ON THE DIFFERENTIAL FORMS ON ALGEBRAIC VARIETIES

YÛSAKU KAWAHARA

Introduction. In the book "Foundations of algebraic geometry" A. Weil proposed the following problem; does every differential form of the first kind on a complete variety U determine on every subvariety V of U a differential form of the first kind? This problem was solved affirmatively by S. Koizumi when U is a complete variety without multiple point. In this note we answer this problem in affirmative in the case where V is a simple subvariety of a complete variety U (in §1). When the characteristic is 0 we may extend our result to a more general case but this does not hold for the case characteristic $p \neq 0$ (in §2).

I express my hearty thanks to Prof. Y. Akizuki and Mr. S. Koizumi for their useful remarks.

§1. Let $K = k(x_1, \ldots, x_N) = k(x)$ be a field, generated over a field k by a set of quantities (x), the class $\mathfrak P$ of equivalent (n-1)-dimensional valuations for K/k is called a prime divisor in the sense of Zariski, n being the dimension of K over k, and its normalized valuation with rational integers as the value group is denoted by $\nu_{\mathfrak P}$. Let F(x, dx) be a differential form belonging to the extension k(x) of k. We say that F(x, dx) is finite at $\mathfrak P$ if F(x, dx) is of the form

$$F(x, dx) = \sum z_{\alpha\beta} \dots dy_{\alpha} dy_{\beta} \dots ,$$

where $\nu_{\mathfrak{B}}(z_{\alpha\beta}...) \ge 0$, $\nu_{\mathfrak{B}}(y_{\alpha}) \ge 0$, $\nu_{\mathfrak{R}}(y_{\beta}) \ge 0$, ...

THEOREM 1. Let U^n be a complete variety and k a field of definition of U^n which is perfect. Let P be a generic point of U^n over k. Then, for every differential form ω on U defined over k, $\omega(P)$ is of the first kind if and only if it is finite at every prime divisor of k(P).

Proof. Sufficiency. Let (y) be a set of quantities such that $k(\mathbf{P}) = k(y)$ and let P' be a simple point of the locus V^n of (y) over k. If P^* is a generic

Received June 19, 1951.

¹⁾ We refer this book by F in this note.

²⁾ S. Koizumi, On the differential forms of the first kind on algebraic varieties. I. Journal of the Mathematical Society of Japan, vol. 1 (1949). II. vol. 2 (1951).

³⁾ See O. Zariski, The reduction of the singularities of an algebraic surface. Annals of Math. vol. 40 (1939).

point of any (n-1)-dimensional simple subvariety of V^n over the algebraic closure k of k, then $\omega(\mathbf{P})$ is finite at P^* by our hypothesis. Therefore by Prop. 5 in Koizumi's paper $\omega(\mathbf{P})$ is finite at P', which shows that $\omega(\mathbf{P})$ is of the first kind.

Necessity. There exists a set of quantities (y) such that $k(\mathbf{P}) = k(y)$ and that, on the locus V of (y) over k, the center of $\mathfrak P$ is an (n-1)-dimensional simple subvariety W. V is obtained by a birational transformation such that the center of $\mathfrak P$ is an (n-1)-dimensional subvariety and by the normalization over k of the resulting variety. Let P' be a generic point of W over k and let (t_1, \ldots, t_n) be a set of uniformizing parameters in k(y) for V at P'. Since $\omega(\mathbf{P})$ is of the first kind,

$$\omega(\mathbf{P}) = \sum w_{ij...} dt_i dt_j \dots ,$$

where w_{ij} ... are in the specialization ring of P' in k(y) = k(P). As $t_1 \ldots t_n$ are in the specialization ring of P' in k(y) and this specialization ring is identical with the valuation ring of \mathfrak{P} , the theorem is proved.

Remark. This theorem holds without the assumption that k is a perfect field if each \mathfrak{P} can be uniformized under a birational transformation of U over k, a fortiori, if U has no singular point.

