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Abstract

A diffusion approximation to a risk process under dynamic proportional reinsurance
is considered. The goal is to minimise the discounted time in drawdown; that is, the
time where the distance of the present surplus to the running maximum is larger than a
given level d > 0. We calculate the value function and determine the optimal reinsurance
strategy. We conclude that the drawdown measure stabilises process paths but has a
drawback as it also prevents surpassing the initial maximum. That is, the insurer is,
under the optimal strategy, not interested in any more profits. We therefore suggest using
optimisation criteria that do not avoid future profits.
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1. Introduction

Consider the surplus process X of an insurance portfolio. We will use the notation X for the
running maximum and D for the (absolute) drawdown process of X, Dt = Xt − Xt. We allow
for some ‘initial drawdown’ D0 = X0 − X0 > 0 at the beginning of the observation period. We
denote the first time where the drawdown is larger than a level y ≥ 0 by ϑy = inf{t ≥ 0 : Dt > y}.
In this paper we examine how (proportional) reinsurance as stochastic control can be used to
minimise the time the drawdown exceeds some critical level d > 0.

There are many reasons why companies and, in particular, insurers might want to reduce
the probability and size of drawdowns. A crucial example is reputational risk. An insurer with
stable surpluses will be more trustworthy and is therefore likely be more effective in the acqui-
sition of new customers. Conversely, a large drawdown, even if it is not large enough to affect
the company’s overall capital, can unsettle (potential) customers who read bad news in newspa-
pers. Another interpretation could be dividend payments according to a barrier strategy. While
the surplus in a Markovian risk model tends to infinity, it will be bounded in practice. A larger
surplus will be paid as a dividend. The reflection of the process D at zero may therefore be
seen as a reflection at a dividend barrier. The barrier d is then interpreted as a solvency level
and the time in the critical drawdown area is the time in the red.
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Drawdowns have received particular attention recently in financial mathematics; see, for
example, [14, 15, 20, 21]. The main topic is the distribution of ϑd and some related quantities.
In a series of papers, the optimal investment problem in a Black–Scholes market was consid-
ered where either the probability of a drawdown or the time in drawdown for an exponential
lifetime has to be minimised [2, 3, 4, 7]. A variant is considering the proportional drawdown
{Dt > αXt} for some α ∈ (0, 1). In an actuarial context a diffusion approximation is often used
to model the surplus of an insurance portfolio. We assume that X is already discounted. That
means we measure all monetary units referenced to time zero. Otherwise, the premium rate and
the claim sizes should increase with inflation. Thus, a riskless rate of interest is not present.
A possible quantity to consider could be the ruin probability under proportional drawdown
P
[
Dt > αXt

]
. This can be seen as the risk model with tax considered in [1]. Since the ruin level

αXt increases whenever the process is at a maximum, we could consider the surplus process
Xt − (1 − α)Xt which corresponds to the model with tax rate (1 − α). Moreover, it cannot be
optimal to keep an arbitrarily large surplus because either the regulator would intervene or the
shareholders would demand a dividend. We therefore keep the critical drawdown constant.

An exponentially distributed lifetime is not appropriate in this case either. Insurance con-
tracts induce a deterministic time horizon and business decisions should use an infinite horizon.
We will consider here an infinite horizon and want to minimise the time spent in drawdown.
For our problem, stopping at ruin would not be a good idea: it may be optimal to get ruined
as quickly as possible in order not be punished by future drawdowns. Because the process
might then spend an infinite time in drawdown, we discount the quantity of interest. This is a
preference measure and can be seen as preferring drawdowns tomorrow to a drawdown today.

In this paper we work with the diffusion approximation

Xt = X0 + ηt + σWt, t ≥ 0; (1.1)

see, for example, [9, 18]. Here, η is the safety loading and σ > 0 represents the volatility
of claim payments. The stochastic quantities are defined on a complete probability space
(�,F , P). We use the natural filtration {Ft} generated by the Brownian motion W. That is, the
smallest right continuous filtration such that W is adapted. To the surplus process we append
the value u(x) =E

x
[ ∫ ∞

0 e−δt1{Dt>d} dt
]
, where δ > 0 is the preference parameter. Ex denotes

the conditional expectation with respect to {D0 = x}. It should be noted that the expected time
u(x) spent ‘critically’ far from the running maximum does not depend on the initial surplus but
only on the initial drawdown. This is due to the fact that the initial drawdown is invariant to
distance-preserving shifts of the initial surplus and initial maximum. Another important obser-
vation is, that, as a linear transformation of the Markovian pair (X, X), the drawdown process
D ‘inherits’ the Markov property (compare, for example, [16, Chapter 1]).

