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Abstract

In this paper we extend a theorem of Mallet-Paret and Sell for the existence of an inertial manifold for a
scalar-valued reaction diffusion equation to new physical domains Qn C R", n = 2, 3. For their result
the Principle of Spatial Averaging (PSA), which certain domains may possess, plays a key role for the
existence of an inertial manifold. Instead of the PSA, we define a weaker PSA and prove that the domains
Qn with appropriate boundary conditions for the Laplace operator, A, satisfy a weaker PSA. This weaker
PSA is enough to ensure the existence of an inertial manifold for a specific class of scalar-valued reaction
diffusion equations on each domain €!„ under suitable conditions.
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Keywords and phrases: dissipative systems, inertial manifold, reaction diffusion equation, principle of
spatial averaging.

1. Introduction

During the last twenty years there have been a number of major developments in
the study of the long time behavior of solutions of a large class of nonlinear evolu-
tionary equations. One of these advances was the discovery that a dissipative partial
differential equation has a compact global attractor with finite Hausdorff dimension
(Mallet-Paret [8], Mane [10]). Because of this basic structure of the global attractor,
it was widely believed that the long time behavior of the solutions should strongly
resemble the behavior of the solutions of a finite system of ordinary differential equa-
tions. Recently, it was shown that, under suitable conditions, a dissipative nonlinear
evolutionary equation possesses a finite dimensional inertial manifold. By an inertial
manifold for the flow on a Hilbert space H, we mean a subset ^ of H satisfying the
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following properties: - # is a finite dimensional Lipschitz manifold, it is positively
invariant, and it attracts all the solutions exponentially. Furthermore, the dynamics
on this manifold can be determined completely by a finite dimensional system of
ordinary differential equations, which we call an inertial form. By these properties, an
inertial manifold can be a useful tool in the study of long time behaviors of solutions
and has been studied by many authors. See, for example, Fabes, Luskin and Sell [1],
Foias, Sell and Temam [2], Foias and Temam [3], Jolly [4], Kwak [5,6], Kwean [7],
Mallet-Paret and Sell [9] and Temam [13].

Of particular interest from the point of view taken in this paper is the problem of
finding sufficient conditions for the existence of an inertial manifold for the differential
equations which can be transformed to an abstract form of the nonlinear evolutionary
equation

du
(1.1) — + vAu = R(u)

dt

on a Hilbert space H, where v > 0 is a viscosity parameter. One of the typical results
on this problem was made by Mallet-Paret and Sell [9]. Under suitable conditions,
they proved the existence of inertial manifolds of a class of scalar-valued reaction
diffusion equations of the form

(1.2) u, = vAu+f(x,u), x 6 nn C Rn, ueR,

for any 2-dimensional rectangular domains and some cubic domains. For their results,
they introduced a new concept: the Principle of Spatial Averaging (PSA). The PSA
is a property which the Laplacian over a bounded Lipschitz region Q c R", n < 3,
may or may not have. It is not clear at all for which domains and boundary conditions
PSA holds.

The purpose of this paper is to extend the result of Mallet-Paret and Sell [9] into
new physical domains £ln C R", n = 2, 3, where Qn is a bounded domain of the
following form:

I Q2 = (equilateral triangle of side n)

[ft3 = (equilateral triangle of side n) x [0, Liz],

where L2 is rational. For these domains, we do not know whether PSA holds or not.
However, we formulate a weaker form of PSA and we prove that the weaker PSA is
enough to guarantee the existence of inertial manifolds for (1.2) and (1.3).

2. An abstract invariant manifold theory

For convenience we present an abstract theory developed in Mallet-Paret and Sell

[9].
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Let H be a Hilbert space with an inner product (•, •) and a norm || • ||, and let 9
be a finite dimensional subspace of H with orthogonal projection P, and let £1 be the
orthogonal complement of S? with complementary projection Q = I - P.

