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Abstract Suppose that G is a finite group and H is a subgroup of G. We call H a weakly s-
supplementally embedded subgroup of G if there exist a subgroup T of G and an s-quasinormally
embedded subgroup Hse of G contained in H such that G = HT and H ∩ T � Hse. We investigate the
influence of the weakly s-supplementally embedded property of some minimal subgroups on the structure
of finite groups. As an application of our results, some earlier results are generalized.
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1. Introduction and notation

All groups considered in this paper are finite. We use conventional notions and notation,
as in [11]. Z∞(G) denotes the hypercentre of G, F stands for a formation, U and N
denote the classes of all supersolvable groups and nilpotent groups, respectively, GF

denotes the F-residual and ZF (G) denotes the F-hypercentre of G.
A number of authors have investigated the structure of a group G under the assumption

that some minimal subgroups of G satisfy some condition in G. For example, Buckley [6]
proved that if G is a group of odd order and all minimal subgroups of G are normal in
G, then G is supersolvable. Shaalan [16] proved that if G is a group and every cyclic
subgroup of prime order or order 4 is s-quasinormal in G, then G is supersolvable.
Meanwhile, some authors have also considered how minimal subgroups can be embedded
in a (p-)nilpotent group. Ito [11, Chapter III, Theorem 5.3] has proved that if G is a
group of odd order and all minimal subgroups of G lie in the centre of G, then G is
nilpotent. Recently, many extensions have been made by using formation theory, such as
in [2,7]. In this paper, we give an extension of the results mentioned above by the weakly
s-supplementally embedded property of some minimal subgroups. As an application of
our results, some recent results are generalized.
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2. Basic definitions and preliminary results

Following Kegel [12], a subgroup H of a group G is said to be s-quasinormal in G if
HP = PH for every Sylow subgroup P of G. Recently, Ballester-Bolinches and Pedraza-
Aguilera [3] generalized the notion of s-quasinormal subgroup to the s-quasinormally
embedded subgroup. A subgroup H of G is said to be s-quasinormally embedded in G

provided every Sylow subgroup of H is a Sylow subgroup of some s-quasinormal subgroup
of G. We give the following concept.

Definition 2.1. A subgroup H of a group G is said to be weakly s-supplementally
embedded in G if there exists a subgroup T of G such that G = HT and H ∩ T � Hse,
where Hse is an s-quasinormally embedded subgroup of G contained in H.

Lemma 2.2 (Kegel [12]). Let H be a subgroup of a group G.

(i) If H is s-quasinormal in G, then H is subnormal in G.

(ii) Let N � G. If H is s-quasinormal in G, then HN/N is s-quasinormal in G/N .

(iii) If H is an s-quasinormal p-subgroup of G for some prime p, then NG(H) � Op(G).

Lemma 2.3 (Ballester-Bolinches and Pedraza-Aguilera [3, Lemma 1]). Sup-
pose that U is s-quasinormally embedded in a group G, H � G and N � G.

(i) If U � H, then U is s-quasinormally embedded in H.

(ii) UN is s-quasinormally embedded in G and UN/N is s-quasinormally embedded in
G/N .

Lemma 2.4 (Li et al . [15, Lemma 2.4]). Let G be a group and let P be a subgroup
of G contained in Op(G). If P is s-quasinormally embedded in G, then P is s-quasinormal
in G.

Lemma 2.5 (Li and Wang [14, Lemma 2.8]). Suppose that G is a group and P

is a normal p-subgroup of G contained in Z∞(G); then CG(P ) � Op(G).

Now we give some basic properties of weakly s-supplementally embedded subgroups.

Lemma 2.6. Let U be a weakly s-supplementally embedded subgroup and N a normal
subgroup of G. Then we have the following.

(i) If U � H � G, then U is weakly s-supplementally embedded in H.

(ii) If N � U , then U/N is weakly s-supplementally embedded in G/N .

(iii) If (|U |, |N |) = 1, then UN/N is weakly s-supplementally embedded in G/N .

Proof. By the hypothesis, there exist a subgroup T of G and an s-quasinormally
embedded subgroup Use of G contained in U such that G = UT and U ∩ T � Use.