The cedent may buy proportional reinsurance. The reinsurance premium is calculated at
safety loading θ . In order for the problem not to be trivial, we let θ > η. In this model the insurer
may decide on his retention level bt at every point in time t such that the reinsurance strategy
b = {bt} is an adapted càdlàg process with bt ∈ [0, 1]. The surplus Xb under the strategy b takes
the form Xb

t = X0 + ∫ t
0 [η − (1 − bs)θ ] ds + ∫ t

0 bsσ dWs (t ≥ 0; see also, for example, [18]), and

Xb and Db are defined accordingly: Db
t = maxs≤t Xb

s − Xb
t = Xb

t − Xb
t (t ≥ 0). Following the

strategy b, the value is vb(x) =E
x
[ ∫ ∞

0 e−δt1{Db
t >d} dt

]
, which, for the constant retention level

strategy bt ≡ 1, coincides with u(x). We are interested in an optimal strategy b which minimises
the value. Hence, v(x) = infb vb(x) is the value function where we minimise over all adapted
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Optimal discounted drawdowns under proportional reinsurance 529

càdlàg strategies. Similarly to the function u(x), vb(x) does not depend on the initial, absolute
positions of the surplus process and the maximum, but only on their distance. As it turns out,
the optimal retention level strategy is of ‘feedback form’. That is to say, the optimal retention
level at time t is given by b∗(Db

t ) for a measurable function b∗ : [0, ∞) → [0, 1]. In particular,
a feedback strategy does not depend on the history of the drawdown process and therefore
preserves the Markov property.

Our first step towards solving this optimisation problem is the observation that the value
function obeys a dynamic programming principle. For any admissibly controlled drawdown
process we can condition on the first time of reaching the level d. Let ϑy(b) := inf

{
t ≥

0 : Db
t > y

}
if y > x and ϑy(b) := inf{t ≥ 0 : Db

t < y} if y < x be the time of the first passage
through y of the drawdown process under the strategy b, and ϑ(b) := ϑd(b) ∨ ϑd(b). We define
the stopping time ϑ(b) as the first passage time through d, in order that we do not need to
distinguish between starting in x > d or x < d. Then, if we denote by b̃t = bϑ(b)+t the strat-

egy after the first passage through d, we have vb(x) =E
x
[
e−δϑ(b)vb̃(d)

] ≥ v(d)Ex
[
e−δϑ(b)

]
for x ≤ d. Hence, taking the infimum over all possible compositions of strategies, we get
v(x) ≥ v(d) infb E

x
[
e−δϑ(b)

]
. Conversely, we get v(x) ≤E

x
[
e−δϑ(b)

]
vb̃(d) for any strategy such

that b̃ does not depend on the history of the process up to the first passage through d. Taking
the infimum, firstly for b̃ and then for b, yields v(x) = v(d) infb E

x
[
e−δϑ(b)

]
. Similarly, if x > d,

v(x) = δ−1
{
1 − (1 − δv(d)) supb E

x
[
e−δϑ(b)

]}
. This observation is summarised in the following

lemma.

Lemma 1.1. The value function fulfils

v(x) =
⎧⎨
⎩

v(d) infb E
x[e−δϑ(b)], if x < d,

δ−1{1 − (1 − δv(d)) supb E
x[e−δϑ(b)]}, if x > d.

In particular, the strategy to minimise E
x[e−δϑ(b)] is also optimal for our problem in [0, d),

and the strategy to maximise E
x
[
e−δϑ(b)

]
is optimal in (d, ∞).

This means we can split the problem into two separate problems which have the interpretation
of maximising the time in the uncritical area [0, d) and minimising the time within (d, ∞).

We start by considering the value function without optimisation in Section 2. In Section 3
we solve the easier subproblem of large initial drawdown and discover that the optimal strategy
is the constant ‘maximum drift’ strategy of bt = 1, t ≥ 0. Section 4 deals with the case where
the initial drawdown is smaller than d. Here we analyse the optimiser of the Hamilton–Jacobi–
Bellman equation to find a solution fitting the preconditions. We distinguish between ‘cheap’
and ‘expensive’ reinsurance which lead to different types of optimal strategies. We obtain
explicit expressions for the optimiser and conclude that the optimal strategy is an increasing
function of the current drawdown. In particular, the retention level optimally chosen for a zero
drawdown is bt = 0. Section 5 contains a numerical example. The depicted plots of the value
function and optimal strategy illustrate the influence of the reinsurance premium. In Section 6
we make some concluding remarks related to the results. We come to the conclusion that the
strategy which minimises the expected time with a large drawdown succeeds in stabilising
the paths of the surplus process. However, it also prevents growth of the running maximum.
Hence, basing operational decisions purely on the prevention of drawdowns will lead to a ‘non-
economic’ result. We thus suggest alternatives to extend the optimisation problem for future
research.
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2. The problem in the absence of reinsurance

