BICONTINUOUS ISOMORPHISMS BETWEEN TWO CLOSED LEFT IDEALS OF A COMPACT DUAL RING

LING-ERL E. T. WU

A quasi-Frobenius ring is a ring with minimum condition satisfying the conditions r(l(H)) = H and l(r(L)) = L for right ideals H and left ideals L where r(S) (l(S)) denotes the right (left) annihilator of a subset S of the ring. Nakayama first defined and studied such rings (8; 9) and they have been studied by a number of authors (2; 3; 4; 6). A dual ring is a topological ring satisfying the conditions r(l(H)) = H and l(r(H)) = L for closed right ideals H and closed left ideals L. Baer (1) and Kaplansky (7) introduced the notion of such rings, which is a natural generalization of that of quaso-Frobenius rings in (10).

Ikeda (3) proved that every isomorphism between two left ideals in a quasi-Frobenius ring can be extended to an isomorphism of R. The purpose of this note is to prove the following theorem, which is analogous to Ikeda's theorem: In a compact dual ring R every bicontinuous isomorphism between two closed left ideals can be extended to a bicontinuous isomorphism of R.

The proof is not similar to Ikeda's proof because of the topological structure. We shall begin with the following result due to Kaplansky.

THEOREM. If R is a compact dual ring, then R has an identity and R has a complete system of ideal neighbourhoods of 0 (7, Corollary to Theorem 4; 10, Lemma 3.2).

COROLLARY. Every principal left (right) ideal in a compact dual ring is closed.

LEMMA 1. Let L be a proper closed left (right) ideal in a compact dual ring R. Then L is contained in a maximal open left (right) ideal M in R.

Proof. Let $\{V_{\alpha} \mid \alpha \in \mathfrak{A}\}$ be a complete system of ideal neighbourhoods of 0. Then $\tilde{L} = L = \bigcap_{\alpha \in \mathfrak{A}} (L + V_{\alpha})$. Since $L \neq R$, there exists an index $\alpha \in \mathfrak{A}$ such that $L + V_{\alpha} \neq R$. $L + V_{\alpha}$ is an open ideal containing L. By the compactness of R, $R/(L + V_{\alpha})$ is finite. Hence there exists a maximal open left ideal M such that $L \subseteq L + V_{\alpha} \subseteq M$, completing the proof.

LEMMA 2. In a compact dual ring R every closed left (right) ideal L with $0 \neq L \neq R$ contains a closed simple left (right) subideal.

Proof. By Lemma 1, there exists a maximal open right ideal M of R containing r(L). Then $l(M) \subseteq l(r(L)) = L$.

Received April 12, 1965, and, as revised, February 28, 1966.

Let $a \in l(M)$ and $a \neq 0$. Ra is closed and hence

$$Ra = l(r(Ra)) \subseteq l(M).$$

Since M is maximal, this implies that r(Ra) = M and Ra = l(M). Thus we have shown that l(M) is a simple ideal contained in L.

LEMMA 3. If S is a simple left ideal of a compact dual ring R, then S and SR are closed and finite.

Proof. First we observe that S is closed, since S = Ra where a is a non-zero element of S. Now r(S) is an open maximal right ideal of R. Hence there exists an open two-sided ideal $U \subseteq r(S)$. This implies that $S \subseteq l(U)$ and also $SR \subseteq l(U)$ since l(U) is a two-sided ideal. By **(10**, Theorem 1), l(U) is finite and thus S and SR are finite. It follows that SR is closed.

LEMMA 4. Let L be a proper closed left ideal in a compact dual ring R. Suppose θ is a bicontinuous isomorphism between L and a left ideal L'. Then θ can be extended to a bicontinuous isomorphism on H where $L \subset H$, $L \neq H$.

Proof. By a theorem of Numakura (10, Theorem 4), there exists an element a in R which defines θ . If l(a) = 0, then the right multiplication by a is a monomorphism of R. Suppose $l(a) \neq 0$. Let N = l(a) + L. Since

$$x \xrightarrow{\theta} x d$$

is an isomorphism between L and L', $0 = \text{Ker } \theta = l(a) \cap L$. Therefore $N = l(a) \oplus L$. Let S be a closed simple left subideal of l(a) and let $H = S \oplus L$. We shall show that there exists a closed simple left ideal S' of R such that $S \cong S'$ (bicontinuously) and $S' \cap L' = 0$.

