ON THE DIFFERENTIAL FORMS ON ALGEBRAIC VARIETIES

YÛSAKU KAWAHARA

Introduction. In the book "Foundations of algebraic geometry" ${ }^{1)}$ A. Weil proposed the following problem; does every differential form of the first kind on a complete variety \mathbf{U} determine on every subvariety \mathbf{V} of \mathbf{U} a differential form of the first kind? This problem was solved affirmatively by S. Koizumi when \mathbf{U} is a complete variety without multiple point. ${ }^{2)}$ In this note we answer this problem in affirmative in the case where \mathbf{V} is a simple subvariety of a complete variety \mathbf{U} (in §1). When the characteristic is 0 we may extend our result to a more general case but this does not hold for the case characteristic $p \neq 0$ (in §2).

I express my hearty thanks to Prof. Y. Akizuki and Mr. S. Koizumi for their useful remarks.
§ 1. Let $K=k\left(x_{1}, \ldots, x_{v}\right)=k(x)$ be a field, generated over a field k by a set of quantities (x), the class \mathfrak{F} of equivalent ($n-1$)-dimensional valuations for K / k is called a prime divisor in the sense of Zariski, ${ }^{3)} n$ being the dimension of K over k, and its normalized valuation with rational integers as the value group is denoted by $\nu_{\mathfrak{\beta}}$. Let $F(x, d x)$ be a differential form belonging to the extension $k(x)$ of k. We say that $F(x, d x)$ is finite at \mathfrak{B} if $F(x, d x)$ is of the form

$$
F(x, d x)=\sum z_{\alpha_{\beta}} \ldots d y_{\alpha} d y_{\beta} \ldots,
$$

where $\nu_{\mathfrak{F}}\left(z_{\alpha \beta} \ldots\right) \geqslant 0, \nu_{\mathfrak{\beta}}\left(y_{\alpha}\right) \geqslant 0, \nu_{\mathfrak{\beta}}\left(y_{\beta}\right) \geqslant 0, \ldots$.
Theorem 1. Let \mathbf{U}^{n} be a complete variety and k a field of definition of \mathbf{U}^{n} which is perfect. Let \mathbf{P} be a generic point of \mathbf{U}^{n} over k. Then, for every differential form ω on \mathbf{U} defined over $k, \omega(\mathbf{P})$ is of the first kind if and only if it is finite at every prime divisor of $k(\mathbf{P})$.

Proof. Sufficiency. Let (y) be a set of quantities such that $k(\mathbf{P})=k(y)$ and let P^{\prime} be a simple point of the locus V^{n} of (y) over k. If P^{*} is a generic

Received June 19, 1951.
${ }^{1)}$ We refer this book by F in this note.
2) S. Koizumi, On the differential forms of the first kind on algebraic varieties. I. Journal of the Mathematical Society of Japan, vol. 1 (1949). II. vol. 2 (1951).
3) See O. Zariski, The reduction of the singularities of an algebraic surface. Annals of Math. vol. 40 (1939).
point of any $(n-1)$-dimensional simple subvariety of V^{n} over the algebraic closure ξ of k, then $\omega(\mathbf{P})$ is finite at P^{*} by our hypothesis. Therefore by Prop. 5 in Koizumi's paper $\left.{ }^{4}\right) \omega(\mathbf{P})$ is finite at P^{\prime}, which shows that $\omega(\mathbf{P})$ is of the first kind.

Necessity. There exists a set of quantities (y) such that $k(\mathbf{P})=k(y)$ and that, on the locus V of (y) over k, the center of \mathfrak{B} is an ($n-1$)-dimensional simple subvariety W. V is obtained by a birational transformation such that the center of \forall is an $(n-1)$-dimensional subvariety and by the normalization over k of the resulting variety. Let P^{\prime} be a generic point of W over k and let $\left(t_{1}, \ldots, t_{n}\right)$ be a set of uniformizing parameters in $k(y)$ for V at P^{\prime}. Since $\omega(\mathbf{P})$ is of the first kind,

$$
\omega(\mathbf{P})=\sum w_{i j} \ldots d t_{i} d t_{j} \ldots,
$$

where $w_{i j} \ldots$ are in the specialization ring of P^{\prime} in $k(y)=k(\mathbf{P})$. As $t_{1} \ldots, t_{n}$ are in the specialization ring of P^{\prime} in $k(y)$ and this specialization ring is identical with the valuation ring of \mathfrak{P}, the theorem is proved.