The set of elements (t_1, \ldots, t_n) in the proof (necessity) of th. 1 is called a set of uniformizing parameters at \mathfrak{P} . A differential form is finite at \mathfrak{P} if and only if it is expressed in one and only one way as a polynomial in dt_1, \ldots, dt_n with coefficients in the valuation ring of \mathfrak{P} .

Lemma 1. Let U^n be a variety defined over k and let V^m be a simple subvariety of U^n which is algebraic over k. Then there exists a series of algebraic varieties

$$\mathbf{U}^{n} = \mathbf{U}_{0}^{n}, \ \mathbf{U}_{1}^{n-1}, \ \mathbf{U}_{2}^{n-2}, \ldots, \ \mathbf{U}_{n-m}^{m} = \mathbf{V}^{m}$$

such that each U_i is algebraic over k and that U_{i+1} is a simple subvariety of U_i $(i = 0, \ldots, n-m-1)$.

Proof. Since it is enough to prove this for affine varieties, we may assume that U^n is contained in affine N-space S^N . Let P=(y) be a generic point of V^m over \overline{k} . As P is a simple point of U^n , U^n is defined by a set of equations $F_{\mu}(X)=0$, where $F_{\mu}(X)$ are polynomials in $k[X_1,\ldots,X_N]$ and the rank of the Jacobian matrix $\|\partial F_{\mu}/\partial y_i\|$ is N-n. Further as P is a generic point of V^m , V^m is defined by a set of equations $G_{\nu}(X)=0$, where $G_{\nu}(X)$ are polynomials in $\overline{k}[X_1,\ldots,X_N]$ and the rank of the matrix $\|\partial G_{\nu}/\partial y_i\|$ is N-m. Since we may assume n>m, there must exist a ν such that the rank of the matrix $\|\partial F_{\mu}/\partial y_i\|$ is N-n+1; we may assume without loss of generality that

⁴⁾ Loc. cit. 2).

 $\nu=1$. Further we may assume that $G_1(X)$ is irreducible. Let W^{N-1} be the variety defined by $G_1(X)=0$ in S^N . There exists a component U_1 of the intersection of W^{N-1} and U^n which contains V^m (F. IV₄ th. 8). The dimension of U_1 is n-1 (F. VI th. 1 Cor. 2) and by the construction it is obvious that V^m is a simple subvariety of U^{n-1} . Thus our assertion follows by induction on n.

LEMMA 2. Let k be a perfect field and let P = (x) be a set of quantities such that k(P) is a regular n-dimensional extension of k. Let v be an (n-2)-dimensional valuation of k(P) of rank 2^{5} . Then there exists a variety U^n defined over k with a generic point Q such that k(P) = k(Q) and that the center of the valuation v on U is a simple subvariety V^{n-2} of U.

Proof. Let \mathfrak{D} be the valuation ring of v and let m be the prime ideal of all the non-units in \mathbb{Q} . By our hypothesis, the residue class field \mathbb{Q}/\mathfrak{m} is (n-2)dimensional over k. Let (u_1, \ldots, u_{n-2}) be a system of elements in $\mathbb O$ such that they are algebraically independent mod m over k. Put $k(u_1, \ldots, u_{n-2}) = K$. Then k(P) is 2-dimensional over K. We can also select (u_1, \ldots, u_{n-2}) in such a way that k(P) is separably generated over K. As v(z) = 0 for each element $z \neq 0$ in K, we can consider v as a valuation of dimension 0 and rank 2 of k(P)/K. By Zariski's local uniformization theorem (cf. O. Zariski, Reduction of algebraic three-dimensional varieties §§ 10-12, § 16), there exists such a set of quantities (y_1, \ldots, y_m) that k(P) = K(y) and that the quotient ring $\mathbb{O}_{\bar{p}}$ of $\bar{p} = K[y] \cap m$ in K[y] is a regular local ring. Put $Q = (u_1, \ldots, u_{n-2}, y_1, \ldots, y_m)$ and let U be its locus over k. The quotient ring $\mathfrak{O}_{\mathfrak{p}}$ of $\mathfrak{p}=k[u_1,\ldots,u_{n-2},y_1,\ldots,y_m]\cap\mathfrak{m}$ in $k[u_1,\ldots,u_{n-2},y_1,\ldots,y_m]$ is identical with $\mathbb{Q}_{\bar{p}}$ and hence it is also regular local ring. As k is perfect, p defines in U absolutely simple subvariety in the sense of Zariski. Hence there exists a simple point Q' of U whose specialization ring in k(Q) is identical with $\mathfrak{O}_{\mathfrak{p}}$.