Writing u € H as u = (p, q) where

p = Pue PH = £», q= Que QH = £,

we consider an abstract differential equation

(2.1) P
q = -Aq + G(p,q).

We assume A is a closed self-adjoint linear operator on £1 with dense domain D(A) C
J2. We assume further that —A generates a C°-semigroup e~At in i? for t > 0, and
that A has a compact resolvent on *2. The (nonlinear) functions

F: H -* ^ \ G:H->£

are assumed to be locally Lipschitz continuous in / / . These assumptions on A, F,
and G are standing assumptions throughout this section. Under these assumptions,
the system (2.1) with initial condition u0 = (po, qo) € H has a unique, maximally
defined solution u(t) = u(t, u0) = (p{t, po, qo), q{t, po, qo)) on some interval [0, co)
where co = cu(p0, q0) € (0, oo].

Furthermore, the existence of an invariant manifold ^# for the system (2.1) can be
proved under the following five hypotheses.

(I) (Regularity Condition) There exist constants R{ and R2 such that both F and
G are C in the convex set srf x *&, where

si = [p € 9 : ||p|| < * , } , <*? = {q € D(A) C ^ : ||A9|| < R2}

(II) (Dissipative Condition) If p e cl(9\s/), then

, 0)) < 0 and G(p, 0) = 0.

(III) (Sobolev Condition) If p0 € £? and /0 > 0 are such that p (t, po,O) e s/ holds
in [0, r0], then q(t, p0, 0) e ^ in [0, t0].
(IV) (Linear Stability Condition) (q, Aq) > A||^||2 for all q e 9, for some A >

2 / , where y = sup{||DG(p, q)\\<e : (p, <?) € ^ x V], and^f = i f (7/ , «2).
(V) (Uniform Cone Condition) With V s | | |a | | 2 - | | |p | | 2 and V = {a, a') -

(p, p'), where p € £*, o € ^ C i2, and p' and <r' are given by the linear variational
equation form of (2.1), that is,

2 2 p' = DF(p,q)(p,a),

a' = -Aa + DG(p,q)(p,a),
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there exists n > 0 such that V < — n for all u e &/ x &, p e & and a e !& C <S
with ||p|! = IJcrJl ^ 0.

Before we state the theorem we introduce the following notation. Let <t> : & - • £H
be a function. The graph and the support of <f> are

p e &\, supp(<D) = cl [p e & : *(/>) + 0}.

Let ^ denote the following subset of.«/ x c€:

S = {(p,(?) € ^ x ^

Finally we let

(2.3) ^ = <^U(

THEOREM 2.1. Assume that the differential equation (2.1) satisfies conditions (I)-
(V) in addition to the standing assumptions on A, F and G given above. Then there
exists a Cx-function <&:£?-+£? with H D O ^ < 1 satisfying

supp 4> czs/, <£>(p) e ^ /or p e ^ ,

SMC/I //zaf r/ie graph, M = graph (O), J5 a« invariant manifold for (2.1) wif/i
^ C ^ , vv/zere Sf w given by (2.3). Furthermore jft is locally attracting in the
following sense: there exists a > 0 such that if u(t) = (p{t), q{t)) is a solution of
(2.1) satisfying u(t) € & for all t > 0, then

dist (ii(r), ^T) < 2e-a'diam <€, t > 0.

77za? IJ, M(0 approaches M at a uniform exponential rate.

See Mallet- Paret and Sell [9] for the proof.