(i) H = U(H ∩ T ) and U ∩ (H ∩ T ) = U ∩ T � Use. By Lemma 2.3 (i), Use is
s-quasinormally embedded in H. Hence, U is weakly s-supplementally embedded in H.
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(ii) G/N = (U/N)(TN/N) and (U/N) ∩ (TN/N) = (U ∩ TN)/N = (U ∩ T )N/N �
UseN/N . By Lemma 2.3 (ii), UseN/N is s-quasinormally embedded in G/N . Hence, U/N

is weakly s-supplementally embedded in G/N .

(iii) It is easy to see that N � T and G/N = (UN/N)(T/N). Since (UN/N) ∩
(T/N) = (U ∩ T )N/N � UseN/N , UseN/N is s-quasinormally embedded in G/N by
Lemma 2.3 (ii). Hence, UN/N is weakly s-supplementally embedded in G/N . �

Lemma 2.7 (Huppert [11, Chapter III, Theorem 5.2]). Suppose that G is a
group which is not nilpotent but whose proper subgroups are all nilpotent. Then

(i) G has a normal Sylow p-subgroup P and G = PQ, where Q is a non-normal cyclic
Sylow q-subgroup for some prime q �= p,

(ii) P/Φ(P ) is a minimal normal subgroup of G/Φ(P ),

(iii) the exponent of P is p or 4.

Lemma 2.8. Let F be a saturated formation. Assume that G is a group such that G

does not belong to F and there exists a maximal subgroup M of G such that M ∈ F
and G = MF (G), where F (G) is the Fitting subgroup of G. Then

(i) GF/Φ(GF ) is a chief factor of G,

(ii) GF is a p-subgroup for some prime p,

(iii) GF has exponent p if p > 2 and exponent at most 4 if p = 2,

(iv) GF is either elementary abelian or (GF )
′
= Z(GF ) = Φ(GF ) is an elementary

abelian group.

Proof. By [2, Proposition 1], (ii)–(iv) hold.

Now we prove statement (i). Since G = MF (G), we have G/Φ(G) = M/Φ(G) ·
F (G)/Φ(G). By [11, Chapter III, Theorem 4.5], F (G)/Φ(G) is the product of all solv-
able minimal normal subgroups of G/Φ(G). Thus, there exists a minimal normal sub-
group H/Φ(G) of G/Φ(G) such that H/Φ(G) � M/Φ(G). The maximality of M in G

implies that G = MH. Since G/H ∼= M/(M ∩ H) ∈ F , we have GF � H. Since F
is a saturated formation and G does not belong to F , we have GF � Φ(G) and hence
Φ(G) < GFΦ(G) � H. But GFΦ(G)/Φ(G) � G/Φ(G), so by the minimality of H/Φ(G)
in G/Φ(G), we have GFΦ(G) = H. Hence, G = MH = MGFΦ(G) = MGF . Since
Φ(GF ) � Φ(G) � M , without loss of generality we may assume that Φ(GF ) = 1. Then
GF is elementary abelian. By the Krull–Schmidt Theorem, it is easy to obtain that GF

is a direct product of some minimal normal subgroups of G. Since GF � M , there exists
a minimal normal subgroup N of G such that N � GF and N � M . By the maximality
of M in G, we get G = MN . Since G/N ∼= (M/(M ∩ N) ∈ F , we have GF � N and so
GF = N ; hence, (i) holds. �

Lemma 2.9 (Skiba [17, Lemma 2.16]). Let F be a saturated formation containing
U and G be a group with a normal subgroup E such that G/E ∈ F . If E is cyclic, then
G ∈ F .
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3. Main results

Theorem 3.1. Let H be a normal subgroup of G such that G/H is supersolvable.
If every cyclic subgroup 〈x〉 of any non-cyclic Sylow subgroup of H with prime order
or order 4 (if the Sylow 2-subgroup of H is non-abelian) not having a supersolvable
supplement in G is weakly s-supplementally embedded in G, then G is supersolvable.

Proof. Assume that the result is false and consider a counter-example (G, H) for
which |G| + |H| is minimal. Then we have the following.