Suppose the contrary: that is, for all closed simple left ideals S'' either $S \cong S''$ (bicontinuously) is false or we have $S'' \subseteq L'$. If x_0 is an element in R such that $Sx_0 \neq 0$, then $S \cong Sx_0$ and by our assumption $Sx_0 \subseteq L'$. Hence, we have $SR \subseteq L'$. By Lemma 3 SR is finite and closed. Now $\theta^{-1}|_{SR}$ is a continuous homomorphism of SR into L; by (10, Theorem 4), there exists an element b in R such that $\theta^{-1}(x) = xb$ for all $x \in SR$. $(SR)b \subseteq SR$, and since θ^{-1} is 1–1 and SR is finite, we have (SR)b = SR. This shows that $SR \subseteq L$; in particular, $S \subseteq L$. This contradicts the fact that $S \cap L = 0$. Thus we have shown that there exists a closed simple left ideal S' of R and a bicontinuous isomorphism $\alpha: S \to S'$ such that $S' \cap L' = 0$.

Now define $\gamma: S \oplus L \to S' \oplus L'$ by

$$\gamma(s, x) = (\alpha(s), \theta(x)), \quad s \in S \text{ and } x \in L,$$

where \oplus is a topological direct sum. Then γ is a bicontinuous isomorphism of $H = S \oplus L \supset L$ which extends θ . This completes the proof.

THEOREM 4. Let R be a compact dual ring. Then for every bicontinuous isomorphism θ between two closed left ideals we can choose a suitable unit which defines θ ; that is, every bicontinuous isomorphism between two closed left ideals can be extended to a bicontinuous isomorphism of R.

Proof. Let θ be a bicontinuous isomorphism between closed left ideals L and L'. Let

$$\mathfrak{p} = \{ (L_{\alpha}, a_{\alpha}, b_{\alpha}, L'_{\alpha}) \mid \alpha \in \mathfrak{A} \}$$

be the collection of all $(L_{\alpha}, a_{\alpha}, b_{\alpha}, L'_{\alpha})$ where L_{α} and L'_{α} are closed left ideals containing L and L' respectively, and there is a bicontinuous isomorphism θ_{α} between L_{α} and L'_{α} which extends θ :

$$\theta_{\alpha}(x) = xa_{\alpha}$$
 for all $x \in L$, $\theta_{\alpha}^{-1}(x') = x'b_{\alpha}$ for all $x' \in L'$.

We partial order \mathfrak{p} in the following way: $(L_{\alpha}, a_{\alpha}, b_{\alpha}, L'_{\alpha}) \leq (L_{\beta}, a_{\beta}, b_{\beta}, L'_{\beta})$ if and only if

(i) $L_{\alpha} \subseteq L_{\beta}, L'_{\alpha} \subseteq L'_{\beta}$;

(ii) $x_{\alpha} a_{\alpha} = x_{\alpha} a_{\beta}$ for all $x_{\alpha} \in L_{\alpha}$, $x'_{\alpha} b_{\alpha} = x'_{\alpha} b_{\beta}$ for all $x'_{\alpha} \in L'_{\alpha}$. We also partial order the index set $\mathfrak{A} : \alpha \leq \beta$ if and only if

$$(L_{\alpha}, a_{\alpha}, b_{\alpha}, L'_{\alpha}) \leq (L_{\beta}, a_{\beta}, b_{\beta}, L'_{\beta}).$$

Let

$$\{(L_{lpha}, a_{lpha}, b_{lpha}, L'_{lpha}) | lpha \in \mathfrak{C} \subseteq \mathfrak{A}\}$$

be a chain in p. Let

$$L_0 = \overline{\bigcup_{\alpha \in \mathfrak{C}} L_{\alpha}}, \qquad L'_0 = \overline{\bigcup_{\alpha \in \mathfrak{C}} L'_{\alpha}}.$$

For each $\alpha \in \mathfrak{C}$, define

$$A_{\gamma} = \{ \alpha_{\mu} \mid \mu \geqslant \gamma \}, \qquad B_{\gamma} = \{ b_{\mu} \mid \mu \geqslant \gamma \}.$$