3. Eigenvalues and eigenfunctions of the Laplacian
and geometric properties of lattices

3.1. Eigenvalues and eigenfunctions of the Laplacian. Since the weaker PSA
depends on the eigenvalues and the eigenfunctions of the Laplacian, we need to find
those of the Laplace operator for the domains Q.n c R" given in (1.3) with suitable
boundary conditions. Let Z + denote the positive integers and Z e = Z + U {0}. Then
we obtain the following results.
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LEMMA 3.1. Let Qn c R" be given in (1.3) for n = 2, 3. Then the eigenvalues

and the eigenfunctions of—A for Dirichlet boundary conditions are of the form: for

«2 C R\

(3.1)

and for Q2 C

(3.2)

2*, -
—

v 3
x2

16

= sin 1 y
!)(<

, 2fr - k2

where k = (kuk2) € Z2 (k = (k\, k2, k3) e Z2 x Z+for n = 3) satisfies (i) ki + k2 is
multiple of"3, (ii) &i ^ 2Ar2, (iii) 2̂ ^ 2)ti, a«J (iti, A:2) in the summation ranges over
y C Z2, | ^ | = 6, and ± w determined by the following rules:

(*1,*2)

^ \

(k2-kuk2) (Jki,*i-*2)
t 4-

( j f c 2 - * , , - * , ) ( - * 2 , *:, - *2)

\ i/

(~*2, ~*l)

fac/z leg of the cycle induces a change of the sign in the (k[, k2) entry of (3.1) and
(3.2). For example, if(ku k2), (k2 — kt, —k\), (—k2, k\ — k2) have positive signs then
the others have negative signs.

LEMMA 3.2. Let £2n C R" be given in (1.3) for n = 2, 3. Then the eigenvalues

and the eigenfunctions of — A for Neumann boundary conditions are of the form: for

^2 C R2,

(3.3)
gk(X\

16 ,

,X2) =

(

- * 2
2 - * , /

^

2^exp

C2)-

fli

(3.4)
= cos

: 7T
~x3) 2^ exp (!)(

2Xl
v 3
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where k = (ku k2) € R2 (k € Z2 x Z^for n — 3) is such that k\ + k2 is multiple of
3, and the summation has the same restrictions as in Lemma 3.1 except the sign.

REMARK. The eigenvalues and the eigenfunctions in (3.1) and (3.3) are the direct
consequences of Pinsky [11]. Then for the 3-dimensional case, we obtain (3.2) and
(3.4) by applying the separation of variable method.

3.2. Geometric properties of lattice points. Here we introduce two geometric
properties of a lattice in R3. In particular, the second property is crucial to the proof
of a weaker PSA (see Section 4) for each domain Qn C R".

The first property is a Gap Theorem of Mallet-Paret and Sell [9]; see also Richards

[12].

THEOREM 3.1. Let £? be a finite collection of functions T of the form

{, k2) = ak\ + bk{k2 + ck\ + skt + tk2 + r,

with rational coefficients and negative discriminant, that is, b2 —4ac < 0. Then given
any h > 0 there exists arbitrarily large m such that

(3.5) T(kuk2)$[m,m + h\,

for allT e & and k\, k2 e Z.

For the next theorem, we consider the three linearly independent vectors in R3 :

/ 4 \ / 2 2

and we define a new inner product and a norm induced by

(3.6) (x,y) = [Y/xses,J2yle,), \{x]\2 = (x,x)

where x, y e / ? 3 and (•, •) is the usual inner product in ft3.
Now we prove the following theorem.

THEOREM 3.2. Assume that L2 is a rational number. Let k = (&,, k2, fc3) e Z3 and
consider

(3.7) \[k]\2 = ^{k] + k2
2-kxk2) + ^-1.

Then there exists % > 0 such that for any K > 1 and d > 0, there exists an arbitrarily
large k satisfying two conditions:
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(i) whenever \[k\\2, \[l]\2 e (A. - K, X + K] with k, I e Z3, one has either k = I
or\[k-l]\ > d,

(ii) P ] | 2 t(k- £/2, X + 1-/2) for each k € Z3.