Remark. This theorem holds without the assumption that k is a perfect field if each \mathfrak{P} can be uniformized under a birational transformation of \mathbf{U} over k, a fortiori, if \mathbf{U} has no singular point.

The set of elements $\left(t_{1}, \ldots, t_{n}\right)$ in the proof (necessity) of th. 1 is called a set of uniformizing parameters at \mathfrak{P}. A differential form is finite at \mathfrak{P} if and only if it is expressed in one and only one way as a polynomial in $d t_{1}, \ldots, d t_{n}$ with coefficients in the valuation ring of \mathfrak{P}.

Lemma 1. Let \mathbf{U}^{n} be a variety defined over k and let \mathbf{V}^{m} be a simple subvariety of $\mathbf{U}^{n} \cdot$ which is algebraic over k. Then there exists a series of algebraic varieties

$$
\mathbf{U}^{n}=\mathbf{U}_{0}^{n}, \mathbf{U}_{1}^{n-1}, \mathbf{U}_{2}^{n-2}, \ldots, \mathbf{U}_{n-m}^{m}=\mathbf{V}^{m}
$$

such that each \mathbf{U}_{i} is algebraic over k and that \mathbf{U}_{i+1} is a simple subvariety of \mathbf{U}_{i} ($i=0, \ldots, n-m-1$).

Proof. Since it is enough to prove this for affine varieties, we may assume that U^{n} is contained in affine N-space $S^{\mathbb{N}}$. Let $P=(y)$ be a generic point of V^{m} over \bar{k}. As P is a simple point of U^{n}, U^{n} is defined by a set of equations $F_{\mu}(X)=0$, where $F_{\mu}(X)$ are polynomials in $k\left[X_{1}, \ldots, X_{v}\right]$ and the rank of the Jacobian matrix $\left\|\partial F_{\mu} / \partial y_{i}\right\|$ is $N-n$. Further as P is a generic point of V^{m}, V^{m} is defined by a set of equations $G_{\nu}(X)=0$, where $G_{\nu}(X)$ are polynomials in $\bar{k}\left[X_{1}, \ldots, X_{N}\right]$ and the rank of the matrix $\left\|\partial G_{\nu} / \partial y_{i}\right\|$ is $N-m$. Since we may assume $n>m$, there must exist a ν such that the rank of the matrix $\left\lvert\, \begin{aligned} & \partial F_{\mu} / \partial y_{i} \\ & \partial G_{\nu} / \partial y_{i}\end{aligned}\right. \|$ is $N-n+1$; we may assume without loss of generality that

[^0]$\nu=1$. Further we may assume that $G_{1}(X)$ is irreducible. Let W^{v-1} be the variety defined by $G_{1}(X)=0$ in S^{N}. There exists a component U_{1} of the intersection of W^{v-1} and U^{n} which contains V^{m} (F. IV 4 th. 8). The dimension of U_{1} is $n-1$ (F. VI th. 1 Cor. 2) and by the construction it is obvious that V^{m} is a simple subvariety of U^{n-1}. Thus our assertion follows by induction on n.

Lemma 2. Let k be a perfect field and let $P=(x)$ be a set of quantities such that $k(P)$ is a regular n-dimensional extension of k. Let v be an ($n-2$)-dimensional valuation of $k(P)$ of rank $2 .^{5)}$ Then there exists a variety U^{n} defined over k with a generic point Q such that $k(P)=k(Q)$ and that the center of the valuation v on U is a simple subvariety V^{n-2} of U.

