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Abstract

We give an explicit Krasnoselski–Mann type method for finding common solutions of the following
system of equilibrium and hierarchical fixed points:{

G(x∗, y)≥ 0, ∀y ∈ C,

find x∗ ∈ Fix(T ) such that 〈x∗ − f (x∗), x − x∗〉 ≥ 0, ∀x ∈ Fix(T ),

where C is a closed convex subset of a Hilbert space H , G : C × C→R is an equilibrium function, T :
C→ C is a nonexpansive mapping with Fix(T ) its set of fixed points and f : C→ C is a ρ-contraction.
Our algorithm is constructed and proved using the idea of the paper of [Y. Yao and Y.-C. Liou, ‘Weak
and strong convergence of Krasnosel’skiı̆–Mann iteration for hierarchical fixed point problems’, Inverse
Problems 24 (2008), 501–508], in which only the variational inequality problem of finding hierarchically
a fixed point of a nonexpansive mapping T with respect to a ρ-contraction f was considered. The paper
follows the lines of research of corresponding results of Moudafi and Théra.
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1. Introduction

Let T, V be two nonexpansive mappings from C to C , where C is a closed and convex
subset of a Hilbert space H . Consider the variational inequality problem (VIP) of
finding hierarchically a fixed point of a nonexpansive mapping T with respect to
another nonexpansive mapping V , that is,

find x∗ ∈ Fix(T ) such that 〈x∗ − V x∗, y − x∗〉 ≥ 0 y ∈ Fix(T ). (1.1)

(Equivalently, x∗ = PFix(T )V x∗ – that is, x∗ is a fixed point of the nonexpansive map
PFix(T )V – where for K closed convex subset of H , PK is the metric projection of H
on K ).
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188 G. Marino et al. [2]

Of course if V = I , the solution set S of (1.1) is just Fix(T ).
The VIP (1.1) covers several topics investigated in literature, among them the

following:
(1) (Monotone inclusions) Yamada [32] studies the VIP (1.1) assuming

V = I − γ F , where γ > 0 is sufficiently small and the operator F is Lipschitzian
and strongly monotone.

(2) (Convex optimization [4, 23]) Let ϕ be a proper lower semicontinuous convex
function on H and let ψ be a convex function on H so that ∇ψ is strongly monotone.
Take

T = proxλϕ := argmin
{
ϕ(z)+

1
2λ
‖ · −z‖2

}
.

Then the VIP (1.1) reduces to the hierarchical minimization problem

min
x∈ argmin ϕ

ψ(x).

(3) (Quadratic minimizations over a fixed point set [14]) If A is a linear bounded
strongly positive operator on H , f is a ρ-contraction on H and h is a potential for γ f
(that is, h′(x)= γ f (x)) where γ > 0 is a constant, consider the minimization problem

min
x∈Fix(T )

1
2 〈Ax, x〉 − h(x). (1.2)

The optimality condition to minimize (1.2) is to find a fixed point of T so that

〈(A − γ f )x∗, x − x∗〉 ≥ 0, x ∈ Fix(T ).

Taking V = I − λ(A − γ f ), where γ > 0 is appropriately chosen so that V is
nonexpansive, we find that the previous VIP reduced to (1.1).

(4) Let A be a maximal monotone operator. Take T = J A
λ := (I + λA)−1 and

V = I − γ∇ψ , where ψ is a convex function such that ∇ψ is η-Lipschitzian (which
is equivalent to the fact that ∇ψ is η−1 co-coercive), with γ ∈ (0, 2/η] and Fix(J A

λ )=

A−1(0). So VIP (1.1) reduces to the mathematical program with generalized equation
constraint,

min
0∈A(x)