We first consider the problem without the possibility of reinsuring the claims. This is equiva-
lent to the case where we look for a static reinsurance treaty. Let u(x) =E

x[
∫ ∞

0 e−δt1{Dt>d} dt],
where D is the drawdown process of the diffusion approximation (1.1). This function is posi-
tive and bounded by δ−1. It is non-decreasing in x and, by bounded convergence, the function
u(x) converges to δ−1 as x → ∞. If u was twice continuously differentiable we could use Itô’s
formula to find

e−δtu(Dt) − u(D0) = −
∫ t

0
e−δsσu′(Ds) dWs +

∫ t

0
e−δsAu(Ds) ds +

∫ t

0
e−δsu′(Ds) dXs,

where we define Af := − δf − ηf ′ + σ 2

2 f ′′. Since X increases at times where D = X − X = 0,
we can replace u′(Ds) by u′(0) in the last expression. If the drawdown process is much closer
to zero than it is to the critical boundary, there is a high probability that it reaches zero before
exiting the interval. Intuitively, this means that the time the process spends in the critical area
is very close to the time a process starting at zero spends in the critical area. If we assume,
based on this intuition, that u′(0) = 0 is fulfilled, the last integral vanishes. Taking the expected
value and assuming for a moment that the stochastic integral is a martingale, we arrive at
u(x) = −E

x
[∫ t

0 e−δsAu(Ds) ds
] +E

x[e−δtu(Dt)]. Since u is bounded, the last term converges
to zero as t → ∞. Letting t → ∞, we find u(x) =E

x
[∫ ∞

0 e−δs( −Au(Ds)) ds
]
. We therefore

presume that u is a solution to Au(x) = −1{x>d} with u′(0) = 0 and u(0) > 0. The homogeneous
equation Au(x) = 0 has solutions of the form f0(x) = C1e−κx + C2eκ̌x, where

κ :=
√

2δσ 2 + η2 − η

σ 2
> 0, κ̌ :=

√
2δσ 2 + η2 + η

σ 2
> 0.

By u′(0) = 0, C1 = u(0) κ̌
κ̌+κ

and C2 = u(0) κ
κ̌+κ

> 0. As the constant function x �→ δ−1 solves
the inhomogeneous equation Au(x) = −1, we look for a smooth fit at x = d. This yields

f1(x) = 1

δ
+ C1

(
1 − eκd

δu(0)

)
e−κx + C2

(
1 − 1

δu(0)eκ̌d

)
eκ̌x.

As f1(x) is supposed to converge to δ−1 as x tends to infinity and κ̌ is strictly positive, we need
1 = δu(0)eκ̌d. This can only hold if u(0) = δ−1e−κ̌d. Combining the piecewise solutions and
plugging in all the constants, we find a candidate solution:

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κeκ̌x + κ̌e−κx

δeκ̌d(κ + κ̌)
, if x ≤ d,

1

δ
− 1

δ
κ̌

κ+κ̌
(eκd − e−κ̌d)e−κx, if x > d.

(2.1)

Theorem 2.1. The function (2.1) is indeed the value function.

Proof. The function f (x) is the difference of two convex functions and everywhere twice
continuously differentiable, except at x = d, where the second derivatives do not coincide. This
allows us to apply an extended version of the Itô- formula [8, Theorem 2.1 and Eq. (2.23)] to
the function (t, x) �→ e−δtf (x) and the continuous semimartingale {(t, Dt)}t≥0:

e−δtf (Dt) − f (D0) =
∫ t

0
e−δsσ f ′(0) dXs −

∫ t

0
e−δsσ f ′(Ds) dWs +

∫ t

0
e−δsAf (Ds) ds.
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By f ′(0) = 0, the first integral disappears. Because f is increasing and concave for x > d, the
derivative is bounded. Hence, the stochastic integral is a martingale. This implies that the pro-
cess

{
e−δtf (Dt) − ∫ t

0 e−δsAf (Ds) ds
}

t≥0 is also a martingale. Therefore, f (x) =E
x[e−δtf (Dt)] +

E
x
[∫ t

0 e−δs1{Ds>d} ds
]
. Since f is bounded, the first expected value tends to zero as t → ∞. The

assertion follows by monotone convergence. �

3. Solution and verification for x > d

We now look for the optimal reinsurance strategy b when starting in the drawdown
region. As seen in the introduction, we have to find a strategy that maximises the
Laplace transform Vb(x) =E[e−δϑ(b)] of the passage through d. Let V(x) = supb Vb(x).
Since the drift component is a decreasing function of the retention level, the reten-
tion level leading to the largest downward trend, bt = 1, should intuitively be opti-
mal. We now prove that this is indeed the case. In order to reach d, the drawdown
has to pass all levels y ∈ (d, x). Conditioning on the time of reaching a certain level
y, we obtain E

x[e−δϑ(b)] =E
x
[
e−δϑy(b)

E
y
[
e−δϑ(b̃) |Fϑy(b)

]] ≤E
x
[
e−δϑy(b)

]
V(x − y + d) ≤

V(y)V(x − y + d). Thus, V(x) ≤ V(y)V(x − y + d). Moreover, V(x) ≥E
x
[
e−δϑy(b)

E
y
[
e−δϑ(b̃) |

Fϑy(b)
]]

, and maximising first over b̃ and then over b gives the converse inequality. Thus,
V(x) = V(y)V(x − y + d). This implies that V(x) is an exponential function. On the other hand,
split (d,x) into 2n parts. In each of the intervals [xk−1, xk], where xk = d + k(x − d)2−n, we
have to maximise E

xk
[
e−δϑxk−1 (b)]. This is the same optimisation problem for each k, which

indicates that the optimal strategy is constant.
The Hamilton–Jacobi–Bellman (HJB) equation connected to the problem is

sup
b∈[0,1]

{
σ 2b2

2
V ′′(x) + [(1 − b)θ − η]V ′(x) − δV(x)

}
= 0.