Proof. Let \mathcal{D} be the valuation ring of v and let m be the prime ideal of all the non-units in \mathfrak{O}. By our hypothesis, the residue class field $\mathfrak{D} / \mathrm{m}$ is $(n-2)$ dimensional over k. Let (u_{1}, \ldots, u_{n-2}) be a system of elements in \mathcal{D} such that they are algebraically independent mod m over k. Put $k\left(u_{1}, \ldots, u_{n-2}\right)=K$. Then $k(P)$ is 2 -dimensional over K. We can also select (u_{1}, \ldots, u_{n-2}) in such a way that $k(P)$ is separably generated over K. As $v(z)=0$ for each element $z \neq 0$ in K, we can consider v as a valuation of dimension 0 and rank 2 of $k(P) / K$. By Zariski's local uniformization theorem (cf. O. Zariski, Reduction of algebraic three-dimensional varieties $\S \S 10-12, \S 16),{ }^{6)}$ there exists such a set of quantities $\left(y_{1}, \ldots, y_{m}\right)$ that $k(P)=K(y)$ and that the quotient ring $\perp_{\bar{p}}$ of $\bar{p}=K[y] \cap \mathrm{m}$ in $K[y]$ is a regular local ring. Put $Q=\left(u_{1}, \ldots, u_{n-2}, y_{1}, \ldots, y_{m}\right)$ and let U be its locus over k. The quotient ring \mathcal{D}_{p} of $p=k\left[u_{1}, \ldots, u_{n-2}, y_{1}, \ldots, y_{m}\right] \cap m$ in $k\left[u_{1}, \ldots, u_{n-2}, y_{1}, \ldots, y_{m}\right]$ is identical with $\mathfrak{O}_{\mathfrak{p}}$ and hence it is also regular local ring. As k is perfect, p defines in U absolutely simple subvariety in the sense of Zariski. Hence there exists a simple point Q^{\prime} of U whose specialization ring in $k(Q)$ is identical with \mathcal{E}_{p}.

Theorem 2. Let U^{n} be a complete variety and \mathbf{V} its simple subvariety. If a differential form ω on \mathbf{U} is of the firsi kind, then it induces on V a differential form ω^{\prime} of the first kind.

Proof. It is known that a differential form which is finite on \mathbf{V} induces uniquely a differential form ω^{\prime} on \mathbf{V}.) We prove that this ω^{\prime} is of the first kind. We may assume that \mathbf{U}, \mathbf{V} and ω have a common field of definition k which is perfect. Let \mathbf{P} be a generic point of \mathbf{U} over k and let \mathbf{Q} be a generic point of \mathbf{V} over k. By lemma 1 we may assume without loss of generality that the dimension of \mathbf{V} is $n-1$. Let \mathfrak{P}^{\prime} be a prime divisor of $k(\mathbf{Q})$ ($\nu_{\mathfrak{B}^{\prime}}$ being a $(n-2)$ -

[^1]dimensional valuation over $k)$. We shall prove that $\omega^{\prime}(\boldsymbol{Q})$ is finite at \mathfrak{F}^{\prime}. As \mathbf{Q} is a simple point of \mathbf{U} of dimension $n-1$ over k, it determines a prime divisor \mathfrak{P} in $k(\mathbf{P})$; namely the valuation ring of \mathfrak{P} is identical with the specialization ring of \mathbf{Q} in $k(\mathbf{P})$. We may construct, by virtue of \mathfrak{F} and the prime divisor \mathfrak{F}^{\prime} of $k(\mathbb{Q})$, a valuation v of dimention $n-2$, and rank 2 of $k(P)$. It follows from lemma 2 that there exists a variety $U^{\prime n}$ and a point Q^{\prime} of U^{\prime} such that Q^{\prime} is simple on U^{\prime} and the specialization ring of Q^{\prime} is contained in the valuation ring of the valuation v of $k(\mathbf{P})$. Let $\left(t_{1}, \ldots, t_{n}\right)$ be a system of uniformizing parameters of Q^{\prime} in $k(\mathbf{P})$. Since ω is of the first kind $\omega(\mathbf{P})$ is of the form
$$
\omega(\mathbf{P})=\sum w_{i j} \ldots d t_{i} d t_{j} \ldots,
$$
where $w_{i j} \ldots, t_{i}, t_{j}$, etc. are contained in the specialization ring of Q^{\prime}; therefore $v\left(w_{i j} \ldots\right) \geqslant 0, v\left(t_{i}\right) \geqslant 0, \ldots$ and $\nu_{\mathfrak{\beta}}\left(w_{i j} \ldots\right) \geqslant 0, \nu_{\mathfrak{\beta}}\left(t_{i}\right) \geqslant 0$; namely $w_{i j} \ldots, t_{i}, \ldots$ are contained in the specialization ring of \mathbf{Q} in $k(\mathbf{P})$. Therefore the specializations of $w_{i j \ldots,} t_{i}, t_{j}$ over $\mathbf{P} \rightarrow \mathbf{Q}$ with respect to k are contained in the valuation ring of \mathfrak{P}^{\prime} in $k(\mathbf{Q})$. This proves that $\omega^{\prime}(\mathbf{Q})$ is finite at \mathfrak{P}^{\prime}.