ψ(x),

considered in [13].
A very particular case of the VIP (1.1) occurs when V is a constant mapping, that

is, given u ∈ H ,

find x∗ ∈ Fix(T ) such that 〈x∗ − u, x − x∗〉 ≥ 0, x ∈ Fix(T ), (1.3)

or, equivalently, find the fixed point of T closest to u, that is,

x∗ = PFix(T )u = argminx∈Fix(T )
1
2‖u − x‖2.
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[3] Krasnoselski–Mann iteration 189

This problem was widely investigated in [2, 9, 12, 22, 26, 28, 29]. The explicit method,
initiated by Halpern in [9], generates a sequence (xn)n by iterating

xn+1 = αnu + (1− αn)T xn, (1.4)

where u, x0 ∈ C and (αn)n ⊂ [0, 1].
The next result is well known.

THEOREM 1.1 [2, 9, 20, 21, 25–27]. Assume that Fix(T ) is nonempty. Suppose that
the sequence (αn)n satisfies the following:

(1) limn αn = 0;
(2)

∑
n αn =∞;

(3)
∑

n |αn+1 − αn|<∞ or limn((αn+1 − αn)/αn)= 0.

Then the sequence (xn)n generated by the algorithm (1.4) converges in norm to
PFix(T )u.

A more general case than V constant is that one V = f with f is a ρ-contraction,
that is, ‖ f (x)− f (y)‖ ≤ ρ‖x − y‖, ρ ∈ (0, 1). In this case we call (1.1) the
contractive VIP and the method is also known as viscosity approximation. It was
first studied by Moudafi [15] and further developed by Xu [30].

In this method, the explicit scheme (1.4) is replaced by Mann-type scheme

xn+1 = λn f (xn)+ (1− λn)T xn (1.5)

where (λn)n is a sequence in [0, 1].

THEOREM 1.2 [15, 30]. Assume that Fix(T ) is nonempty and let (xn)n be the
sequence by the algorithm (1.5). Assume that:

(1) limn λn = 0;
(2)

∑
n λn =∞;

(3)
∑

n |λn+1 − λn|<∞ or limn((λn+1 − λn)/λn)= 0.

Then limn xn = x∗ exists and x∗ is the unique solution of the variational inequality

〈(I − f )x∗, x − x∗〉 ≥ 0, x ∈ Fix(T ).

Very recently, Yao and Liou [35] replaced the Mann-type scheme (1.5) with the
Krasnoselski–Mann type scheme

xn+1 = (1− αn)xn + αn(λn f (xn)+ (1− λn)T xn)

and proved the following theorem.

THEOREM 1.3 [35]. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T be a nonexpansive mapping of C into itself such that Fix(T ) 6= ∅.
Let P : C→ C be a ρ-contraction. Let (xn)n be a sequence generated by

xn+1 = (1− αn)xn + αn(σn Pxn + (1− σn)T xn), n ≥ 0.
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Let (αn)n , (σn)n be two real number sequences in (0, 1) satisfying the following
conditions:

(i) 0< lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(ii) limn→∞ σn = 0 and

∑
n σn =∞.

Then:

(1) (xn)n converges strongly to a fixed point of T ;
(2) (xn)n is asymptotically regular, namely limn→∞ ‖xn+1 − xn‖ = 0;
(3) (xn)n converges strongly to a solution of the problem

find x∗ ∈ Fix(T ) such that 〈x∗ − f (x∗), x − x∗〉 ≥ 0, ∀x ∈ Fix(T ).

The above scheme is a particular case of the Krasnoselski–Mann algorithm

xn+1 = (1− αn)xn + αn(λnV (xn)+ (1− λn)T xn)

with V a nonexpansive mapping, introduced by Moudafi [17].
Some algorithms in signal processing and image reconstruction may be written as

the well-known Krasnoselski–Mann (K–M) iteration. The main feature of (K–M)-
iteration convergence theorems provided a unified framework for analyzing various
concrete algorithms. For details, see [3, 5, 31–34].