With the ansatz V(x) = e−κ(x−d), we obtain

sup
b∈[0,1]

{
σ 2

2
κ2b2 − [(1 − b)θ − η]κ − δ

}
= 0.

The left-hand side is maximised for b = 1. Thus, the proposed optimal strategy is bt = 1, and
κ is defined as in Section 2.

Theorem 3.1. V(x) = e−κ(x−d) for x ≥ d.

Proof. By Itô’s formula and the optional stopping theorem we get, for an arbitrary strategy
b, that{

e
−κDb

t∧ϑd (b)−δ(t∧ϑd(b)) −
∫ t∧ϑd(b)

0

[
κ2σ 2b2

s

2
− κ((1 − bs)θ − η) − δ

]
e−κDb

s −δs ds

}
t≥0

is a martingale. Because the integrand is negative, Ex
[
e
−κDb

t∧ϑd (b)−δ(t∧ϑd(b))] ≤ e−κx. By letting
t → ∞ we find that Ex

[
e−δϑd(b)

] ≤ e−κ(x−d). Because the strategy is arbitrary, V(x) ≤ e−κx.
Repeating the argument for bt = 1 we get equality, proving the assertion. �

Suppose v(d) is known; then, we can conclude that v(x) = 1
δ

(
1 − (1 − δv(d))e−κ(x−d)

)
for

an initial drawdown of x ≥ d.
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4. Solution and verification for x ≤ d

Now we deal with the problem of minimising the Laplace transform of the time spent in
the uncritical area. We define Vb(x) =E

x
[
e−δϑ(b)

]
for a reinsurance strategy b, and let V(x) =

infb Vb(x). It is clear that V is increasing, positive, and bounded by 1. We expect that V is a
solution to the HJB equation

−δV(x) + (θ − η)V ′(x) + inf
b∈[0,1]

{
−θbV ′(x) + b2σ 2

2
V ′′(x)

}
= 0 (4.1)

with the boundary condition V(d) = 1.

4.1. The verification theorem

For a twice continuously differentiable solution f (x) to (4.1), an optimiser b∗(x) exists
because [0, 1] is compact. We will see below that the function x �→ b∗(x) can be chosen mea-
surably. We denote the drawdown process under the strategy {b∗(Db∗

t )} induced by the function
b∗(x) by {D∗

t }, and the running maximum by {X∗
t }.

Theorem 4.1. Let f(x) be an increasing solution to (4.1) on [0, d]. Then f (x) ≤ V(x)f (d). If
f ′(0) = 0 or the running maximum process never increases, then f (x) = V(x)f (d) and {b∗(D∗

t )}
is an optimal strategy.

Proof. For an arbitrary strategy b we get, by Itô’s formula,

e−δ(ϑd(b)∧t)f (Db
ϑd(b)∧t) − f (x) =

∫ ϑd(b)∧t

0
e−δsf ′(Db

s )bsσ dWs +
∫ ϑd(b)∧t

0
e−δsAbs f (Db

s ) ds

+
∫ ϑd(b)∧t

0
e−δsf ′(0) dXb

s ,

where Abf (x) = −δf (x) + (θ (1 − b) − η)f ′(x) + 1
2 b2σ 2f ′′(x). The stochastic integral is a mar-

tingale because f ′(x) is bounded on [0, d]. As a solution to (4.1), Abs f (Db
s ) ≥ 0. As an increasing

function, f ′(0) ≥ 0. Thus, f (x) ≤E
[
e−δ(ϑd(b)∧t)f (Db

ϑd(b)∧t)
]
. By monotone convergence, the

right-hand side converges to Vb(x)f (d) as t → ∞. Thus, f (x) ≤ V(x)f (d). Choosing the strategy
{b∗(D∗

t )}, we get f (x) = Vb∗
(x)f (x) − f ′(0)E

[ ∫ ϑd(b∗)
0 e−δs dXb∗

s

]
. The second term vanishes if

either f ′(0) = 0 or X∗ does not increase (almost surely). In these cases, we thus get the opposite
inequality. �

4.2. Solution to the HJB equation

To calculate an explicit solution to the HJB equation we analyse the optimiser b. Since V
is increasing, the last part of (4.1) becomes minimal for b = 1 at every x with V ′′(x) ≤ 0. The
following lemma shows that this is only possible if V ≡ 0 up to x.

Lemma 4.1. If V : (0, d) → [0, 1] is an increasing solution to (4.1) and V ′′(x) ≤ 0 in some
interval (x, x) ⊂ (0, d), then V(x) = 0 in (0, x).