Step 1 (every proper subgroup of G is supersolvable). Let K be a proper sub-
group of G and let 〈x〉 be a cyclic subgroup of any non-cyclic Sylow subgroup of H ∩ K

with prime order. It is clear that 〈x〉 is also a cyclic subgroup of a non-cyclic Sylow sub-
group of H with prime order. By the hypothesis, 〈x〉 either is weakly s-supplementally
embedded or has a supersolvable supplement in G. If 〈x〉 has a supersolvable supple-
ment T in G, then 〈x〉 has a supersolvable supplement K ∩ T in K. If 〈x〉 is weakly
s-supplementally embedded in G, then it is weakly s-supplementally embedded in K by
Lemma 2.6. If the Sylow 2-subgroups of H ∩ K are non-abelian, let 〈y〉 be a cyclic sub-
group of H ∩K with order 4. It is clear that at this time the Sylow 2-subgroups of H are
also non-abelian and 〈y〉 is a cyclic subgroup of H with order 4. Then, by the hypothesis,
〈y〉 either is weakly s-supplementally embedded or has a supersolvable supplement in
G. With an argument similar to that above, we also have that 〈y〉 either is weakly s-
supplementally embedded or has a supersolvable supplement in K. Hence, the hypothesis
holds for (K, H ∩K). The minimal choice of G implies that K is supersolvable. Thus, we
have proved that G is not supersolvable but every proper subgroup of G is supersolvable.
A well-known result of Doerk [8] implies that there exists a normal Sylow p-subgroup
P of G such that G = PM , where M is a supersolvable maximal subgroup of G, and
P/Φ(P ) is a minimal normal subgroup of G/Φ(P ). Moreover, the exponent of P is p if
p > 2 and the exponent of P is at most 4 if p = 2.

Step 2 (P = H is not cyclic). Now G/P is a homomorphic image of M , and
therefore supersolvable. By the hypothesis, G/H is supersolvable, so G/(P ∩H) is super-
solvable. It is clear that (G, P ∩H) satisfies the hypothesis of the theorem. If P ∩H < H,
then G would be supersolvable by the choice of the pair (G, H). Hence, P ∩H = H, i.e. H

is a p-group. Since H � G and P/Φ(P ) is a minimal normal subgroup of G/Φ(P ), it fol-
lows that either HΦ(P ) = Φ(P ) or HΦ(P ) = P . In the former case, H � Φ(P ) � Φ(G),
so G/Φ(G) and consequently also G are supersolvable: a contradiction. So HΦ(P ) = P ,
which yields that H = P . Recall that G/P is supersolvable; if P is cyclic, then G would
be supersolvable: a contradiction.

Step 3 (〈x〉 is s-quasinormal in G for any element x ∈ P ). Let 1 �= x ∈ P ;
then 〈x〉 is a cyclic group with prime order or order 4 by Step 1. Let T be any supplement
of 〈x〉 in G. Then G = 〈x〉T and P = P ∩ G = P ∩ 〈x〉T = 〈x〉(P ∩ T ). Since P/Φ(P ) is
abelian, (P ∩ T )Φ(P )/Φ(P ) � G/Φ(P ), and hence (P ∩ T )Φ(P ) � G. Since P/Φ(P ) is a
chief factor of G, P ∩ T � Φ(P ) or P ∩ T = P . If P ∩ T � Φ(P ) for some supplement
T , then P = 〈x〉 is cyclic, contradicting Step 2. Now assume that P ∩ T = P for

https://doi.org/10.1017/S0013091509001667 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509001667


Weakly s-supplementally embedded minimal subgroups of finite groups 803

every supplement T . Then T = G is the unique supplement of 〈x〉 in G. Since G is not
supersolvable, by the hypothesis, 〈x〉 is weakly s-supplementally embedded in G. Thus,
〈x〉 = 〈x〉 ∩ T = 〈x〉se is s-quasinormally embedded in G. Since 〈x〉 � P � Op(G), we
have that 〈x〉 is s-quasinormal in G by Lemma 2.4.

Step 4 (the final contradiction). Assume that |P/Φ(P )| �= p and let T/Φ(P ) be any
non-trivial cyclic subgroup of P/Φ(P ). Let x ∈ T \ Φ(P ) such that T = 〈x〉Φ(P ). Since
〈x〉 is s-quasinormal in G by Step 3, T/Φ(P ) is s-quasinormal in G/Φ(P ) by Lemma 2.2.
It follows from [17, Lemma 2.11] that P/Φ(P ) has a maximal subgroup that is normal in
G/Φ(P ). But this is impossible since P/Φ(P ) is a chief factor of G. Thus, |P/Φ(P )| = p

and P is cyclic: the final contradiction. This contradiction completes the proof of the
theorem. �

Theorem 3.2. Let F be a saturated formation containing U . Suppose that H is a
normal subgroup of G such that G/H ∈ F . If every cyclic subgroup 〈x〉 of any non-
cyclic Sylow subgroup of H with prime order or order 4 (if the Sylow 2-subgroup of H

is non-abelian) not having a supersolvable supplement in G is weakly s-supplementally
embedded in G, then G ∈ F .

