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On Geometric Flats in the CAT(0)

Realization of Coxeter Groups
and Tits Buildings

Pierre-Emmanuel Caprace and Frédéric Haglund

Abstract. Given a complete CAT(0) space X endowed with a geometric action of a group I', it is known
that if I" contains a free abelian group of rank #, then X contains a geometric flat of dimension n. We
prove the converse of this statement in the special case where X is a convex subcomplex of the CAT(0)
realization of a Coxeter group W, and I' is a subgroup of W. In particular a convex cocompact sub-
group of a Coxeter group is Gromov-hyperbolic if and only if it does not contain a free abelian group
of rank 2. Our result also provides an explicit control on geometric flats in the CAT(0) realization of
arbitrary Tits buildings.

Introduction

Let X be a complete CAT(0) space and I be a group acting properly, discontinuously,
and cocompactly on X. It is a well-known consequence of the so-called flat torus
theorem [BH99, Corollary I1.7.2] that:

(2" = E"): if T contains a free abelian group of rank n, then X contains a geometric
flat of dimension n.

Recall that a (geometric) flat of dimension n, also called (geometric) n-flat, is a
closed convex subset of X which is isometric to the Euclidean n-space. One may
wonder whether a converse of this statement does hold, that is to say, whether the
presence of a geometric n-flat in X is reflected in I' by the existence of a free abelian
group of rank n. This question goes back at least to Gromov [Gro93, §6.B3].

In the case n = 2, in view of the flat plane theorem [BH99, Corollary III.H.1.5],
this question can be stated as follows.

If X is not hyperbolic, does I' contain a copy of 2. x 7?
The answer is known to be positive in the following cases:

* I'is the fundamental group of a closed aspherical 3-manifold [KK04].
* X isasquare complex satisfying certain technical conditions [Wis05].

A combinatorially convex subcomplex of the Davis complex |W |y of a Coxeter group
W is an intersection of closed half-spaces of |W|o. The following result shows that if
X is such a combinatorially convex subcomplex of |[W |y, and if I' C W acts cellularly,
then the converse of the property (7" = [E") above holds for all n.
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Theorem 1 Let X be a combinatorially convex subcomplex of the Davis complex |W |y
of a Coxeter group W. Let I' be a subgroup of W which preserves X and whose induced
action on X is cocompact. If X contains a geometric n-flat, then I' contains a free abelian
group of rank n.

Since half-spaces are CAT(0)-convex, combinatorially convex subcomplexes are
CAT(0)-convex as well. We do not know if the theorem above is still true when X
is only assumed to be a CAT(0)-convex subset of [W|o. We note that in general the
intersection X of the closed half-spaces of |W|, containing X is not cocompact under
T. Yet I is still cofinite on the set of walls separating X (or X), and perhaps this is
enough.

Corollary 2 Let X be a CAT(0) convex subcomplex of the Davis complex |W|o of a
Coxeter group W. Let I" be a subgroup of W which preserves X and whose induced action
on X is cocompact. If X contains a geometric n-flat, then I' contains a free abelian group
of rank n.

Proof The corollary follows by Theorem 1 because, since X is a subcomplex, the in-
tersection of the closed half-spaces of |[W|y containing X is a combinatorially convex
I'-cocompact subcomplex X.

We sketch the argument. The key-point is that X° is convex for the combinatorial
distance. First, any two vertices x, y of X may be joined by a combinatorial geodesic
(x0 = x,...,x, = y) all of whose vertices belong to the smallest subcomplex of
|[W|o containing the CAT(0) geodesic between x and y [HP98, Lemme 4.9]. Since
X is a CAT(0) convex subcomplex, it follows that x, . . ., x, belong to X°. Now any
combinatorial geodesic between x, y may be joined to (xy, . .., x,) by a sequence of
geodesics, any two consecutive of which differ by replacing half the boundary of some
polygon of |W|, by the other half. Since X is a CAT(0) convex subcomplex, it contains
a polygonal face of [W| as soon as it contains two consecutive edges of the boundary.
It follows that X° contains the vertices of any combinatorial geodesic joining two of
its points.

For any edge e with endpoints x € X, y ¢ X we claim that the geometric wall m
separating x from y does not separate x from any other vertex z of X. Indeed any ver-
tex separated from x by m can be joined to x by a combinatorial geodesic through y.
So by combinatorial convexity X would contain y, which is a contradiction. This
shows that X is contained in the intersection X of closed half-spaces whose boundary
wall separates an edge with one endpoint in X and the other one outside.