Proof. If V ′′(x) ≤ 0 in an interval (x, x) ⊂ (0, d), then the infimum in (4.1) is attained at
b∗ = 1. The equation then reads 0 = −δV(x) − ηV ′(x) + 1

2σ 2V ′′(x). The solution is of the form
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V(x) = C1eκ̌x − C2e−κx, with κ and κ̌ defined above. The second derivative reads V ′′(x) =
C1κ̌

2eκ̌x − C2κ
2e−κx ≤ 0, such that

C1
κ̌2

κ2
e(κ̌+κ)x ≤ C2.

On the other hand, since V(x) ≥ 0, C1e(κ̌+κ)x ≥ C2, giving

C1
κ̌2

κ2
e(κ̌+κ)x ≤ C2 ≤ C1e(κ̌+κ)x.

Since κ̌κ−1 > 1, this that implies C1 ≤ 0 and C2 ≤ 0. Then we have, for the derivative,
C1κ̌eκ̌x + C2κe−κx ≤ 0. Since the function is increasing, we must have C1 = C2 = 0. This
yields the assertion. �

In view of Lemma 4.1 we expect that V is strictly convex in (0, d). Minimising over b in
(4.1) yields, in the area where b∗ �= 1,

−δV(x) + (θ − η)V ′(x) − θ2

2σ 2

V ′(x)2

V ′′(x)
= 0. (4.2)

We follow the approach in [11]. The function x �→ − ln (V ′(x)) is strictly decreasing and there-
fore has an inverse function Y . With this definition we have V ′(Y(z)) = e−z and V ′′(Y(z)) =
−e−z/Y ′(z). Inserting this into (4.2), we find

−δV(Y(z)) + (θ − η)e−z + θ2

2σ 2
e−zY ′(z) = 0.

Taking the derivative respect to z yields

−δe−zY ′(z) − (θ − η)e−z − θ2

2σ 2
e−zY ′(z) + θ2

2σ 2
e−zY ′′(z) = 0,

or equivalently,

−
(

θ2

2σ 2
+ δ

)
Y ′(z) + θ2

2σ 2
Y ′′(z) = θ − η.

The general solution is Y(z) = C1eBz − Dz − C2, with B := (2δσ 2 + θ2)θ−2 > 1 and
D := 2σ 2(θ − η)(2δσ 2 + θ2)−1. In a martingale approach, the reflection in zero implies that
V ′(0) = 0, unless X never reaches a level above d under the optimal strategy. But if we assume
that the derivative is zero, V ′(Y(z)) = e−z = 0 implies z = ∞ and Y(∞) = 0. This is not possi-
ble because B, D > 0. Conclusively, we expect that the process X never reaches (d, ∞). This is

only possible if b∗(x) = θV′(x)
σ 2V′′(x)

→ 0 as x → 0. In particular, V ′′(0) = ∞ and V ′(0) = V(0) δ
θ−η

.

Therefore, with z0 := ln ((θ − η)δ−1V(0)−1), we have Y(z0) = 0 and Y ′(z0) = 0. With these
initial conditions we find the convex solution Y(z) = D

B eB(z−z0) − D(z − z0) − D
B , which has the

properties Y ′(z) < 0 for z < z0 and Y(z) → ∞ as z → −∞. For every y > 0 there exists a unique
z < z0 such that Y(z) = y. Let Z(y) = Y−1(y) be the corresponding part of the inverse function.
Z(y) is decreasing, because Y is decreasing on ( − ∞, z0). We can write Z in terms of the upper
branch W0 of the Lambert W function:

Z(y) = z0 − 1 + BD−1y + W0
(− exp

(−(1 + BD−1y)
))

B
.
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Then,

V ′(x) = V ′(Y(Z(x))) = e−Z(x), V ′′(x) = − e−Z(x)

D(eB(Z(x)−z0) − 1)
,

and

V(x) = V(0) +
∫ x

0
e−Z(y) dy.

We can calculate V by substituting w(y) = −W0( − exp ( − (1 + BD−1y))) in the integral term.
Plugging in the definitions of z0, B, and D, we find

∫ x

0
e−Z(y) dy = e−z0

D

B

∫ e−1

exp{−(1+Bx/D)}
v−(1+B−1)eW0(−v)/B dv

= e−z0
D

B

∫ 1

w(x)
(1 − w)w−(1+B−1) dw

= V(0)

2δσ 2 + θ2

[
{2δσ 2 + θ2w(x)}w(x)−θ2/(2δσ 2+θ2) − (2δσ 2 + θ2)

]
.

Thus, we conclude that

V(x) = V(0)

2δσ 2 + θ2
{2δσ 2 + θ2w(x)}w(x)−θ2/(2δσ 2+θ2). (4.3)

It will be useful to know the following simplified version of the derivative:

V ′(x) = e−Z(x) = V(0)
δ

(θ − η)w(x)
θ2

2δσ2+θ2

.

4.3. The optimal strategy

The considerations above are under the condition that b(x) = θV′(x)
σ 2V′′(x)

≤ 1. We have, on the

one hand, to verify that b(x) ≤ 1 at least for x ∈ [0, x0 ∧ d) for some x0 > 0. On the other hand,
we have to determine the optimal retention level for x ≥ x0 ∧ d. We expect that no reinsurance
is taken for a drawdown of x ∈ [x0 ∧ d, ∞).