On the other hand, note that if we put C = Fix(T ) and G(x, y) := 〈(I − V )x,
y − x〉, then the VIP (1.1) can be rewritten as

find x∗ ∈ C such that G(x∗, y)≥ 0, y ∈ C, (1.6)

that is, as an equilibrium problem. More generally, following [6], we can have a
countable family of bifunctions from C × C to R. The basic formulation of this class
of problems reduces to solving the system of equilibrium problems

find x ∈ C such that Gi (x, y)≥ 0, ∀i ∈ I, ∀y ∈ C. (1.7)

Blum and Oettli [1, 19] show that, in the case of a single equilibrium problem, the
formulation (1.6) covers monotone inclusion problems, saddlepoint problems, VIPs,
minimization problems, Nash equilibria in noncooperative games, vector equilibrium
problems and certain fixed point problems (see [8]).

It is also worth remarking that, in the case of VIP (1.1), the induced bifunction
G(x, y) := 〈(I − V )x, y − x〉 satisfies the following condition.

CONDITION (1).

(E1) G(x, x)= 0 for all x ∈ H .
(E2) G(x, y)+ G(y, x)≤ 0 for all (x, y) ∈ H × H (that is, G is monotone).
(E3) For each x, y, z ∈ H ,

lim sup
t→0

G(t z + (1− t)x, y)≤ G(x, y).

(E4) The function y→ G(x, y) is convex and lower semicontinuous for each x ∈ H .
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While many methods have been proposed to solve (1.6) (see [7, 10, 11, 16, 18]), we
are not aware of so many results for systems of equilibrium problems. For some partial
results on these topics see [6].

Here we study a particular case of a system of two equilibrium functions, one
induced by a contractive VIP and one satisfying Condition (1), namely{

G(x∗, y)≥ 0, ∀y ∈ C,

find x∗ ∈ Fix(T ) such that 〈x∗ − f (x∗), x − x∗〉 ≥ 0, ∀x ∈ Fix(T ).
(1.8)

Of course such systems include the systems given by a VIP and a contractive VIP.
We show that the following Krasnoselski–Mann-type scheme for the VIP and

equilibrium function
x0 ∈ C,

G(un, y)+
1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = (1− αn)xn + αn(λn f (xn)+ (1− λn)T un), n ≥ 1,

(1.9)

solves the system.

2. Preliminaries

We give several known results that are fundamental for our proof.

LEMMA 2.1 [24]. Let (xn)n∈N and (zn)n∈N be bounded sequences in a Banach
space X and let (βn)n∈N be a sequence in [0, 1] with 0< lim infn→∞ βn
≤ lim supn→∞ βn < 1. Suppose that

xn+1 = βnxn + (1− βn)zn,

for all integers n ≥ 0, and

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖)≤ 0.

Then limn→∞ ‖xn − zn‖ = 0.

LEMMA 2.2 [29]. Assume (an)n is a sequence of nonnegative numbers such that

an+1 ≤ (1− γn)an + δn, n ≥ 0,

where (γn)n is a sequence in (0, 1) and (δn)n is a sequence in R such that:

(1)
∑
∞

n=1 γn =∞;
(2) lim supn→∞ δn/γn ≤ 0 or

∑
∞

n=1 |δn|<∞.

Then limn→∞ an = 0.
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192 G. Marino et al. [6]

The next lemmas concern the equilibrium function G and the set of equilibrium
points

E P(G)= {x ∈ C | G(x, y)≥ 0, ∀y ∈ C}.

LEMMA 2.3 [6]. Let C be a nonempty closed convex subset of H and G : C × C→R
satisfy Condition (1). For x ∈ C and r > 0, let Sr : H → C be the r-resolvent of G,

Sr (x) :=

{
z ∈ C | G(z, y)+

1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
.

Then Sr is well defined and the following hold:

(1) Sr is single-valued;
(2) Sr is firmly nonexpansive, that is,

‖Sr x − Sr y‖2 ≤ 〈Sr x − Sr y, x − y〉,

for all x, y ∈ H;
(3) Fix(Sr )= E P(G);
(4) E P(G) is closed and convex.