We claim that X contains no vertex outside X. Indeed let v ¢ X° denote some ver-
tex. Choose a vertex w € X° such that the combinatorial distance d(v, w) is minimal.
Consider any geodesic from w to v. Then the first edge e of this geodesic ends at a ver-
tex y € X, and the wall separating w from y does not separate y from v. Thus v ¢ X.
Since X° ¢ X ¢ X and X is the union of chambers with center in X°, it follows that
X = X. Since T is cofinite on X° by assumption, it follows that T" is cocompact on X,
and we may apply Theorem 1. ]

The algebraic flat rank of a group I', denoted alg-rk(I"), is the maximal Z-rank of
abelian subgroups of I'. The geometric flat rank of a CAT(0) space X, denoted rk(X),
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is the maximal dimension of isometrically embedded flats in X. As an immediate
consequence of Theorem 1 combined with the flat torus theorem, one obtains the
following.

Corollary 3 Let X and I be as in Theorem 1. Then rk(X) = alg-rk(I"). In particular,
one has tk(|W|o) = alg-rk(W).

It is an important result of Daan Krammer [Kra94, Theorem 6.8.3] that the alge-
braic flat rank of W can be easily computed in the Coxeter diagram of (W, S).

The equality between the algebraic flat rank of W and the geometric flat rank of
|W|o was conjectured in [BRWO05]. Actually, it is shown there that this equality allows
us to compute very efficiently the so-called (topological) flat rank of certain automor-
phism groups of locally finite buildings whose Weyl group is W. The groups in ques-
tion carry a canonical structure of locally compact, totally discontinuous topological
groups; furthermore, they are topologically simple [Rém04]. The topological flat
rank mentioned above is a natural invariant of the structure of a topological group
(see [BRWO5] for more details).

The class of pairs (X, I') satisfying the assumptions of Theorem 1 is larger than one
might expect. Assume for example that I' acts geometrically by cellular isometries on
a CAT(0) cubical complex X, and that I" acts in a special way on hyperplanes:

* for any hyperplane H of X and any element g € I, either gH = H, or H and gH
have disjoint neighbourhoods

* for any two distinct, intersecting hyperplanes H, H' of X and any element g € T,
either gH' intersects H, or H and gH’ have disjoint neighbourhoods.

Such special actions are studied in [HWO06], where it is proved that in the above
situation there exists a right-angled Coxeter group W, an embedding I' — W and
an equivariant cellular isometric embedding X — |W/|o. Thus Corollary 2 applies to
groups acting geometrically and specially on CAT(0) cubical complexes. When the
action is free we obtain the following.

Corollary 4 The fundamental group of a compact nonpositively curved special cube
complex is hyperbolic if and only if it does not contain 7. x 7.

The fundamental groups of the “clean” (V H-)square complexes that were studied
in [Wis05] are examples of virtually special groups [HW06, Theorem 5.7]. Thus, in
this case Theorem 1 provides a new proof of the equivalence between hyperbolicity
and absence of Z x Z. Note that Wise’s result applies to malnormal or cyclonor-
mal VH-complexes, which are a priori more general than the virtually clean ones.
But Wise [Wis05] asked explicitly whether malnormal or cyclonormal implies virtu-
ally clean; already he had proved this converse implication for many classes of VH-
complexes.

Not surprisingly, Theorem 1 also provides a control on geometric flats isometri-
cally embedded in the CAT(0) realization of arbitrary Tits buildings. More precisely,
we have the following.

Theorem 5 Let (W,S) be a Coxeter system and B a building of type (W, S). Every
geometric flat of the CAT(0) realization | By of A is contained in an apartment. In
particular, one has rk(|B|y) = alg-rk(W).
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Note that in [BRWO5] the authors established the equality rk(|.2|o) = tk(|W|o).

Finally, we recall [Kle99, Theorem B] that if X is a locally compact complete
CAT(0) space on which Isom(X) acts cocompactly, then the geometric flat rank of
X coincides with five other quantities, among which are the following ones.

* The maximal dimension of a quasi-flat of X.
* sup{k | Hx_1(0rX) # {0}}, where 9rX denotes the Tits boundary of X.
* The geometric dimension of any asymptotic cone of X.

This applies of course to the Davis complex |W |y, but also to many locally finite
buildings of arbitrary type, including all locally finite Kac—-Moody buildings. In par-
ticular, Corollary 3 and Theorem 5, combined with Daan Krammer’s computation
of alg-rk(W), provide a very efficient way to compute all these quantities for these
examples.