The optimiser of the solution V of (4.1) is

b̃(x) = θD

σ 2

(
1 − eB(Z(x)−z0)) = 2θ (θ − η)

2δσ 2 + θ2
(1 − w(x)).

This is strictly increasing and x �→ √
x is an asymptotically sharp bound for x → 0. Our

candidate for the optimal strategy is therefore

b(x) = min

{
2θ (θ − η)

2δσ 2 + θ2
(1 − w(x)), 1

}
. (4.4)

w(x) is a decreasing function, w(x) ↗ 1 as x ↘ 0, and w(x) → 0 as x → ∞. This means that b(x)
is increasing and b(x) ↘ 0 as x ↘ 0, as expected, and b(x) ↗ 2θ(θ−η)

2δσ 2+θ2 as x ↗ ∞. In particular,

the calculated function is a solution to the HJB equation with optimiser b̃ on [0, d] for all d > 0
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if 2θ (θ − η) ≤ 2δσ 2 + θ2 or, equivalently, θ ≤ η + √
2δσ 2 + η2. If the latter condition is not

fulfilled, then we have a solution for x ≤ x0, with

w(x0) = 1 − 2δσ 2 + θ2

2θ (θ − η)
= θ (θ − 2η) − 2δσ 2

2θ (θ − η)
.

From this equation, x0 can be calculated explicitly:

x0 = σ 2θ

2δσ 2 + θ2

(
2θ (θ − η)

2δσ 2 + θ2
ln

(
2θ (θ − η)

θ2 − 2θη − 2δσ 2

)
− 1

)
. (4.5)

We have found a solution to the HJB equation for θ ≤ η + √
2δσ 2 + η2 and θ > η +√

2δσ 2 + η2 with d ≤ x0. We expect that b(x) induces an optimal strategy.

Remark 4.1. Note that b(x) does not depend on d. This is plausible because for x < d̃ < d, the

strategy first minimises Ex
[
e−δϑ d̃(b)

]
and then E

d̃
[
e−δϑd(b)

]
.

Remark 4.2. Note that θ > η + √
2δσ 2 + η2 > 2η means that reinsurance is very expensive.

We do not consider this as a realistic situation. Now that b(x) is explicitly given we can prove
the following lemma.

Lemma 4.2. Under the strategy {b(D∗
t )}t induced by the function b(x) the running maximum is

constant.

Proof. The stochastic differential equation

Yt = Y0 +
∫ t

0
(θ − η) − θb(Ys) ds −

∫ t

0
σb(Ys) dWs

possesses a unique strong solution. This follows by Theorem 2.2 together with Remark 2.1 in
[12] and [19, Example 1.1]. We can show that this solution is non-negative for Y0 ≥ 0 by the
comparison theorem [12, Theorem 1.1]. Now we define the process XY through

XY
t = −Y0 +

∫ t

0
η − θ (1 − b(Ys)) ds +

∫ t

0
σb(Ys) dWs, t ≥ 0.

Then, the process M with MY
t = XY

t + Yt, t ≥ 0, is constant and equal to zero. Writing
Yt = MY

t − XY
t , we observe that, for every path, the pair

(
Yt(ω), MY

t (ω)
)

is a solution to the
Skorokhod problem for −XY

t (ω). By the uniqueness of solutions to the Skorokhod problem,
MY is the running maximum process and Y the drawdown of XY where the process has an
initial distance Y0 to its running maximum. For Y0 = x it follows that Y = D∗, XY = X∗ − x,
and M = X∗ − x. �

Remark 4.3. The discerning reader may comment at this point that the ‘optimal’ control of the
time in drawdown prevents the increase of the surplus process above a certain level and thus
naturally limits the profitability. We address this observation and its economical implications
in Section 6.

It follows from the verification theorem, Theorem 4.1, that the solution V belonging to the
optimiser in (4.4) is the value function for our subproblem of maximising the time in uncritical
drawdown. We can calculate V explicitly, distinguishing the cases of cheap and expensive
reinsurance.

https://doi.org/10.1017/jpr.2021.68 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.68


536 L. V. BRINKER AND H. SCHMIDLI

4.4. The case θ ≤ η + √
2δσ 2 + η2 or d ≤ x0

In this case, the optimiser for x ∈ (0, d] is given by b(x). Since V(d) = 1, we obtain

V(x) =
(

w(d)

w(x)

)θ2/(2δσ 2+θ2) 2δσ 2 + θ2w(x)

2δσ 2 + θ2w(d)
.

Because V(x) is an increasing solution to the HJB equation (4.1), we have proved the following
result.

Theorem 4.2. Suppose θ ≤ η + √
2δσ 2 + η2 or d ≤ x0. Then

E
x[e−δϑ(b)] =

(
w(d)

w(x)

)θ2/(2δσ 2+θ2) 2δσ 2 + θ2w(x)

2δσ 2 + θ2w(d)
.

The strategy {b(D∗
t )}t is the optimal strategy.