PROOF. We follow Mallet-Paret and Sell's approach [9]. Let L2 = q/p where p
and q are relative prime integers. Let a = LCM{27, q] be fixed where LCM means
least common multiple. Then for any k e Z3, there exist integers n and r such that

a

Therefore, with £ = l / (2a) we see that there exists arbitrarily large A such that
\[k]\2 £ (A — £/2, A + £/2). For the rest of the proof we consider only such A. Let A
be fixed and let N£ be the annular region

NQ = {x e R3 : X - K < \[x]\2 < X + K}.

Suppose that k, I <= N£ n Z3 and 0 < |[* - / ] | < d. Then for j = I - k,

imi2 = | [ / + ^]I2 = IL;-

where (•, •) is defined in (3.6). As a result,

< 1

'J 2

< -
1 ' 2

2 2

For each j with 0 < \{j]\ < d, let 5,- = {x e R 3 : \ { x , j ) \ < K + d2/!} and let
S = Uo<i[/n<d SJ- I f t h e Property (i) fails for some X, then S D N% D Z3 ^ 0. If
keSHN^n Z\ then

and

for some j and some y = n/a where 0 < | [ / ] | < d and n is an integer such that
\n/a\ < K + d2/2. Since y = n/a for some integer n, there is only a finite number of
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y satisfying \y\ = \n/a\ < K + d2/2. On the other hand since j ^ 0, we may assume
that j3 ^ 0. Then by solving {k,j) = y for /k3, it is found that

and hence by substituting £3,

(3.8)
+ \-TZ + -rr 2 — j j i - — j[

where 5;-,y, tj_y and r,-,,, are rationals depending only on j and y. Now by taking
coefficients in (3.8), we define a quadratic function 7},,, on Z2 with rational coefficients
of the form

(3.9) 7},K(/!, /2) = asl\ + bjlih + c,l\ + sj.yli + tj.yk + rj.y.

Then the discriminant of TJ,y in (3.9) is negative. Also since k e N£,

(3.10) Tj.y(kuk2)e(X~K,k + K].

Now let !7 be the set of all quadratic functions Tjy of the form in (3.9) for j e Z3

and y — n/a with 0 < |[y]| < d, \y\ = |n /a | < K + d212. Then since the indices
j and y range over finite sets, & is a finite collection of functions 7)-,y satisfying all
hypotheses of Theorem 3.1. With h = 2 + 2K, there exists m in the statement of
Theorem 3.1 such that for any Tjy 6 8f and / e Z2

Tj,y(li,h) i \m,m + h], (X - K, k + K] C [m,m + ft]

for some k satisfying the second assertion (ii). Therefore (3.10) is impossible for this
k. As m can be chosen arbitrarily large, the proof is now complete. •
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4. The existence of inertial manifolds

We turn our attention now to the specific class of scalar partial differential equations
of the form

(4.1) — = vAu+f(x,u), xenncR",ueR
dt

where the domain Qn is given in (1.3). The main goal is to show the existence of an
inertial manifold for (4.1) on each domain Qn given in (1.3). In particular, for £23 in
(1.3), we assume that L2 is rational number.

The nonlinearity

/ : Un x R -+ R

is assumed to satisfy the following conditions for some positive constants K\ and K2:

(4.2)

/ is C1 in £2n x R,

\f(x, M)|, \DJ(x, u)\ < KM + K2 in?2n x R, and

\Duf(x,u)\< K{ in QnxR.

We consider one of the following boundary conditions for the equation (4.1):

(4.3)
Dirichlet: u — 0 on d£2n,

du
Neumann : — = 0 on 3f2n.dn

Then equation (4.1) can be written as an abstract differential equation

(4.4) - ^ = V A M + / ( M )
dt

in the phase space H = L2{Q.n) a n d / is a Lipschitz continuous mapping on H such
that

| | / ( « , ) - / ( « 2 ) l l < « ' i l l « i - « 2 l l , for all uuu2eH
(4.5)

l / l l < K i l l « l l + K3, for all ueH

where K^ = (vo\£ln)
[/2K2. In this setting *2> denotes the Laplace operator with the

domain

(4.6) S) = {ue H2 : the boundary conditions (4.3) hold}.
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For simplicity we assume v = 1 and for any k > 0, let Px denote the canonical
orthogonal projection onto the finite dimensional subspace