In Section 1, we first recall basic facts on the Davis—Moussong geometric realiza-
tion of Coxeter groups. In particular we introduce the walls, the half-spaces and the
chambers.

In Section 2 we define combinatorial convex subsets of the Davis—Moussong geo-
metric realization, and we establish an important lemma.

In Section 3 we present the main technical tools of this article. If a family of walls
behaves as if it were contained in a Euclidean triangle subgroup, then in fact it gener-
ates a Euclidean triangle subgroup (see Lemmas 3.1 and 3.4 for precise statements).

In Section 4 we describe completely the combinatorial structure of the set of walls
separating a given flat. The reflections along these walls generate a subgroup that we
also describe.

In Section 5 we explain how to get a rank n free abelian group out of a rank # flat.

And in Section 6 we explain how to deduce the statement on buildings from the
statement on Coxeter complexes.

1 Preliminaries

Let (W, S) be a Coxeter system with S finite. The Davis complex associated with
(W, S), denoted |W |y, is a CAT(0) cellular complex equipped with a faithful, properly
discontinuous, cocompact action of W [Dav98].

Recall that a reflection of W is, by definition, any conjugate of an element of S.
The fixed point set of a reflection in W]y is called a wall. Note that a wall is a closed
convex subset of [W|y. A fundamental property is that every wall separates |W|, into
two open convex subsets, whose respective closures are called half-spaces. If a is a
half-space, its boundary is a wall which is denoted by da. If x € |W]|, is a point
which is not contained in any wall, then the intersection of all half-spaces containing
x is compact; this compact set is called a chamber of |W|o. The W-action on the
chambers of |W/|y is free and transitive.

Let x, y denote two non-empty convex subsets of |[W|o. We say that a wall m
separates x from y whenever x is contained in one of the half-spaces delimited by m,
y is contained in the other half-space, and neither x nor y are contained in m.

We will use the following notation. Given a wall m of |[W/|y, the unique reflec-
tion fixing m pointwise is denoted by r,,. For any set M of walls, we set W (M) :=
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(rm | m € M). Recall that W (M) is itself a Coxeter system on a certain set of reflec-
tions (r,),en, Where each wall v € N is of the form v = wu for some w € W(M)
and some 1 € M [Deo89]. Such a subgroup will be called a reflection subgroup.

Finally, given two points (resp. two convex subsets) x, y of |W|y, we denote by
A (x, y) the set of all walls which separate x from y. Two chambers c, ¢’ are said to
be adjacent whenever .# (c, ¢’) is empty, or consists in a single wall m (in which case
rm(c) = ¢’). A gallery (of length n) is a sequence (co, ¢y, - . ., ¢,) of chambers such
that ¢; and c;4; are adjacent chambers for i = 0,...,n — 1. The gallery defines a
unique sequence of walls it crosses (this sequence might be empty if the gallery is a
constant sequence).

We get a (discrete) distance on the set of chambers by considering the infimum
of the length of all galleries from the first chamber to the second. Using the simple
transitive action of W on the chambers, this gallery distance is identified with the
word metric on (W, S).

It is well known that for two chambers ¢, ¢’ the gallery distance dg,(c, ¢’) is the
cardinality of .# (c, ¢’), and that a gallery from ¢ to ¢’ has length d,,i(c, ¢’) if and only
if the sequence of walls it crosses has no repetition. Furthermore for any gallery from
cto ¢’ the set of walls separating ¢ from ¢’ is the set of walls appearing an odd number
of times in the sequence of walls that the gallery crosses.

The following basic lemmas are well known; their proofs are easy exercises.

Lemma 1.1 Let x,y be two points of |W|o. There are two chambers c,, ¢, such that
XE oy €cyand M(x,y) = M(cx, cy).

Lemma 1.2 Letx,y € |W|o. There exists v € W (. (x, y)) such that x and ~y.y are
contained in a common chamber.

2 Combinatorial Convexity

A subset F C |W| is called combinatorially convex if either F = |W|, or F coincides
with the intersection of all half-spaces containing it. The combinatorial convex closure
of a subset F C |W |y will be denoted by Conv(F). Hence Conv(F) is either the whole
|[W|o (if F is not contained in any half-space) or the intersection of all half-spaces
of [W|y containing F. Since half-spaces are subcomplexes of the first barycentric
subdivision of |W|y, we note that combinatorially convex subsets are subcomplexes
as well.