2. The case of characteristic 0 .

Let \mathbf{U}^{n} be a complete variety defined over k with a generic point \mathbf{P} over k and let \mathbf{V} be its subvariety defined over k with a generic point \mathbf{Q} over k. If a differential form ω has the following expression

$$
\omega(\mathbf{P})=\sum z_{\alpha \beta} \ldots d y_{\alpha} d y_{\beta} \ldots,
$$

where $z_{\alpha \beta} \ldots, y_{a}, y_{3}, \ldots$ are contained in the specialization ring of \mathbf{Q} in $k(\mathbf{P}),{ }^{8)}$ then we can induce ω on \mathbf{V} even if \mathbf{Q} is not a simple point of \mathbf{U}.

In this section we assume that the characteristic is 0 and prove that if ω is a differential form of the first kind on \mathbf{U} it induces uniquely on \mathbf{V} a differential form ω^{\prime} of the first kind.

Theoren 3. If a differential form $\omega(\mathbf{P})=\sum z_{\alpha_{\beta}} \ldots d y_{\alpha} d y_{\beta} \ldots$ is finite at \mathbf{Q}, then $\omega^{\prime}(Q)=\sum z_{\alpha \beta}^{\prime} \ldots d y_{\alpha}^{\prime} d_{\beta}^{\prime} \ldots$ is uniquely determined by $\omega(\mathbf{P})$, where $z_{\alpha \beta}^{\prime} \ldots, y_{\alpha}^{\prime}$, y_{β}^{\prime} are the specializations of $z_{\alpha_{\beta}} \ldots, y_{\alpha}, y_{\beta}$, over $\mathbf{P} \rightarrow \mathbf{Q}$ with respect to k.

Proof. We prove that if $\omega(\mathbf{P})=\sum z_{\alpha_{\beta}} \ldots d y_{\alpha} d y_{\beta} \ldots=\sum \bar{z}_{\gamma \delta} \ldots d \bar{y}_{\gamma} d \bar{y}_{\delta} \ldots$, where $\bar{z}_{\mathrm{r} \delta} \ldots, \bar{y}_{\mathrm{r}}, \bar{y}_{\delta}, \ldots$ are also contained in the specialization ring of \mathbf{Q} in $k(\mathbf{P})$, then $\sum z_{\alpha \beta}^{\prime} \ldots d y_{\alpha}^{\prime} d y_{\beta}^{\prime} \ldots=\omega^{\prime}(\mathbf{Q})$ and $\sum z_{\tau \sigma \delta}^{\prime} \ldots d \bar{y}_{\gamma}^{\prime} d \bar{y}_{\delta}^{\prime} \ldots=\bar{\omega}^{\prime}(\mathbf{Q})$ are identical. If the dimension of $\mathbf{V}<n-1$, then there exists a variety \mathbf{W}^{n-1} which is algebraic over k such that $\mathbf{U} \supset \mathbf{W} \supset \mathbf{V}$. Let \mathbf{P}^{\prime} be a generic point of \mathbf{W} over k. If z is contained in the specialization ring of \mathbf{Q} in $k(\mathbf{P})$, it is also contained in the specialization ring of \mathbf{P}^{\prime} in $k(\mathbf{P})$. Further if z^{*} is the specialization of z