Proof. Assume that the result is false and let G be a counter-example of minimal
order. Then we have the following.

Step 1 (H is supersolvable). By the hypothesis and Lemma 2.6, we have every
cyclic subgroup 〈x〉 of any non-cyclic Sylow subgroup of H with prime order or order 4
(if the Sylow 2-subgroup of H is non-abelian) not having a supersolvable supplement in
H is weakly s-supplementally embedded in H. So H is supersolvable by Theorem 3.1.

Step 2. GF is a p-group for some prime p and GF/Φ(GF ) is a chief factor of G, GF

has exponent p if p > 2 and exponent at most 4 if p = 2.
Let p = max π(H) and P ∈ Sylp(H). Since H is supersolvable, we have P char H �

G, so P � G. Consider G/P . From Lemma 2.6 we know the hypothesis holds for
(G/P, H/P ). Then the minimal choice of G implies that G/P ∈ F ; thus, GF � P

is a p-group. Since F is a saturated formation and G /∈ F , GF � Φ(G). Let M be
a maximal subgroup of G such that GF � M ; then G = MGF = MF (G). Since
M/(M ∩ H) ∼= MH/H = G/H ∈ F , a trivial argument shows that the hypothesis holds
for (M, M ∩ H). The minimal choice of G implies that M ∈ F . Now, by Lemma 2.8,
we have that GF/Φ(GF ) is a chief factor of G, and GF has exponent p when p > 2 and
exponent at most 4 when p = 2.

With an argument similar to the one in the proof of Theorem 3.1 (Step 3), we have
the following.

Step 3. 〈x〉 is s-quasinormal in G for any element x ∈ GF .

Step 4 (the final contradiction). Let T/Φ(GF ) be any non-trivial cyclic subgroup
of GF/Φ(GF ) and x ∈ T \ Φ(GF ). Then T = 〈x〉Φ(GF ). Since 〈x〉 is s-quasinormal in G

by Step 3, T/Φ(GF ) is s-quasinormal in G/Φ(GF ) by Lemma 2.2. It follows from [17,
Lemma 2.11] that GF/Φ(GF ) has a maximal subgroup which is normal in G/Φ(GF ).
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Since GF/Φ(GF ) is a chief factor of G, we have |GF/Φ(GF )| = p and GF is cyclic. So
G ∈ F by Lemma 2.9: the final contradiction. This contradiction completes the proof of
the theorem. �

Theorem 3.3. Let N be a normal subgroup of a group G such that G/N is nilpo-
tent. If every cyclic subgroup of N with prime order is contained in Z∞(G) and every
cyclic subgroup of N with order 4 not having a supersolvable supplement in G is weakly
s-supplementally embedded in G, then G is nilpotent.

Proof. Assume that the result is false and let G be a counter-example of minimal
order. Then we have the following.

Step 1 (every proper subgroup of G is nilpotent). Let H be a proper subgroup
of G. Since G/N is nilpotent, H/(H ∩N) ∼= HN/N � G/N is nilpotent. Every subgroup
of H ∩ N of prime order is contained in Z∞(G) ∩ H � Z∞(H). On the other hand,
for every cyclic subgroup K of order 4 of H ∩ N , if K does not have a supersolvable
supplement in H, then K does not have a supersolvable supplement in G. Thus, K

is weakly s-supplementally embedded in G by the hypothesis and then it is weakly
s-supplementally embedded in H by Lemma 2.6. Therefore, (H, H ∩ N) satisfies the
hypothesis of the theorem, and the minimal choice of G shows H is nilpotent. Thus, G

is a group which is not nilpotent but whose proper subgroups are all nilpotent. Then by
Lemma 2.7, G = PQ, where P is a normal Sylow p-subgroup and Q a non-normal cyclic
Sylow q-subgroup of G for some prime q �= p, P/Φ(P ) is a minimal normal subgroup of
G/Φ(P ), and exp(P ) = p when p > 2, while exp(P ) is at most 4 when p = 2.

Step 2 (P � N , p = 2 and exp P = 4). Since both G/N and G/P are nilpotent,
G/(P ∩ N) � G/P × G/N is nilpotent. If P � N , then P ∩ N < P and Q(P ∩ N) < G.
Thus, Q(P ∩N) is nilpotent by Step 1; then Q(P ∩N) = Q×(P ∩N) and Q char Q(P ∩N).
On the other hand,

G/(P ∩ N) = (P/(P ∩ N))(Q(P ∩ N)/(P ∩ N))

implies that

Q(P ∩ N)/(P ∩ N) � G/(P ∩ N) and Q(P ∩ N) � G.