Since half-spaces are CAT(0) convex, combinatorially convex subcomplexes are
CAT(0) convex, but we will rather use the following elementary combinatorial con-
vexity property: all chambers of a geodesic gallery from a chamber ¢ to a chamber ¢’
belong to Conv(c U ¢’).

Lemma 2.1 Letx,y € |W|y and assume that the set .4 (x,y) possesses a subset
M such that forallm € M and p € M = #(x,y)\M, the reflections r,, and r,
commute. Then the combinatorial convex closure of {x, y} contains a point z such that
M(y,z) = M and M (x,z) = M.

Proof Let ¢y, ¢, be chambers such that x € ¢, y € ¢, and A (x,y) = M (cx,c))
(Lemma 1.1). We prove that there exists a chamber ¢, such that .#(c,,c;) = M
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and .# (cx, c;) = M (note that such a chamber necessarily lies in the combinatorial
convex closure of ¢, U ¢)).

This implies the desired result. Indeed, since .# (x,y) = .#(c,c,), we have
Conv({x,y}) = Conv(c, U ¢,). Furthermore since .#(y,c,) = &, we have
M (cz,y) C M (cz cy). Conversely if m € #(c;,c,), then m does not separate c,
from ¢,; otherwise c; would not be inside Conv(c, Uc,). Thus m separates c, from c,
andsom € .4 (x, y). In particular y € m. Thusin fact m € .#(c,, y). Consequently
M (c;,y) = M(cz,cy) (= M), and similarly 4 (c;, x) = A (c;, cx) (= M). We then
define z to be any point in the interior of the chamber c,.

It remains to prove the statement for chambers. To this end, we argue by induction
on the cardinality n of .# (c,, c,). We may assume 1 > 0.

Consider some geodesic gallery (co = ¢x,...,¢i—1,6n = ;). Let p denote the
unique wall separating ¢,—; from ¢,. By induction there is a chamber d such that
M (cxyd) =M\ {p}, #(d,co—1) = M\ {p1}. We then have

%(du Cy) = '%(da Cﬂ—l) U {M}

If u € M, then the chamber d satisfies .# (¢, d) = M and .# (d, c,) = M, so we
are done.

Assume now that y € M, so M = .#(d, c,_,). Consider a gallery from d to ¢,_;
of minimal length. If this gallery has length 0, then M = @ and we take ¢, = ¢,.
Otherwise let m € M denote the last wall that the gallery crosses. Let d’ denote the
chamber r,,,7,(cy—1). Then d’ is adjacent to ¢,—,, and d’ is also adjacent to ¢, because
fmly = Tufm. It follows that there exists a gallery of minimal length from ¢ to ¢,
whose last crossed wall is m. So in fact we are back to the first case, and thus we are
done. [ |

Note that the corresponding statement (for vertices) is true in an arbitrary CAT(0)
cubical complex X. Indeed for any two vertices x, y of X such that the set . (x, y) of
hyperplanes of X separating x from y may be written .# (x, y) = MM so that every
hyperplane of M is perpendicular to every hyperplane of M, there exists a vertex z
such that .#(z,y) = M and .#(z,x) = M. Clearly z is on some combinatorial
geodesic from x to y, thus z is in the convex hull of {x, y}.

3 The Euclidean Triangle Lemmas

In what follows, a Euclidean triangle subgroup of the Coxeter group W is a reflection
subgroup which is isomorphic to one of the three possible irreducible Coxeter groups
containing Z X Z as a finite index subgroup. We say that a set P of walls is Euclidean
whenever there exists a wall m such that P U {m} generates a Euclidean triangle sub-
group of W. We will be mainly interested in the case when P is a set of pairwise
disjoint walls.

The following lemma relates the combinatorial configuration of a certain set of
walls M of |W|y with the algebraic structure of W(M). This provides the key in-
gredient which allows us to understand the walls of a geometric flat of |W|y, see
Proposition 4.9 below.
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Lemma 3.1 There exists a constant L, depending only on the Coxeter system (W, S),
such that the following property holds. Let a,b, ho, hi, ..., h, be a collection of half-
spaces of |W o such that:

1) @#anNbThyCh € Chy

(i) @ # dandb C Ohy,

(iii) Oa and Ob both meet Oh; foreachi =1,...,n.

Ifn > L, then the group generated by the reflections through the walls Oa, Ob, Ohy,
Ohy, ..., 0hy is a Euclidean triangle subgroup.