We observe that $A_{\gamma} = a_{\gamma} + r(L_{\gamma})$ and $B_{\gamma} = b_{\gamma} + r(L_{\gamma})$ and hence each A_{γ} , B_{γ} is closed. Then $\{A_{\alpha} \mid \alpha \in \mathfrak{S}\}$ and $\{B_{\alpha} \mid \alpha \in \mathfrak{S}\}$ both have the finite intersection property; for if $A_{\gamma_1}, \ldots, A_{\gamma_n}$ are in $\{A_{\gamma} \mid \gamma \in \mathfrak{S}\}$, there exists a largest index, say γ_n ; then $a_{\gamma_n} \in A_{\gamma_i}$ for each $i = 1, 2, \ldots, n$. Similarly, $\{B_{\gamma} \mid \gamma \in \mathfrak{S}\}$ has the finite intersection property. Therefore, by the compactness of R, there exist $a_0 \in \bigcap_{\gamma \in \mathfrak{S}} A_{\gamma}$ and $b_0 \in \bigcap_{\gamma \in \mathfrak{S}} B_{\gamma}$. Let $\theta_0 : L_0 \to L'_0$ be defined by $\theta_0(x) = xa_0$ for all $x \in L_0$ and let $\theta'_0 : L'_0 \to L_0$ be defined by $\theta'_0(x') = x'b_0$, $x' \in L'_0$. Then we see that $\theta_0(\theta'_0)$ restricted to $L_{\gamma}(L'_{\gamma})$ coincides with the right multiplication by $a_{\gamma}(b_{\gamma})$ for each $\gamma \in \mathfrak{S}$. Therefore θ_0 restricted to $\bigcap_{\gamma \in \mathfrak{S}} L_{\gamma}$ and θ'_0 restricted to $\bigcap_{\gamma \in \mathfrak{S}} L'_{\gamma}$ are isomorphisms, inverse to each other. Hence θ_0 is a bicontinuous isomorphism between L_0 and L'_0 . Thus we have shown that the chain $\{(L_{\alpha}, a_{\alpha}, b_{\alpha}, L'_{\alpha}) \mid \alpha \in \mathfrak{S}\}$ has an upper bound (L_0, a_0, b_0, L'_0) in \mathfrak{p} .

By Zorn's lemma, there exists a maximal element (L_m, a_m, b_m, L'_m) in \mathfrak{p} . We shall show that $L_m = R$.

Suppose $L_m \neq R$. It follows from Lemma 4 that there exists a closed left ideal L_t properly containing L_m such that the right multiplication by a_m can

be extended to a bicontinuous isomorphism λ on L_t , say λ is given by the right multiplication by a_t . Let $L'_t = L_t a_t$. By (10, Theorem 4), there exists an element b_t which defines λ^{-1} . Then $(L_t, a_t, b_t, L'_t) \in \mathfrak{p}$ and (L_m, a_m, b_m, L'_m) is less than (L_t, a_t, b_t, L'_t) , contradicting the maximality of (L_m, a_m, b_m, L'_m) . Thus we have $L_m = R$ and this completes the proof of the theorem.

References

- 1. R. Baer, Rings with duals, Amer. J. Math., 65 (1943), 569-584.
- S. Eilenberg and T. Nakayama, On the dimension of modules and algebras II, Nagoya Math. J., 9 (1955), 1-16.
- 3. M. Ikeda, A characterization of quasi-Frobenius rings, Osaka Math. J., 4 (1952), 203-210.
- 4. M. Ikeda and T. Nakayama, On some characteristic properties of quasi-Frobenius and regular rings, Proc. Amer. Math. Soc., 5 (1954), 15-19.
- 5. J. Jans, Rings and homology (New York, 1964).
- 6. ---- On Frobenius algebras, Ann. Math., 69 (1959), 392-407.
- 7. I. Kaplansky, Dual rings, Ann. Math., 49 (1948), 689-701.
- 8. T. Nakayama, On Frobenius algebras, I, Ann. Math., 40 (1939), 611-633.
- 9. ——— On Frobenius algebras, II, Ann. Math., 42 (1941), 1–21.
- 10. K. Numakura, Theory of compact rings, III, Duke Math. J., 29 (1962), 107-123.

Cowell College, University of California at Santa Cruz