LEMMA 2.4 [6]. Suppose that G : C × C→R is an equilibrium function satisfying
Condition (1). Let (xn)n∈N be a sequence in H and (rn)n∈N a sequence in (0,+∞).
Define, for all n ∈N, un := Srn xn and suppose that un ⇀ p and (xn − un)→ z. Then
p ∈ C and for all y ∈ C, G(p, y)+ 〈z, p − y〉 ≥ 0.

REMARK 2.5. Note that in Lemma 2.4, if z = 0, then the weak cluster point p for
(un)n∈N is a weak cluster point for (xn)n∈N and also an equilibrium point for G.

LEMMA 2.6. Let G : C × C→R be a bifunction such that Condition (1) holds. Let
(wn)n be a bounded sequence and zn := Srnwn . Let (rn)n be a sequence of positive
numbers such that lim infn rn = r > 0. Then there exists a constant L > 0 such that

‖zn+1 − zn‖ ≤ ‖wn+1 − wn‖ + L

∣∣∣∣1− rn

rn+1

∣∣∣∣. (2.1)

PROOF. Since zn := Srnwn and zn+1 := Srn+1wn+1, we obtain that

G(zn+1, y)+
1

rn+1
〈y − zn+1, zn+1 − wn+1〉 ≥ 0, ∀y ∈ C,

and

G(zn, y)+
1
rn
〈y − zn, zn − wn〉 ≥ 0, ∀y ∈ C.

In particular,

G(zn+1, zn)+
1

rn+1
〈zn − zn+1, zn+1 − wn+1〉 ≥ 0
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and

G(zn, zn+1)+
1
rn
〈zn+1 − zn, zn − wn〉 ≥ 0.

Hence, summing up these two inequalities and using (E2),

1
rn
〈zn+1 − zn, zn − wn〉 +

1
rn+1
〈zn − zn+1, zn+1 − wn+1〉 ≥ 0,

so it follows that 〈
zn+1 − zn,

zn − wn

rn
−

zn+1 − wn+1

rn+1

〉
≥ 0. (2.2)

We derive from (2.2) that〈
zn+1 − zn, zn − wn −

rn

rn+1
(zn+1 − wn+1)

〉
≥ 0

⇒

〈
zn+1 − zn, zn − zn+1 − wn + zn+1 −

rn

rn+1
(zn+1 − wn+1)

〉
≥ 0

⇒−‖zn+1 − zn‖
2
+

〈
zn+1 − zn, (zn+1 − wn+1)

(
1−

rn

rn+1

)
+ (wn+1 − wn)

〉
≥ 0.

Then

‖zn+1 − zn‖
2
≤

〈
zn+1 − zn, (zn+1 − wn+1)

(
1−

rn

rn+1

)
+ (wn+1 − wn)

〉
≤ ‖zn+1 − zn‖

(
‖wn+1 − wn‖ +

∣∣∣∣1− rn

rn+1

∣∣∣∣‖zn+1 − wn+1‖

)
,

and so

‖zn+1 − zn‖ ≤ ‖wn+1 − wn‖ +

∣∣∣∣1− rn

rn+1

∣∣∣∣‖zn+1 − wn+1‖.

By hypothesis on (rn)n , if L := supn ‖zn+1 − wn+1‖, we conclude that

‖zn+1 − zn‖ ≤ ‖wn+1 − wn‖ + L

∣∣∣∣1− rn

rn+1

∣∣∣∣. 2

3. Main result

THEOREM 3.1. Let C be a closed convex subset of a Hilbert space H. Let T : C→ C
be a nonexpansive mapping with Fix(T ) ∩ E P(G) 6= ∅. Let f : C→ C be a ρ-
contraction. Let (λn)n be a sequence in (0, 1) such that λn→ 0 and

∑
n λn =∞.