Theorem 2. Let U^n be a complete variety and V its simple subvariety. If a differential form ω on U is of the first kind, then it induces on V a differential form ω' of the first kind.

Proof. It is known that a differential form which is finite on V induces uniquely a differential form ω' on V. We prove that this ω' is of the first kind. We may assume that U, V and ω have a common field of definition k which is perfect. Let P be a generic point of U over k and let Q be a generic point of V over k. By lemma 1 we may assume without loss of generality that the dimension of V is n-1. Let \mathfrak{P}' be a prime divisor of k(Q) ($\nu_{\mathfrak{R}'}$ being a (n-2)-

⁵⁾ Loc. cit. 3).

⁶⁾ O. Zariski, Reduction of singularities of algebraic three-dimensional varieties, Annals of Math. vol. 45 (1944).

⁷⁾ Loc. ict 2) S. Koizumi I. Prop. 6.

dimensional valuation over k). We shall prove that $\omega'(\mathbf{Q})$ is finite at \mathfrak{P}' . As \mathbf{Q} is a simple point of \mathbf{U} of dimension n-1 over k, it determines a prime divisor \mathfrak{P} in $k(\mathbf{P})$; namely the valuation ring of \mathfrak{P} is identical with the specialization ring of \mathbf{Q} in $k(\mathbf{P})$. We may construct, by virtue of \mathfrak{P} and the prime divisor \mathfrak{P}' of $k(\mathbf{Q})$, a valuation v of dimention n-2, and rank 2 of k(P). It follows from lemma 2 that there exists a variety U'^n and a point Q' of U' such that Q' is simple on U' and the specialization ring of Q' is contained in the valuation ring of the valuation v of k(P). Let (t_1, \ldots, t_n) be a system of uniformizing parameters of Q' in k(P). Since ω is of the first kind $\omega(P)$ is of the form

$$\omega(\mathbf{P}) = \sum w_{ij} \dots dt_i dt_j \dots ,$$

where $w_{ij...}$, t_i , t_j , etc. are contained in the specialization ring of Q'; therefore $v(w_{ij...}) \ge 0$, $v(t_i) \ge 0$, . . . and $v_{\mathfrak{P}}(w_{ij...}) \ge 0$, $v_{\mathfrak{P}}(t_i) \ge 0$; namely $w_{ij...}$, t_i , . . . are contained in the specialization ring of \mathbf{Q} in $k(\mathbf{P})$. Therefore the specializations of $w_{ij...}$, t_i , t_j over $\mathbf{P} \to \mathbf{Q}$ with respect to k are contained in the valuation ring of \mathfrak{P}' in $k(\mathbf{Q})$. This proves that $w'(\mathbf{Q})$ is finite at \mathfrak{P}' .

2. The case of characteristic 0.

Let U^n be a complete variety defined over k with a generic point P over k and let V be its subvariety defined over k with a generic point Q over k. If a differential form ω has the following expression

$$\omega(\mathbf{P}) = \sum z_{\alpha\beta} \dots dy_{\alpha} dy_{\beta} \dots ,$$

where $z_{a\beta}, y_a, y_b, \ldots$ are contained in the specialization ring of **Q** in $k(\mathbf{P})^{8}$, then we can induce ω on **V** even if **Q** is not a simple point of **U**.

In this section we assume that the characteristic is 0 and prove that if ω is a differential form of the first kind on U it induces uniquely on V a differential form ω' of the first kind.