&i = Span {em : km < k]

of H where {es : j = 1, 2 , . . . } is a complete orthonormal set of eigenfunctions ej
corresponding to eigenvalues kj of —A and let Qx = I — Px. Then by applying Px

and Qx to equation (4.4), we obtain the system

(4.7)
' = Ap + Pxf(p,q)

' = Aq+QJ(p,q)

where p = Pxu and q = Qxu.
The modified equations, to which Theorem 2.1 will be applied, are

p' = -<t>(\\Ap\\2)Ap + f(\\p\\2)[p + PJ(p,q)],

(4.8) q' = -Aq + q + M\\p\\2)Qj(P,<l)

where k > 0 is appropriately chosen and A is the positive self-adjoint operator

A = / - A,

<f>,\j/ : [0, oo) —*• [0, 1] are C1 functions such that with a sufficiently large fixed
R > 0, (j>, V satisfy

(4.9)

<o

1

_ 1

~ 2
= 1

= 0

in [0, oo),

> 0 in [0, oo),

in [0, R2],

in [K4R
2, oo) for some K4 > 1,

in [0, K4R
2],

in [KSR
2, oo) for some £ 5 > K4.

First, we prove that the system (4.8) satisfies main hypotheses (I)-(V) of Theorem
2.1. To do this, we introduce a weaker PSA as follows: for any v e L°° we let Bv

denote the operator on L2 defined by

(Bvu)(x) = v(x)u(x), u 6 L2,

and let i; denote the mean value

r
v(x)dx.L
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[11] Spatial averaging for inertial manifolds 135

DEFINITION. For a given (bounded Lipschitz) domain ficS",n<3, and choice
of boundary conditions for the Laplacian, we say the weaker principle of spatial
averaging holds if there exists a quantity £ > 0 such that for every e > 0, K > 0 and
any bounded subset SB C H2, there exists arbitrarily large k = k(S8) > K, such that

(4.10) p

holds for any u e J ; and such that

(4.11) ^ m + 1 - A m > £

where m satisfies km < A. < km+1.

The main difference between the weaker PSA and PSA is the choice of k and the
upper bound of the estimate (4.10). In the weaker PSA, the quantity k is allowed to
depend on the bounded subset SB while the original PSA requires the existence of
k > K such that

\\(Pk+K - PX-K){BV - vI)(Pk+K - F U ) l l o p < €\\v\\H2

holds whenever v e H2. In the point of our concern, what we really need is to show
that the operator norm of (4.10) can be arbitrarily close to 0 on any bounded subset
of H2. However in the original PSA, the dependence of the estimate on \\v\\Hi and
the requirement of the inequality for all v € H2 cause some difficulties for proving
PSA. Actually Mallet-Paret and Sell used some technical lemmas (see [9]) which are
difficult to prove for general domains. The advantage of the weaker PSA is that it can
not only replace PSA for the same result but also enables us to drop all their technical
lemmas.

The importance of the weaker PSA is that it implies the Uniform Cone Condition
and hence the existence of invariant manifold for the system (4.8).

THEOREM 4.1. Assume that the domain £2 and the boundary conditions for — A
satisfy the weaker PSA. Assume f satisfies the regularity and growth conditions (4.2);
assume also that the function Duf is C2 onQ x R. Fix functions <j) and if satisfying
(4.9). Then there exist arbitrary large k such that the system (4.8) satisfies all the
hypotheses of the invariant manifold Theorem 2.1.