Proof See [Cap06, Theorem A]. [ |

A set P of walls of [W/|y is called a chain of walls if there exists a set A of half-spaces
of |[W|p such that A is totally ordered by inclusion and P = {Ja,a € A} (for short
we write P = QA). There are three kinds of chains of walls. We say that P is a segment
of walls if it is a finite chain of walls. We say that P is a line of walls if P = 0A with A
a set of half-spaces such that the ordered set (A, C) is isomorphic to (Z, <). And we
say that P is a ray of walls if P = 0A with A a set of half-spaces such that the ordered
set (A, C) is isomorphic to (I, <).

Lemma 3.2 Let P denote a nonempty set of walls which are all disjoint from a given
wall p. Assume that PU {u} is Euclidean. Then PU {u} is a chain and W(P U {u}) is
infinite dihedral.

Proof Let 41/ denote some wall such that W(P U {u, 1'}) is a Euclidean triangle
subgroup. Represent W(P U {u, 1'}) as a group of isometries of the Euclidean plane
(in such a way that the abstract reflections act as geometric reflections).

Let m, m’ denote two walls of P U {u}. Note that m N'm’ = & if and only if the
order of 1,1, is infinite. In the geometric representation we have m N m’ = & if
and only if the Euclidean lines L(m), L(m') fixed pointwise by m and m’ are parallel.
Since we assume m Ny = & or m = pu, we deduce that L(m) is parallel to L(u).
Similarly L(m’) is parallel to L(x). Thus L(m) and L(m’) are parallel, which implies
thatm =m’ ormNm’ = @.

Thus P U {u} is a set of pairwise disjoint walls (of cardinality > 2). By look-
ing at the geometric representation we deduce that W (P U {u}) is infinite dihedral.
Note that the set of walls associated with all the reflections of any infinite dihedral
reflection subgroup is a line of walls (this can be seen by considering a generating
set consisting of two reflections; the associated walls cut |W|, into three pieces, one
of which is a fundamental domain for the reflection subgroup that we consider). It
follows that P U {p} is a chain. [ |

Let T denote any subset of the generating set S. Then any conjugate of the sub-
group W(T) is called a parabolic subgroup. The parabolic closure of any subgroup
I" C W is the intersection of all parabolic subgroups of W containing I'; we denote
it by T. With this terminology we have the following.

Lemma 3.3 Let P be a set of pairwise disjoint walls of |W |o. Assume that there exists
a wall m such that W(P U {m}) is a Euclidean triangle subgroup. Then the parabolic

closure m satisfies the following conditions:
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(i) ‘/Wﬁ) is isomorphic to an irreducible affine Coxeter group.

(ii) For all walls pu, p', u"’, if pu separates p' from '’ and if v, and r,,» both belong
to VV(\P/’), then r,, also belongs to VV(\I;).

(iil) For any line of walls P and any wall p, if W(P'") < m and if W(P' U {u}) is
a Euclidean triangle subgroup, then r,, belongs to m

Proof (i) follows from a theorem of D. Krammer [CMO05, Theorem 1.2] (see also
[CMO5, Theorem 3.3]); (ii) and (iii) follow from (i) using convexity arguments, see
[Cap06, Lemma 8] for details. [ |

We may now deduce another useful result of the same kind as Lemma 3.1.

Corollary 3.4 Let P be a set of pairwise disjoint walls of |W |y and let m be a wall
such that W(P U {m}) is a Euclidean triangle subgroup. Then W possesses a Euclidean
triangle subgroup, denoted by W(P U {m}), containing W(P U {m}) and such that
r, € W(P U {m}) for each wall p satisfying either of the following conditions.

(i)  There exist u', '’ € P such that p separates j1' from p'’.

(ii) p is disjoint from m and moreover W (P U {u}) is a Euclidean triangle subgroup.

Proof Let m < W be the irreducible affine Coxeter group provided by Lem-
ma 3.3. By Lemma 3.3(iii) we have r,,, € W). Let P’ be the set consisting of all
those walls p’ such that r,» € W (P) and that there exists p € P U {m} which does
not meet p’. Define W(PU {m}) := W(P’ UPU {m}). The group W(PU {m})
is a Euclidean triangle subgroup, because it is a subgroup of an affine Coxeter group
generated by reflections corresponding to two directi(lrls/ of hyperplanes. Given a

wall 44 satisfying (i) or (ii), we obtain successively r, € W (P) by Lemma 3.3 and then
i € P’ by the definition of P’. [ |

4 The Walls of a Geometric Flat

Let F be a geometric flat which is isometrically embedded in the Davis complex |W/|,
of W. Let .# (F) denote the set of all walls which separate points of F:

AM(F):= U A(x,y).

x,y€F

Lemma 4.1 Forevery i € M (F), the set 4 N F is a Euclidean hyperplane of F.