Let (αn)n be a sequence in (0, 1) such that 0< lim infn αn ≤ lim supn αn < 1.
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Let (rn)n be a sequence of positive real numbers such that lim infn rn = r > 0 and
limn |1− ((rn)/(rn+1))| = 0. Let (xn)n , (un)n be the sequences defined by

x0 ∈ C,

G(un, y)+
1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = (1− αn)xn + αn(λn f (xn)+ (1− λn)T un), n ≥ 1.

(3.1)

Then the sequences both converge to a point z ∈ Fix(T ) ∩ E P(G) which is the unique
solution in Fix(T ) ∩ E P(G) of the variational inequality

〈z − f (z), z − x〉 ≤ 0, ∀x ∈ Fix(T ) ∩ E P(G). (3.2)

Equivalently, z = PFix(T )∩E P(G) f z.

PROOF. Since the inequality

‖un − z‖ = ‖Srn xn − Srn z‖ ≤ ‖xn − z‖

holds, we only prove that xn→ z. We divide the proof into several steps.

STEP 1. We prove that the sequence (xn)n is bounded. Let v ∈ Fix(T ) ∩ E P(G).
Then

‖xn+1 − v‖ = ‖(1− αn)(xn − v)+ αn[λn( f (xn)− v)+ (1− λn)(T un − v)]‖

≤ (1− αn)‖xn − v‖ + αn[λn(‖ f (xn)− f (v)‖

+ ‖ f (v)− v‖)+ (1− λn)‖xn − v‖]

≤ (1− αn)‖xn − v‖ + αnλnρ‖xn − v‖

+ αnλn‖ f (v)− v‖ + αn(1− λn)‖xn − v‖

= (1− (1− ρ)λnαn)‖xn − v‖ + αnλn‖ f (v)− v‖

≤ max
{
‖xn − v‖,

‖ f (v)− v‖

1− ρ

}
.

By induction we obtain that

‖xn − v‖ ≤max
{
‖x0 − v‖,

‖ f (v)− v‖

1− ρ

}
.

STEP 2. We prove that the sequence (xn)n is asymptotically regular, that is,
‖xn − xn+1‖→ 0, as n→∞. Set yn = λn f (xn)+ (1− λn)T un and note that

yn+1 − yn = λn+1 f (xn+1)+ (1− λn+1)T un+1 − λn f (xn)− (1− λn)T un

= λn+1( f (xn+1)− f (xn))+ (λn+1 − λn) f (xn)

+ (1− λn+1)(T un+1 − T un)− (λn+1 − λn)T un.
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So, to apply Lemma 2.1 (due to Suzuki), we observe that xn+1 = αnxn + (1− αn)yn
and

lim sup
n

(‖yn+1 − yn‖ − ‖xn+1 − xn‖)

≤ lim sup
n
[λn+1‖ f (xn+1)− f (xn)‖ + |λn+1 − λn|‖ f (xn)− T un‖

+ (1− λn+1)‖T un+1 − T un‖ − ‖xn+1 − xn‖]

≤ lim sup
n
[λn+1ρ‖xn+1 − xn‖ + |λn+1 − λn|‖ f (xn)− T un‖

+ (1− λn+1)‖un+1 − un‖ − ‖xn+1 − xn‖]

≤ lim sup
n

[
λn+1‖xn+1 − xn‖ + (1− λn+1)

(
‖xn+1 − xn‖ + L

∣∣∣∣1− rn

rn+1

∣∣∣∣)
+ |λn+1 − λn|(‖T un‖ + ‖ f (xn)‖)− ‖xn+1 − xn‖

]
,

where the second inequality holds by (2.1) in Lemma 2.6. By the boundedness of
(xn)n and the hypotheses on the sequences (λn)n , (rn)n we conclude that

lim sup
n

(‖yn+1 − yn‖ − ‖xn+1 − xn‖)

≤ lim sup
n

[
‖xn+1 − xn‖ + L

∣∣∣∣1− rn

rn+1

∣∣∣∣
+ |λn+1 − λn|(‖T un‖ + ‖ f (xn)‖)− ‖xn+1 − xn‖

]
= lim sup

n

[
L

∣∣∣∣1− rn

rn+1

∣∣∣∣+ |λn+1 − λn|(‖T un‖ + ‖ f (xn)‖)

]
= 0.