Note that the conclusion of Theorem 4.1 holds for certain large k, not necessarily
for all large k. Since the proofs of the main conditions (I)-(IV) are exactly the same as
in Mallet-Paret and Sell [9], we only prove the Uniform Cone Condition. Moreover,
if \\Ap\\ > K.\I2R, we can easily show the Uniform Cone Condition. On the other
hand, if \\Ap \\ < K\'2R, we have

(4.12) V = (a, a') - (p, p') < -(a, Aa) + \\Ap\\ + ((-p, a), Df(u)(p, a))
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where Df (u)(x) = Duf (x, u(x)), and p ' and a' are given by the variational form of
(4.8). Therefore, to complete the proof of the Uniform Cone Condition, it suffices to
show that the right hand side of (4.12) is negative and bounded away from zero.

LEMMA 4.1. Assume that all assumptions of Theorem 4.1 hold. Let SS be any
bounded subset of @. Then there exists r) > 0 such that for all u 6 3) and (p,<j) €
£?x x £iy., with ||p || = ||a || = 1, there exists arbitrarily large X such that

-(a. ACT) + ||Ap|| + <(-p, a) , Df(u)(p, a)) < -rj.

PROOF. By the smoothness of/ and the boundedness of 3S c ^ C H2, for each
u e@

Df(u)(x) = Duf(x,u(x))eH2

and 38X = {v : v{x) = Df (u)(x), u e 38} is also bounded subset of H2. Moreover,
as a multiplication operator Bv for each v 6 5B\, it is bounded on SSX, that is, there
exists a number K6 > 0 such that

(4.13) l|fl»llop<*6, for all v e # , ,

where || • ||op is the operator norm on L2. Choose quantities K > 0 and r0 > 0 so that

(4.14) K-2K6>r0.

From now on, we fix K, K6, r0 and a bounded subset 38\ throughout the rest of proof.
Then by the weaker PSA, there exists a quantity £ > 0 such that for e > 0, K > 0
and ^ i c H2, there exists arbitrarily large X > 0 satisfying (4.10) and (4.11). We
only consider such A. Let u € SB and (p, a) e <^\ x £K with ||p|| = ||CT|| = 1. We
consider two cases:

(i) (Pk+K - Px-K)p = 0 or (P i + r - Px_K)a = 0,
(ii) (Px+K - Pk^)p = p and {Px+K - Pk.K)a = a.

For the case (i), without loss of generality, we assume that (/\+* — P\-K)p = 0. Let
v = Df (M). Then by (4.13) and the choice of K, r0,

-{a, ACT} + ||Ap|| + {(-p, a), v(p, a)) < -K +
Jttx

v(x)(az - pl)dx

<-K+ 2K6 < -r0.
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For the case (ii), with the choice of X and the property of the weaker PSA, we have

- (a, Aa) + \\Ap\\ + <(-p, a), v(p, a))

<-(1 + Xm+i) + (I + XJ +

L
L v(x)(a2 - p2)dx

(v(x) - v){a2 - p2)dx f v(o2 -
Jn

p2)dx

<-$•+ 2e.

Since the existence of £ > 0 is independent of the choice of e > 0, there exist
arbitrarily large X > 0 satisfying (4.10) and (4.11) for e which is less than £/4 and
hence

Therefore, by choosing r) = min{r0, f /2} the proof is complete.

Next we prove a main objective in this paper.

•

THEOREM 4.2. The weaker PSA holds for each domain Sln given in (1.3) with
either Dirichlet or Neumann boundary conditions.

For n = 2, by Theorem 3.1 and Lemmas 3.1 and 3.2, we have arbitrarily large gaps
in the spectrum of A = / — A and hence we can choose X > 0 so that the interval
(A. — K, X + K] contains no Xm and hence Px+K — P\-K = 0. If n = 3, we do not have
this property. However, the next lemma yields the weaker PSA for n = 3.