[^2]over $\mathbf{P} \rightarrow \mathbf{P}^{\prime}$ with respect to k, then the specialization of z^{*} over $\mathbf{P}^{\prime} \rightarrow \mathbf{Q}$ with respect to \bar{k} is identical with the specialization z^{\prime} of z over $\mathbf{P} \rightarrow \mathbf{Q}$ with respect to k. Therefore we can assume without loss of generality that the dimension of \mathbf{V} is $n-1$. Let \mathbf{U}^{*} be the normalization of \mathbf{U} over k; let \mathbf{P}^{*} be the correspording generic point of \mathbf{P}, and let \mathbf{Q}^{*} be a corresponding point of \mathbf{Q} under the natural birational transformation between \mathbf{U} and \mathbf{U}^{*}. Then \mathbf{Q}^{*} is a simple point of \mathbf{U}^{*} and $k\left(\mathbf{Q}^{*}\right)$ is an algebraic extension over $k(\mathbf{Q})$. Let ω^{*} be a differential form on \mathbf{U}^{*} defined by $\omega^{*}\left(\mathbf{P}^{*}\right)=\omega(\mathbf{P})$; then since \mathbf{Q}^{*} is simple $\omega^{* /}\left(\mathbf{Q}^{*}\right)$ $=\sum z_{\alpha \beta}^{\prime} \ldots d y_{\alpha}^{\prime} d y_{\beta}^{\prime} \ldots$ and $\bar{\omega}^{* \prime}\left(\mathbf{Q}^{*}\right)=\sum \bar{z}_{r \delta \delta}^{\prime} \ldots d \bar{y}_{\tau}^{\prime} d \bar{y}_{\delta}^{\prime} \ldots$ are identical. If $\left(t_{1}, \ldots\right.$, $\left.t_{n-1}\right)$ is a set of elements of $k(\mathbf{Q})$ such that $k(\mathbf{Q}) / k\left(t_{1}, \ldots, t_{n-1}\right)$ is (separably) algebraic, then $\omega^{\prime}(\mathbf{Q})-\bar{\omega}^{\prime}(\boldsymbol{Q})$ is expressed in one and only one way as a polynomial of $d t_{i}(i=1, \ldots, n-1)$:
$$
\omega^{\prime}(\mathbf{Q})-\bar{\omega}^{\prime}(\mathbf{Q})=\sum w_{i j} \ldots d t_{i} d t_{j} \ldots
$$

Then we have $\omega^{* \prime}\left(\mathbf{Q}^{*}\right)-\bar{\omega}^{* \prime}\left(\mathbf{Q}^{*}\right)=\sum w_{i j} \ldots d t_{i} d t_{j} \ldots$. As $k\left(\mathbf{Q}^{*}\right) / k(\mathbf{Q})$ is (separably) algebraic, $k\left(\mathbf{Q}^{*}\right) / k\left(t_{1}, \ldots, t_{n-1}\right)$ is also (separably) algebraic, and hence $w_{i j} \ldots$, ect. must be equal to 0 , because $\omega^{* \prime}\left(\mathbf{Q}^{*}\right)=\bar{\omega}^{* \prime}\left(\mathbf{Q}^{*}\right)$. Therefore $\omega^{\prime}(\mathbf{Q})$ $=\bar{\omega}^{\prime}(\mathbf{Q})$.

Theorem 4. Assumptions being as in the above theorem, let ω be of the first kind. Then ω^{\prime} is also of the first kind.

Proof. We use the same notations as in the proof of the preceeding theorem. We may also assume without loss of generality that \mathbf{V} is of dimension $n-1$. As \mathbf{Q}^{*} is simple on $\mathbf{U}^{*}, \omega^{* \prime}$ is of the first kind on the locus of \mathbf{Q}^{*} over k in \mathbf{U}^{*}. Therefore the proof may by reduced to the following lemma.

Lemma 3. Suppose that $k\left(\mathbf{Q}^{*}\right)$ is an algebraic extension over $k(\mathbf{Q})$ and $\omega^{*}\left(\mathbf{Q}^{*}\right)=\omega(\mathbf{Q})$. If $\omega^{*}\left(\mathbf{Q}^{*}\right)$ is of the first kina, then $\omega(\mathbf{Q})$ is also of the first kind.