We can apply Lemma 2.1 to derive

lim
n
‖xn − yn‖ = 0. (3.3)

On the other hand, a straightforward computation leads to

lim
n
‖xn+1 − xn‖ = lim

n
αn‖xn − yn‖ = 0. (3.4)

STEP 3. We prove that limn ‖xn − un‖ = 0. First of all we note that, by the firm
nonexpansivity of Srn , if p ∈ E P(G), then

‖un − p‖2 = 〈un − p, Srn xn − Srn p〉 ≤ 〈un − p, xn − p〉

=
1
2 (‖un − p‖2 + ‖xn − p‖2 − ‖xn − un‖

2),

from which
‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖

2. (3.5)
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On the other hand, if v ∈ Fix(T ) ∩ E P(G), then

‖xn+1 − v‖
2
= ‖(1− αn)(xn − v)+ αn(λn f (xn)+ (1− λn)T un − v)‖

2

= ‖(1− αn)(xn − v)+ αn(T un − v)+ αnλn( f (xn)− T un)‖
2

≤ ‖(1− αn)(xn − v)+ αn(T un − v)‖
2

+ 2λn〈 f (xn)− T un, xn+1 − v〉

≤ (1− αn)‖xn − v‖
2
+ αn‖T un − T v‖2

+ 2λn〈 f (xn)− T un, xn+1 − v〉

≤ (1− αn)‖xn − v‖
2
+ αn‖un − v‖

2

+ 2λn〈 f (xn)− T un, xn+1 − v〉. (3.6)

Combining (3.5) with (3.6) and setting

zn = 2λn〈 f (xn)− T un, xn+1 − v〉

leads to

‖xn+1 − v‖
2
≤ (1− αn)‖xn − v‖

2
+ αn(‖xn − v‖

2
− ‖xn − un‖

2)+ zn

≤ ‖xn − v‖
2
− αn‖xn − un‖

2
+ zn. (3.7)

Thus,

αn‖xn − un‖
2
≤ ‖xn − v‖

2
− ‖xn+1 − v‖

2
+ zn

≤ ‖xn − xn+1‖
2
+ 2‖xn − xn+1‖‖xn+1 − v‖ + zn. (3.8)

Since (xn)n is bounded, zn→ 0. Moreover, by asymptotically regularity of (xn)n and
by the hypothesis on (αn)n , from the latter it follows that

lim
n
‖xn − un‖ = 0, (3.9)

as required.

STEP 4. We now prove that the set of weak cluster points ωw(xn) is a subset of
Fix(T ) ∩ E P(G). Let (xnk )k be a subsequence of (xn)n weakly converging to a point
p ∈ C . Since (3.9) holds, we can apply Lemma 2.4 to ensure that p lies in E P(G).

To show that p ∈ Fix(T ), we observe that

‖xnk − T xnk‖ ≤ ‖xnk+1 − xnk‖ + ‖xnk+1 − T unk‖ + ‖T unk − T xnk‖

≤ ‖xnk+1 − xnk‖ + (1− αnk )‖xnk − T unk‖

+ αnkλnk‖ f (xnk )− T unk‖ + ‖unk − xnk‖,

thus by hypotheses and by Steps 2 and 3,

lim
k
‖xnk − T xnk‖ ≤ lim

k

‖xnk+1 − xnk‖ + (2− αnk )‖unk − xnk‖

αnk

+ λnk‖ f (xnk )− T unk‖ = 0.
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Since xnk ⇀ p, by the demiclosedness principle for nonexpansive mappings [2], we
have p ∈ Fix(T ).