LEMMA 4.2. Let Q C R3 be given in (1.3). Fix Neumann boundary conditions for
Laplace and let 3S be a bounded subset of H2. Then for any e > 0 and K > 1, there
exist arbitrarily large X = X(3§) > K such that

(4.15) - v)p2dx

for any v € SS and p € Range (P>.+IC — Pk-K) C L2 with \\p\\ — 1.

PROOF. Let [ek : k e Z2 x Z9) be a complete orthonormal set of eigenfunctions of
- A for the domain SI. Since 88 is a bounded subset in H2, the compact imbedding
H2 °-> L°° implies that 38 is a compact set in L°°. Hence, for a given e > 0, there
exist v\, v2, • •. , vn € SB such that for any v £ 88,

(4.16) \\v — vj II/.00 < - . for some j = 1 , 2 , . . . , n.
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On the other hand, since H2 C L2 and [ek : k e Z2 x Ze} is a complete orthonormal
basis, there exists a d > 0 such that for any j ,1 < j < n,

1/2

(4.17) E K*

where Vj,k = (Vj,ek) is Fourier coefficient with respect to ek for each k e Z2 x Z®.
Fix this J > 0 throughout this proof. Then for this d > 0 and /c > 1, we can choose
and fix arbitrarily large k > K satisfying (i) of Theorem 3.2. Now consider a function

p e Range

Its Fourier expansion

(•

involves only terms for which

Then, for any Vj,\ < j < n,

Ja Ja \

(4.18)

where 8S are given by:

||p|| = 1.

Vj - Vj)ek-Ss

(4.19) = (l2-lul2J3).

However, since |[/] |2 e (A - <c, A + /c] and \[8S]\2 = \U]\2 for all 5 = 1, 2 , . . . , 6, by
(i) of Theorem 3.2, we obtain, for each s, either

(4.20)

Also, since

(4.21)

\[k-8s]\>d, or k = 8s.

fr-v | 0 if k = 8s,
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(4.18) and (4.19) imply

6

139

Ja ' ' s=l k.l

where hs is a function on Z3 given by hs(l) — 8S, I < s < 6, where Ss is given in
(4.19). By the Schwarz inequality, (4.20), (4.21) and (4.17), we obtain

vj -vj)p2

1/2 1/2N

E
s=l \ \ k.l

I/°(«I2IA/)I2 K\*-M/)|2

*,/
1/2

' / 2

\IMl2d

b y t h e c h o i c e o f d, k . T h e n f o r a n y v € ^ , t h e r e e x i s t s o m e j , l < j < n , s u c h t h a t

I " -

and hence

(V- V)p2 < I (V- Vj)p2 + I (V- Vj)p2 + / (Vj - Vj)p
JQ Jn Jn Jn

< €.

D

REMARK. The proof for Dirichlet boundary conditions is the same as for the Neu-
mann case except for minor modifications.

PROOF OF THEOREM 4.2. Let e > 0 and K > 1 be given. Fix a bounded set SS in
H2. Then by Theorem 3.2 and Lemma 4.2, there exists a quantity £ > 0 satisfying
(4.10) and (4.11). •

From all these results, one can prove the existence of an inertial manifold for (4.1).

THEOREM 4.3. Assume that (4.1) is dissipative and that f : £2n x R —• R is C3 on
the domain £2n C R" given in (1.3). Then for every v > 0 and for suitable choice of
boundary conditions, there exists an inertial manifold M for (4.1).
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PROOF. Let 5 (0 be a nonlinear semiflow on H — L2(Qn) generated by the system
(4.7). Since (4.7) is dissipative there exists a global attractor fy which is a bounded
set in U° and a compact set in L2. Now we choose R > 0 large enough so that

^T c ^ = {ue 9(A) : \\Au\\ < R}.

The existence of an attractor and its regularity property are fairly standard matters, so
we will not address these issues here. Now we fix this R > 0.