THEOREN 3. If a differential form $\omega(\mathbf{P}) = \sum z_{\alpha\beta} \dots dy_{\alpha} dy_{\beta} \dots$ is finite at \mathbf{Q} , then $\omega'(Q) = \sum z'_{\alpha\beta} \dots dy'_{\alpha} d'_{\beta} \dots$ is uniquely determined by $\omega(\mathbf{P})$, where $z'_{\alpha\beta} \dots, y'_{\alpha}$, y'_{β} are the specializations of $z_{\alpha\beta} \dots, y_{\alpha}, y_{\beta}$, over $\mathbf{P} \rightarrow \mathbf{Q}$ with respect to k.

Proof. We prove that if $\omega(\mathbf{P}) = \sum z_{\alpha\beta}...dy_{\alpha}dy_{\beta}... = \sum \bar{z}_{\gamma\delta}...d\bar{y}_{\gamma}d\bar{y}_{\delta}...$, where $\bar{z}_{\gamma\delta}...,\bar{y}_{\gamma},\bar{y}_{\delta},...$ are also contained in the specialization ring of \mathbf{Q} in $k(\mathbf{P})$, then $\sum z'_{\alpha\beta}...dy'_{\alpha}dy'_{\beta}... = \omega'(\mathbf{Q})$ and $\sum z'_{\gamma\delta}...d\bar{y}'_{\gamma}d\bar{y}'_{\delta}... = \bar{\omega}'(\mathbf{Q})$ are identical. If the dimension of $\mathbf{V} < n-1$, then there exists a variety \mathbf{W}^{n-1} which is algebraic over k such that $\mathbf{U} \supset \mathbf{W} \supset \mathbf{V}$. Let \mathbf{P}' be a generic point of \mathbf{W} over k. If z is contained in the specialization ring of \mathbf{Q} in $k(\mathbf{P})$, it is also contained in the specialization ring of \mathbf{P}' in $k(\mathbf{P})$. Further if z^* is the specialization of z

⁸⁾ Even if ω is of the first kind, this is not always true.

over $\mathbf{P} \to \mathbf{P}'$ with respect to k, then the specialization of z^* over $\mathbf{P}' \to \mathbf{Q}$ with respect to \overline{k} is identical with the specialization z' of z over $\mathbf{P} \to \mathbf{Q}$ with respect to k. Therefore we can assume without loss of generality that the dimension of \mathbf{V} is n-1. Let \mathbf{U}^* be the normalization of \mathbf{U} over k; let \mathbf{P}^* be the corresponding generic point of \mathbf{P} , and let \mathbf{Q}^* be a corresponding point of \mathbf{Q} under the natural birational transformation between \mathbf{U} and \mathbf{U}^* . Then \mathbf{Q}^* is a simple point of \mathbf{U}^* and $k(\mathbf{Q}^*)$ is an algebraic extension over $k(\mathbf{Q})$. Let ω^* be a differential form on \mathbf{U}^* defined by $\omega^*(\mathbf{P}^*) = \omega(\mathbf{P})$; then since \mathbf{Q}^* is simple $\omega^*(\mathbf{Q}^*) = \sum z'_{r\delta} \dots d\bar{y}'_r d\bar{y}'_\delta \dots$ are identical. If (t_1, \dots, t_{n-1}) is a set of elements of $k(\mathbf{Q})$ such that $k(\mathbf{Q})/k(t_1, \dots, t_{n-1})$ is (separably) algebraic, then $\omega'(\mathbf{Q}) - \overline{\omega}'(\mathbf{Q})$ is expressed in one and only one way as a polynomial of dt_i $(i=1,\dots,n-1)$:

$$\omega'(\mathbf{Q}) - \overline{\omega}'(\mathbf{Q}) = \sum w_{ij} \dots dt_i dt_j \dots$$

Then we have $\omega^{*\prime}(\mathbf{Q}^*) - \overline{\omega}^{*\prime}(\mathbf{Q}^*) = \sum w_{ij}...dt_idt_j...$ As $k(\mathbf{Q}^*)/k(\mathbf{Q})$ is (separably) algebraic, $k(\mathbf{Q}^*)/k(t_1,...,t_{n-1})$ is also (separably) algebraic, and hence $w_{ij}...$, ect. must be equal to 0, because $\omega^{*\prime}(\mathbf{Q}^*) = \overline{\omega}^{*\prime}(\mathbf{Q}^*)$. Therefore $\omega'(\mathbf{Q}) = \overline{\omega}'(\mathbf{Q})$.