Let us return to our original problem. By the principle of smooth fit, the derivative from the
left and from the right at d have to coincide, (δ−1 − v(d))κ = v(d)V ′(d). This yields

v(d) = κ

δ(V ′(d) + κ)
= κ(θ − η)(2δσ 2 + θ2w(d))

δ(δ(2δσ 2 + θ2) + κ(θ − η)(2δσ 2 + θ2w(d)))
.

This means the function

f (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2δσ 2 + θ2w(x)

w(x)
θ2

2δσ2+θ2

κ(θ − η)w(d)
θ2

2δσ2+θ2

δ(δ(2δσ 2 + θ2) + κ(θ − η)(2δσ 2 + θ2w(d)))
if x ≤ d,

1

δ
− (2δσ 2 + θ2)e−κ(x−d)

δ(2δσ 2 + θ2) + κ(θ − η)(2δσ 2 + θ2w(d))
if x > d

(4.6)

is the natural candidate for the solution to the original problem.

Theorem 4.3. Suppose θ ≤ η + √
2δσ 2 + η2 or d ≤ x0. Then the value function v(x) is given

by (4.6). The optimal strategy is {b∗(D∗
t )}t, with b∗(x) = b(x) for x ≤ d and b∗(x) = 1 for x > d.

Proof. f (x) is the difference between two convex functions and solves the HJB equation

−δv(x) + (θ − η)v′(x) + inf
b∈[0,1]

{
−θbv′(x) + b2σ 2

2
v′′(x)

}
= 1{x>d}

with optimiser b∗(x), where the second derivative is understood as one-sided at x = d. Thus,
the assertion follows as in the proofs of Theorems 2.1 and 4.1. �

Remark 4.4. For θ ≤ η + √
2δσ 2 + η2 or d < x0 the function b∗(x) has a jump at x = d. A

construction similar to the proof of [10, Theorem 3.1] together with, e.g., [13, Theorems 1.1
and 1.4] shows that there exists a strong solution Y to the stochastic differential equation Yt =
�0 + ∫ t

0 g(Ys) ds − ∫ t
0 σb(Ys) dWs, where

g(x) =
{

θ − η − θb(x), x ≤ d,

−ηb(d), x > d.
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So, in order to see that the process D∗ exists, consider

D∗
t = Yt1{Yt≤d} +

(
d + Yt − d

b(d)

)
1{Yt>d}, t ≥ 0,

which has the desired properties.

4.5. The case θ > η + √
2δσ 2 + η2 and d > x0

In this case the optimiser b(x) is strictly increasing with b(x0) = 1. Hence, we expect that
above the level x0 no reinsurance is taken. With V(x) given by (4.3) for x ∈ [0, x0] and V(x) =
[C1e−κx + C2eκ̌x]V(0) for x ∈ [x0, d], we are looking for a smooth fit. This gives

C1e−κx0 + C2eκ̌x0 = 2δσ 2 + θ2w(x0)

2δσ 2 + θ2
w(x0)−θ2/(2δσ 2+θ2),

C2κ̌eκ̌x0 − C1κe−κx0 = δ

(θ − η)
w(x0)−θ2/(2δσ 2+θ2),

from which C1 and C2 can be obtained. Note that C1, C2 > 0. Algebraically, the minimiser in
(4.1) for x > x0 becomes

θV ′(x)

σ 2V ′′(x)
= θ (κ̌C2e(κ̌+κ)x0 − κC1)

σ 2(κ̌2C2e(κ̌+κ)x0 + κ2C1)
.

This is an increasing function in x with value 1 in x0. This shows that V(x) indeed solves (4.1).
In particular, by Theorem 4.1, V(x) =E

x
[
e−δϑ(b)

]
with V(0) chosen such that V(d) = 1.

For our original problem, we again look for a smooth fit of the first derivatives at x = d in
order to find v(d). That is,

v(d) = κδ−1

C2V(0)eκ̌d − C1V(0)e−κd + κ
.

Because the drift and the volatility terms in the stochastic differential equation are continuous,
it is clear that D∗ exists. Also in this case we get, in the same way as for θ ≤ η + √

2δσ 2 + η2,
the following result.

Theorem 4.4. Suppose θ > η + √
2δσ 2 + η2 and d > x0. Then the function obtained above is

the value function.

5. A numerical example

We will now consider an explicit example for the function v, where we assume the position
of the first insurer and optimise the discounted time spent in drawdown with respect to the
retention level of proportional reinsurance. We consider σ = 1.4, δ = 1.0117, η = 0.2, and d =
1.5 to be predetermined. As we have seen above, the security loading θ affects whether and
how much reinsurance is bought, such that it makes sense to regard the target function v and
the optimal strategy b as functions of the two variables θ and x.