On the other hand, the system (4.8) also induces a semiflow, which we denote here
by S(t). Then for a given R > 0, we can construct and fix C1 functions <f) and ty
satisfying (4.9) and then systems (4.7) and (4.8) coincide on 88. Let A. be chosen so
that the conclusion of Theorem 4.1 is true. Then by the Abstract Invariant Manifold
Theorem, there exists an invariant manifold „ # for (4.8), which is given by the graph
of a Lipschitz function

ct> : S» - * &.

In order to show that jft is an inertial manifold, it suffices to prove that it attracts all
the solutions of (4.1) and (4.3) exponentially.

Let r > 0 be any fixed constant and let

Br = {u € H : \\u\\ <r).

Then we know that there is a T = T{Br) such that the solution of (4.7), u(t) =
(p(t), q(t)), starting u0 = (po, <7o) € Br, satisfies that

for any t > T. This implies that

S(t)uo = S(t-T)(p(T),q(T)), t > T.

We can choose R] and R2 satisfying the regularity condition such that

/?, > r, R2 > r.

Then this gives us

where S is defined in Section 2. Therefore, by Theorem 2.1, we have

dist

which implies that ̂  attracts all the solution with uniform exponential rate. Therefore
^ is an inertial manifold for (4.7) and (4.8). •
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REMARK. Although we only consider the type of domains in (1.3), for appropriate
boundary conditions, we also have the same conclusion for domains of the form:

x € R2 :x =

: 0 < J C 2 < ^ , , 0 < x , < - J x [0, Ln]

f*

where the ek's are linearly independent vectors.

References

[ 1 ] E. Fabes, M. Luskin and G. R. Sell, 'Construction of inertial manifolds by elliptic regularization',
J. Differential Equations 89 (1991), 335-387.

[2] C. Foias, G. R. Sell and R. Temam, 'Inertial manifolds for nonlinear evolutionary equations', J.
Differential Equations 73 (1988), 309-353.

[3] C. Foias and R. Temam, 'Some analytic and geometric properties of the solutions of Navier-Stokes
equations',/ Math. Pures Appl. 58 (1979), 339-368.

[4] M. Jolly, 'Explicit construction of an inertial manifold for a reaction diffusion equation', J. Differ-
ential Equations 78 (1991), 220-261.

[5] M. Kwak, 'Finite dimensional description of convective reaction diffusion equations', J. Dynamics
Differential Equations 4 (1992), 515-543.

[6] , 'Finite dimensional inertial forms for 2D Navier-Stokes equations', Indiana Univ. Math.
J. 41 (1992), 927-982.

[7] H. Kwean, Inertial manifolds for reaction diffusion equations: an extension of the principle of
spatial averaging (Dissertation, University of Minnesota, 1996).

[8] J. Mallet-Paret, 'Negatively invariant sets of compact maps and an extension of a theorem of
Cartwright', J. Differential Equations 22 (1976), 331-348.

[9] J. Mallet-Paret and G. R. Sell, 'Inertial manifolds for reaction diffusion equation in higher space
dimensions',/ Amer. Math. Soc. 1 (1988), 805-866.

[10] R. Mane, On the dimension of compact invariant sets of certain nonlinear maps. Lecture Notes in
Math., 898 (Springer, New York, 1981) pp. 230-242.

[11] A. M. Pinsky, 'The eigenvalues of an equilateral triangle', SIAM J. Math. 11 (1980), 819-827.
[12] I. Richards, 'On the gaps between numbers which are the sum of two squares', Adv. Math. 46

(1982), 1-2.
[13] R. Temam, Infinite dimensional dynamical in mechanics and physics. Applied Math. Sci. 68

(Springer, New York, 1988).

https://doi.org/10.1017/S1446788700036314 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036314


142 Hyukjin Kwean [18]

Department of Mathematics Education
College of Education
Korea University
Sungbuk-Ku Anam-Dong
136-701 Seoul
Korea
e-mail: kwean@kuccnx.korea.ac.kr

https://doi.org/10.1017/S1446788700036314 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036314