REMARK 3.2. Note that from Step 4 it follows that

lim sup
n
〈 f (z)− z, xn − z〉 ≤ 0, (3.10)

where z ∈ Fix(T ) ∩ E P(G) is the unique solution of the variational inequality (3.2).
To show this, let (xn j ) j be such that

lim sup
n
〈 f (z)− z, xn − z〉 = lim

j
〈 f (z)− z, xn j − z〉.

By eventually passing to subsequences, we may assume that xn j ⇀ p. Then

lim
j
〈 f (z)− z, xn j − z〉 = 〈 f (z)− z, p − z〉 ≤ 0

since p ∈ Fix(T ) ∩ E P(G).

STEP 5. Finally, we show that xn, un→ z, as n→∞. Since the inequality

‖un − z‖ = ‖Srn xn − Srn z‖ ≤ ‖xn − z‖

holds, it is enough to prove that xn→ z:

‖xn+1 − z‖2 = ‖(1− αn)(xn − z)+ αn(λn f (xn)+ (1− λn)T un − z)‖2

= ‖(1− αn)(xn − z)+ αn(1− λn)(T un − z)+ λnαn( f (xn)− z)‖2

≤ ‖(1− αn)(xn − z)+ αn(1− λn)(T un − z)‖2

+ 2αnλn〈 f (xn)− z, xn+1 − z〉

≤ (1− αn)‖xn − z‖2 + αn(1− λn)
2
‖xn − z‖2

+ 2αnλn〈 f (xn)− z, xn+1 − z〉

≤ (1− αn + αn(1− λn))
2
‖xn − z‖2

+ 2αnλn〈 f (xn)− f (z), xn+1 − z〉 + 2αnλn〈 f (z)− z, xn+1 − z〉.

The Cauchy-Schwartz inequality gives

2αnλn〈 f (xn)− f (z), xn+1 − z〉 ≤ 2αnλn‖ f (xn)− f (z)‖‖xn+1 − z‖

≤ αnλn[‖ f (xn)− f (z)‖2 + ‖xn+1 − z‖2].

So,

‖xn+1 − z‖2 ≤ (1− αn + αn(1− λn)
2)‖xn − z‖2

αnλn(‖ f (xn)− f (z)‖2 + ‖xn+1 − z‖2)

+ 2αnλn〈 f (z)− z, xn+1 − z〉

≤ (1− αn + αn(1− λn)
2
+ αnλnρ)‖xn − z‖2

+ αnλn‖xn+1 − z‖2 + 2αnλn〈 f (z)− z, xn+1 − z〉.
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We can compute (1− αn + αn(1− λn)
2
+ αnλnρ) and simplify:

‖xn+1 − z‖2 = (1− αnλn − αnλn(1− ρ − λn))‖xn − z‖2

+ αnλn‖xn+1 − z‖2 + 2αnλn〈 f (z)− z, xn+1 − z〉.

Then from the foregoing it follows that

‖xn+1 − z‖2 ≤

(
1−

αnλn(1− ρ − λn)

1− αnλn

)
‖xn − z‖2

+ 2
αnλn

1− αnλn
〈 f (z)− z, xn+1 − z〉. (3.11)

Putting

an = ‖xn − z‖2,

γn =
αnλn(1− ρ − λn)

1− αnλn

and

δn = 2
αnλn

1− αnλn
〈 f (z)− z, xn+1 − z〉,

then (3.11) becomes
an+1 ≤ (1− γn)an + δn.

Note that limn γn = 0 and

lim sup
n

δn

γn
= lim sup

n
2
〈 f (z)− z, xn+1 − z〉

(1− ρ − λn)
≤ 0,

by (3.10). Thus we may apply Lemma 2.2 to conclude that

lim
n

an = lim
n
‖xn − z‖ = 0. 2
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