If we define the (strictly decreasing) function x0 : (σ 2κ̌, ∞) → (0, ∞) analogously to (4.5),
we see that θ fulfils the conditions of ‘cheap reinsurance’ if θ ∈ (η, x−1

0 (d)], and that it can be
called ‘expensive’ in the above sense if θ > x−1

0 (d). In the first case, reinsurance will optimally
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FIGURE 1. Numerical example. Left: The different cases divide the plane into five parts. Right: The
optimal strategy.

always be bought until the drawdown x is larger than d, whereas in the second case it is optimal
to abstain from reinsurance when the drawdown grows close to d. If the drawdown is larger
than d, it is never optimal to buy reinsurance. Thus, dealing with the functions v(θ, x), V(θ, x),
and b(θ, x), we need to distinguish the five areas that could contain the tuple (θ, x). This is
illustrated on the left of Figure 1. The horizontal axis represents the possible values for the
initial drawdown x. The critical value d is the boundary of the area where the drawdown is
perceived as unfavourable. The vertical axis represents the values θ may attain and therefore
starts at η. θ = x−1

0 (d) is the largest θ such that the retention level b = 1 is never chosen if
the drawdown is currently uncritical. For those θ lying above this value, the dashed curve
corresponds to the function x0(θ ) and thus illustrates the boundary of the area where b = 1 is
optimal.

We have κ̌σ 2 = η + √
2δσ 2 + η2 ≈ 2.2015, and the optimiser of the HJB equation is the

increasing function b(θ, x) defined as in (4.4). The graph of this function is displayed on the
right in Figure 1. The value b(θ, x) depends on the current drawdown x and the safety loading
of the reinsurance premium θ . The border of the flat area at the top can be interpreted as the
function x0(θ ). x0(θ ) does not exist for θ ≤ 2.2015. With increasing θ ≥ 2.2015, the function
decays such that x0(θ ) > d = 1.5 if θ is sufficiently close to the critical value 2.2015. This
holds true for all θ ≤ x−1

0 (d), where x−1
0 (d) ≈ 2.243 denotes the unique solution to x0(θ ) = d.

For x > d, b(θ, x) = 1. Figure 2 shows plots of the functions V(θ, x) : x �→E
x
(
e−δϑb� )

and
v(θ, x). Small values of V suggest that the controlled process starting below (above) d stays
below (above) the critical level for a long time, whereas V close to 1 has the interpretation that
the process will soon hit d. Because the optimal strategy for x > d is independent of θ , V is
independent of θ in that region as well: V(θ, x) = exp ( − κ(x − d)), x > d.

6. Concluding remarks

We have solved explicitly the problem of minimising the discounted time in drawdown by
proportional reinsurance for a diffusion approximation and found the reinsurance strategy. For
a process with independent and stationary increments, the difference from the past maximum
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FIGURE 2. V(θ, x) (left) and v(θ, x) (right).

is an analogue of reflection at a barrier. This corresponds to paying dividends. Minimising the
time in drawdown thus forces the surplus to stay in a favourable area. Because we consid-
ered monetary values that are already discounted by the riskless interest rate, the solution to
our problem corresponds to similar quantities considered in the literature. It turned out that if
the process is in drawdown, reinsurance is not taken in order to leave the area as quickly as
possible. If the drawdown process is below the critical line, there is a trade-off between tend-
ing to zero quickly and not returning to the unfavourable area. If reinsurance is expensive, no
reinsurance becomes optimal close to the drawdown area. If reinsurance is not too expensive
then reinsurance is always bought. The closer the process approaches the maximum, the more
cautious the insurer will behave. The optimal strategy tends to full reinsurance. Basing deci-
sions on the minimisation of drawdowns, the insurer will not have any cause to make profits.
Indeed, under the optimal strategy the running maximum of the surplus will be constant. This
is of course acceptable for the regulator but will not be in the interests of the shareholders. We
conclude that a criterion solely taking drawdowns into account is not reasonable.

However, to prevent drawdowns is preferable. But one also has to acknowledge the gen-
eration of future profits. One possibility is to introduce an ‘incentive to grow’. We consider
this in [5], where we also take dividend payments into account. More specifically, let Lt be
an adapted increasing process with L0− = 0 denoting the accumulated dividend process. The
corresponding surplus process is then Xb,L

t = Xb
t − Lt and the corresponding drawdown pro-

cess becomes Db,L
t = maxs≤t Xb,L

s − Xb,L
t . The goal is then to maximise E

x
[∫ ∞

0 e−δt dLt −
κ

∫ ∞
0 e−δt1{Dt>d} dt

]
for some weight κ > 0. Then, a dividend on {Db,L

t = 0} may be favourable
to full reinsurance. Also, further optimisation criteria are thinkable. One could, for example,
add a penalising term for low surplus, as in [17], minimising

∫ ∞
0 e−δt

[
1{Dt>d} + ϕ(Xb

t )
]

dt

for some decreasing convex function ϕ. Then, an increase of the maximum Xb
t on {Db

t = 0}
will lower the penalising term ϕ(Xb

t ) in the future. This alternative will be more compli-
cated to solve because we have to track both Xt and Dt. A third possibility could be to add

a reward for increasing the maximum at zero; we then want to maximise E
x
[
κ

∫ ∞
0 e−δt dXb

t −∫ ∞
0 e−δt1{Dt>d} dt

]
. This corresponds to a dividend that is only allowed to be paid when the

drawdown process is at zero. We will address this problem in our future research [6].
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