Therefore, Q � G: a contradiction. Thus, we have P � N . If expP = p, then P =
P ∩ N � Z∞(G). Lemma 2.5 implies that G = P × Q: a contradiction. Thus, we have
p = 2 and expP = 4.

Step 3 (for every x ∈ P \Φ(P ), we have o(x) = 4). Suppose there exists an x ∈
P \Φ(P ) such that o(x) = 2. Let M = 〈x〉G. Then M � P and MΦ(P )/Φ(P ) � G/Φ(P ),
so we have P = MΦ(P ) = M � Z∞(G) as P/Φ(P ) is a minimal normal subgroup of
G/Φ(P ): a contradiction.

Step 4 (the final contradiction). By Step 3, every element of P \Φ(P ) is of order 4.
Let x ∈ P \Φ(P ) and let T be a supplement of 〈x〉 in G. Then P = P ∩〈x〉T = 〈x〉(P ∩T ).
Since P/Φ(P ) is abelian, (P ∩ T )Φ(P )/Φ(P ) � G/Φ(P ) and hence (P ∩ T )Φ(P ) � G.
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Since P/Φ(P ) is a chief factor of G, P ∩ T � Φ(P ) or P ∩ T = P . If P ∩ T � Φ(P )
for some supplement T , then P = 〈x〉 is cyclic, so G is nilpotent by [11, Chapter IV,
Theorem 2.8]: a contradiction. Now assume that P ∩T = P for every supplement T . Then
T = G is the unique supplement of 〈x〉 in G. If G is supersolvable, then Q � G since
q > p = 2. Thus, G = P × Q is nilpotent: a contradiction. So, by the hypothesis, 〈x〉 is
weakly s-supplementally embedded in G. Thus, 〈x〉 = 〈x〉 ∩ T = 〈x〉se is s-quasinormally
embedded in G. Since 〈x〉 � P � Op(G), 〈x〉 is s-quasinormal in G. Thus, 〈x〉Q is a
subgroup of G and by [11, Chapter IV, Theorem 2.8], we may assume that 〈x〉Q < G. So
〈x〉Q is nilpotent and 〈x〉Q = 〈x〉×Q. Therefore, x ∈ NG(Q); it follows that P � NG(Q)
and G = P × Q: the final contradiction. This contradiction completes the proof of the
theorem. �

Theorem 3.4. Let F be a saturated formation containing N . If every cyclic subgroup
of GF with order 4 is weakly s-supplementally embedded in G, then G ∈ F if and only
if every cyclic subgroup of GF of prime order lies in the F-hypercentre ZF (G) of G.

Proof. We need to prove only the sufficiency. Assume that the result is false and
let G be a counter-example of minimal order. Then G /∈ F . Let 〈x〉 be a subgroup
of GF of prime order. Then 〈x〉 � ZF (G) ∩ GF , so 〈x〉 is contained in Z(GF ) by [9,
Chapter IV, Theorem 6.10]. By Lemma 2.6, every cyclic subgroup of GF of order 4 is
weakly s-supplementally embedded in GF . Theorem 3.3 implies that GF is nilpotent and
so solvable. If GF � Φ(G), then G/Φ(G) ∈ F ; hence, G ∈ F . This is a contradiction. So
there exists a maximal subgroup M of G such that G = MGF = MF (G). By [1, Theorem
3.5], we may choose M to be an F-critical maximal subgroup and G/MG /∈ F .

Since M/(M ∩ GF ) ∼= G/GF ∈ F , we have MF � M ∩ GF and so MF � GF . Let
1 = N0 � N1 � · · · � Nt = ZF (G) � · · · � G be a chief series of G through ZF (G).
Then 1 = N0 ∩ M � N1 ∩ M � · · · � Nt ∩ M = ZF (G) ∩ M � · · · � M is a normal
series of M through ZF (G) ∩ M . Let f be the canonical definition of F . Then, for any
chief factor Ni/Ni−1, 1 � i � t, of G and any prime p dividing |Ni/Ni−1|, we have
G/CG(Ni/Ni−1) ∈ f(p). Since F (G) � CG(Ni/Ni−1) by [11, Chapter III, Theorem 4.3],
we know G = MCG(Ni/Ni−1). Then

M/CM (Ni/Ni−1) = M/(M ∩ CG(Ni/Ni−1)) ∼= G/CG(Ni/Ni−1) ∈ f(p).

