, goes
through an intermediate transition and then reaches a quasi-periodic asymptotic with
sliding zonal vortex belts. See also Movie 8 of the supplementary material.

waves. We predict that the stability analysis carried out by Skiba can be adopted to
the quantized RH waves.

Let us now study the break-up of a non-stable quantized RH wave. To this end,
consider the quantized RH waves with real components

C= 1, W 10
= 12.9487, W 54

=W 5(−4)
= 7.7300. (A 3a−c)

This wave is non-stable, as it does not have zonal symmetry. It is also non-stationary.
We use the spatial discretization parameter N = 501 and the Heun time integration
method, with the same non-dimensional parameters as in the previous simulations.
Although the quantized wave is an exact solution to the quantized vorticity equation,
due to rounding errors the numerical simulation eventually drift away. This can
be seen in figure 10. Up until about t = 155 the solution remains close to the
quantized RH wave. At t = 159 it starts to break up in a complicated way. There
is then a transition up until about t = 350. After that, the solution settles again
on a quasi-periodic asymptotic, but more complicated than in the non-rotating case
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studied in § 3.1. One can see sliding zonal bands separated by sharp gradients, with
‘vortex streets’ similar in character to those regularly seen on Jupiter (Humphreys &
Marcus 2007), (see also wikipedia.org/wiki/Atmosphere_of_Jupiter) see Movie 8 of
the supplementary material. The fluid behaviour shown in figure 10 can be found
among the regimes described by Nozawa & Yoden (1997), even though in our
simulation smaller vortices inside the alternating jets still persist.
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