Theorem 4. Assumptions being as in the above theorem, let ω be of the first kind. Then ω' is also of the first kind.

Proof. We use the same notations as in the proof of the preceding theorem. We may also assume without loss of generality that V is of dimension n-1. As Q^* is simple on U^* , ω^{*_I} is of the first kind on the locus of Q^* over k in U^* . Therefore the proof may by reduced to the following lemma.

LEMMA 3. Suppose that $k(\mathbf{Q}^*)$ is an algebraic extension over $k(\mathbf{Q})$ and $\omega^*(\mathbf{Q}^*) = \omega(\mathbf{Q})$. If $\omega^*(\mathbf{Q}^*)$ is of the first kind, then $\omega(\mathbf{Q})$ is also of the first kind.

Proof. If we suppose that this is not true, there must exist a prime divisor \mathfrak{P} of $k(\mathbf{Q})$ such that $\omega(\mathbf{Q})$ is not finite at \mathfrak{P} . Let t_1, \ldots, t_{n-1} be a set of uniformizing parameters at \mathfrak{P} in $k(\mathbf{Q})$. Let \mathfrak{P}^* be a prime divisor of $k(\mathbf{Q}^*)$ which is an extension of \mathfrak{P} and let $(t_1^*, \ldots, t_{n-1}^*)$ be a set of uniformizing parameters at \mathfrak{P}^* in $k(\mathbf{Q}^*)$. Suppose $\mathfrak{P}^{*e} \| \mathfrak{P}$. As $\omega(\mathbf{Q})$ is not finite at \mathfrak{P} , we can assume that

$$\omega^*(\mathbf{Q}^*) = \omega(\mathbf{Q}) = adt_1 \dots dt_s + \dots$$

where a is an element in $k(\mathbf{Q})$ and $\nu_{\mathfrak{P}}(a) < 0$. Since ω^* is of the first kind, $\omega^*(\mathbf{Q}^*)$ is finite at \mathfrak{P}^* and $\theta(\mathbf{Q}^*) = dt_{s+1} \dots dt_{n-1}$ is finite at \mathfrak{P}^* ; therefore $\theta_1(\mathbf{Q}^*) = \omega^*(\mathbf{Q}^*) \cdot \theta(\mathbf{Q}^*) = adt_1 \dots dt_s dt_{s+1} \dots dt_{n-1}$ is also finite at \mathfrak{P}^* . But as $dt_1 \dots dt_{n-1} = bdt_1^* \dots dt_{n-1}^*$, where b is an element of $k(\mathbf{Q}^*)$ and $\nu_{\mathfrak{P}^*}(b) = e - 1$, $\theta_1(\mathbf{Q}^*) = abdt_1^* \dots dt_{n-1}^*$, where $\nu_{\mathfrak{P}^*}(ab) \leq -e + (e-1) < 0$. This contradicts to the fact that $\theta_1(\mathbf{Q}^*)$ is finite at \mathfrak{P}^* .

An example

In the case of characteristic $p \neq 0$, theorem 4 does not hold in general. Let k be an algebraically closed field of characteristic p and let V^1 be the variety defined over k by $F(X_1, X_2) = X_2^q + X_2 - X_1^m$, where $q = p^r$, r > 0, m > 1, q + 1 = mn. Let (x_1, x_2) be a generic point of V over k. Then dx_1 is a differential of the first kind in $k(x_1, x_2)$. This is the example of F. K. Schmidt. Let t be a quantity such that t and $k(x_1, x_2)$ are independent over t. Put t is a t in t in

Mathematical Institute, Nagoga University

⁹⁾ F. K. Schmidt, Zur arithmetischen Theorie der algebraischen Funktionen II, § 5. Math. Zeitschrift, Bd. 35 (1939).