Since CM (Ni/Ni−1) � CM (Ni ∩ M/Ni−1 ∩ M), we have M/CM (Ni ∩ M/Ni−1 ∩ M) ∈
f(p) for any prime p dividing |(Ni ∩M)/(Ni−1 ∩M)|. Refining the above normal series of
M to a chief series of M , we obtain ZF (G) ∩ M � ZF (M). So every subgroup of MF of
prime order is contained in ZF (M), and every cyclic subgroup of MF of order 4 is weakly
s-supplementally embedded in M by Lemma 2.6. Hence, M satisfies the hypothesis of
the theorem. The minimal choice of G implies that M ∈ F . By Lemma 2.8, GF is a
p-group for some prime p, and GF/Φ(GF ) is a minimal normal subgroup of G/Φ(GF ).
Moreover, GF has exponent p if p > 2 and exponent at most 4 if p = 2.

If expGF = p, then GF = Ω1(GF ) � ZF (G) by the hypothesis; this would imply G ∈
F : a contradiction. So we have p = 2 and expGF = 4. If there exists an x ∈ GF \ Φ(GF )
and o(x) = 2, denote H = 〈x〉G; then H � G and H � Ω1(GF ) � ZF (G). On the other
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hand, GF = HΦ(GF ) = H since GF/Φ(GF ) is a minimal normal subgroup of G/Φ(GF );
this is a contradiction. So, for any x ∈ GF \Φ(GF ), we have o(x) = 4. Then 〈x〉 is weakly
s-supplementally embedded in G by the hypothesis.

Let T be any supplement of 〈x〉 in G. Then GF = GF ∩ 〈x〉T = 〈x〉(GF ∩ T ). Since
GF/Φ(GF ) is abelian, (GF ∩T )Φ(GF )/Φ(GF ) � G/Φ(GF ) and hence (GF ∩T )Φ(GF ) �
G. Since GF/Φ(GF ) is a chief factor of G, GF ∩ T � Φ(GF ) or GF ∩ T = GF .

If GF ∩ T � Φ(GF ) for some supplement T , then 〈x〉 = GF is s-quasinormal in G. If
GF ∩ T = GF for every supplement T , then T = G is the unique supplement of 〈x〉 in G.
So 〈x〉 = 〈x〉 ∩ T = 〈x〉se is s-quasinormally embedded in G. Since 〈x〉 � GF � Op(G),
we also have 〈x〉 is s-quasinormal in G by Lemma 2.4.

Thus, for any q ∈ π(G), q �= 2, 〈x〉 is normalized by every Sylow q-subgroup Q of
M . So Q acts on 〈x〉 by conjugation. But the automorphism group of the cyclic group
of order 4 is the cyclic group of order 2, so Q acts trivially on 〈x〉 and Q centralizes
〈x〉. Thus, 〈x〉 is centralized by O2(M); this implies that GF is centralized by O2(M).
Hence, O2(M) � G as G = MGF . Thus, it follows that G/MG is a 2-group. Therefore,
G/MG ∈ F since N ⊆ F : the final contradiction. This contradiction completes the proof
of the theorem. �

4. Some applications

Following [17], a subgroup H of a group G is weakly s-supplemented in G if G has a
subgroup T such that HT = G and H ∩ T � HsG, where HsG is the largest s-quasi-
normal subgroup of G contained in H. From the definition, we know that every weakly
s-supplemented subgroup is a weakly s-supplementally embedded subgroup. Further-
more, all subgroups, including normal subgroups, quasinormal (permutable) subgroups,
s-quasinormal subgroups, s-quasinormally embedded subgroups, c-normal subgroups,
c-supplemented subgroups, Q-supplemented subgroups and c∗-normal subgroups, are
weakly s-supplementally embedded subgroups. Hence, Theorems 3.2 and 3.4 general-
ize many earlier results. For example, [2, Theorem 2], [16, Theorem 3.4], [18, Theo-
rem 4.2], [5, Theorem 4.1] and [13, Theorem 3.4] are the corollaries of Theorem 3.2; [14,
Theorem 4.2], [5, Theorem 4.3], [4, Theorem 3.1] and [10, Theorem B] are the corollaries
of Theorem 3.4.
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