Proof. If we suppose that this is not true, there must exist a prime divisor \mathfrak{P} of $k(\mathbf{Q})$ such that $\omega(\mathbf{Q})$ is not finite at \mathfrak{P}. Let t_{1}, \ldots, t_{n-1} be a set of uniformizing parameters at \mathfrak{B} in $k(\mathbf{Q})$. Let \mathfrak{P}^{*} be a prime divisor of $k\left(\mathbf{Q}^{*}\right)$ which is an extension of \mathfrak{P} and let ($t_{1}^{*}, \ldots, t_{n-1}^{*}$) be a set of uniformizing parameters at \mathfrak{P}^{*} in $k\left(\mathbf{Q}^{*}\right)$. Suppose $\mathfrak{P}^{* e} \| \mathfrak{P}$. As $\omega(\mathbf{Q})$ is not finite at \mathfrak{F}, we can assume that

$$
\omega^{*}\left(\mathbf{Q}^{*}\right)=\omega(\mathbf{Q})=a d t_{1} \ldots d t_{s}+\ldots,
$$

where a is an element in $k(\mathbf{Q})$ and $\nu_{\mathfrak{B}}(a)<0$. Since ω^{*} is of the first kind, $\omega^{*}\left(\mathbf{Q}^{*}\right)$ is finite at \mathfrak{P}^{*} and $\theta\left(\mathbf{Q}^{*}\right)=d t_{s+1} \ldots d t_{n-1}$ is finite at \mathfrak{P}^{*}; therefore $\theta_{1}\left(\mathbf{Q}^{*}\right)$ $=\omega^{*}\left(\mathbf{Q}^{*}\right) \cdot \theta\left(\mathbf{Q}^{*}\right)=a d t_{1} \ldots d t_{s} d t_{s+1} \ldots d t_{n-1}$ is also finite at \mathfrak{P}^{*}. But as $d t_{1} \ldots$ $d t_{n-1}=b d t_{1}^{*} \ldots d t_{n-1}^{*}$, where b is an element of $k\left(\mathbf{Q}^{*}\right)$ and $\nu_{\mathfrak{B}^{*}}(b)=e-1, \theta_{1}\left(\mathbf{Q}^{*}\right)$ $=a b d t_{1}^{*} \ldots d t_{n-1}^{*}$, where $\nu_{\mathfrak{P}^{*}}(a b) \leqq-e+(e-1)<0$. This contradicts to the fact that $\theta_{1}\left(\mathbf{Q}^{*}\right)$ is finite at \mathfrak{P}^{*}.

An example

In the case of characteristic $p \neq 0$, theorem 4 does not hold in general. Let k be an algebraically closed field of characteristic p and let V^{1} be the variety defined over k by $F\left(X_{1}, X_{2}\right)=X_{2}^{q}+X_{2}-X_{1}^{m}$, where $q=p^{r}, r>0, m>1, q+1$ $=m n$. Let $\left(x_{1}, x_{2}\right)$ be a generic point of V over k. Then $d x_{1}$ is a differential of the first kind in $k\left(x_{1}, x_{2}\right)$. This is the example of F. K. Schmidt. ${ }^{9)}$ Let t be a quantity such that t and $k\left(x_{1}, x_{2}\right)$ are independent over k. Put $x_{1}=x, t x_{2}=y$, $P=(1, x, y, t)$. Then $k\left(x_{1}, x_{2}, t\right)=k(P)$. Let U^{2} be the locus of P over k and consider a projective variety \mathbf{U}^{2} which has a representative $U_{0}^{2}=U^{2}$ and let \mathbf{P} be a gneric point of \mathbf{U} with the representative $P_{0}=P$; let ω be the differential form defined on \mathbf{U} by $\omega(\mathbf{P})=d x$. Then ω is the differential form of the first kind. However if \mathbf{Q} is a point of \mathbf{U} which has the representative $\boldsymbol{Q}_{n}=(1, x, 0,0)$ and if \mathbf{W} is the locus of \mathbf{Q} over k, then the induced differential form ω^{\prime} by ω on \mathbf{W} cannot be of the first kind.

Mathematical Institute, Nagoga University

[^3]
[^0]: 4) Loc. cit. 2).
[^1]: ${ }^{5)}$ Loc. cit. ${ }^{3)}$,
 ${ }^{6)}$ O. Zariski, Reduction of singularities of algebraic three-dimensional varieties, Annals of Math. vol. 45 (1944).
 7) Loc. ict ${ }^{\text {2 }}$ S. Koizumi I. Prop. 6.

[^2]: ${ }^{8)}$ Even if ω is of the first kind, this is not always true.

[^3]: ${ }^{9}$) F. K. Schmidt, Zur arithmetischen Theorie der algebraischen Funktionen II, § 5. Math. Zeitschrift, Bd. 35 (1939).