Proof Let x, y be points of F which are separated by ;1. We know that N F is a
closed convex subset of F which separates F into two open convex subsets. Thus the
result will follow if we prove that the geodesic segment [x, y] joining x to y meets
1 in a single point. This is a local property, which can easily be checked in a single
(Euclidean) cell of |W | (see [NV02, Lemma 3.4] for details). [ ]

Lemma 4.2 Let 1 be a wall which meets F. Assume that F contains a Euclidean half-
space F* such that F* N p # @ and F* is contained in a e-neighborhood of 1 for some
€>0. ThenF C p.
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Proof Let d be the distance function of the Davis complex |W |o. Since u is a closed
convex subset, the function d,,: [W|y — R": x — inf{d(x,y) | y € pu} is convex
[BH99, §I1.2]. By assumption, the restriction d, |+ of d,, to F* is bounded. There-
fore d,,|p+ must be constant, as is the case for any bounded convex function on an
unbounded convex domain. Since ;+ meets F* by hypothesis, we have d,, |[p+ = 0, that
is to say, F* C p. By Lemma 4.1, this implies F C p. |

Two elements p, p” of .# (F) will be called F-parallel if their respective traces on
F are parallel in the Euclidean sense. In symbols, this is written:

pllpp’ <= pNF=p' NForuNFNu' = @.

The relation of F-parallelism is an equivalence relation on .# (F).
Besides the relation of F-parallelism, there is another relation of global parallelism
on the walls of F defined by

pllp' = p=p orpny’ = a.

Clearly p|lp’ = pllpp’. Given p € 4 (F), we set Pp(p) := {m € #(F) | m||u}.
Thus Pr(p) is contained in the F-parallel class of . Note that, in contrast to the
F-parallelism, the relation of global parallelism is not transitive in general: two dis-
tinct walls of Pr(11) may have nontrivial intersection.

Any large set of walls contains two non-intersecting ones [NR03, Lemma 3]. Con-
sequently, the set of F-parallel classes is finite. Since chambers are compact and F
is unbounded, it follows that some F-parallel class must be infinite. Actually, all of
them are as is seen from the following.

Lemma 4.3 Given any u € M (F), there exist two rays of walls M*(p), M~ (u) C
M (F) such that 1 separates any element of M*(u) from any element of M~ (p). In
particular, 1 does not meet any element of M (1) U M~ (1), and Pr(11) contains a line
of walls (passing through p).

Proof Consider a line of F which meets orthogonally the F-hyperplane N F. Us-
ing Lemma 4.2 we see that when a point p goes to infinity on the line, its distance
to 1 must tend to infinity. Now by the so-called parallel wall theorem [BH93, Theo-
rem 2.8] any point far from a given wall in W/, is separated from that wall by some
other wall of [W|y. The lemma follows. [ |

Remark 4.4 For y € .#(F), any subset P C Pp(u) of pairwise disjoint walls is
a chain of walls. Indeed for three distinct walls py, p2, p3 € P we have p;||ru, thus
P1, P2, p3 are mutually F-parallel. The Euclidean hyperplanes p; N F are pairwise
disjoint, so we may assume that p, N F separates p; N F from p; N F. It follows that
P> separates p; from ps. Hence {py, p2, p3} is a segment of walls. Since any 3-subset
of P is a chain, it follows that P itself is a chain.

We will see in Proposition 4.7 below that the restriction of the relation of global
parallelism to a certain subset .#g,q(F) of .# (F) is an equivalence.

https://doi.org/10.4153/CJM-2009-040-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2009-040-8

On Geometric Flats in CAT(0) Tits Buildings 749

By definition, the subset .#g,q(F) C .# (F) consists of all those walls p1 € .# (F)
which satisfy the following property.

There exists a wall ' € # (F) such that W(Pr(u) U {u'}) is a Euclidean triangle
subgroup.

Applying Lemmas 3.2 and 4.3, we get the following.

Lemma 4.5 Assume p € Mpua(F), and more precisely that W (Pp(u) U {p'}) is a
Euclidean triangle subgroup for some ' € # (F). Then

(1) Pp(uw) is a line of walls.

(ii) For every m € Pr(u), one has Pe(p) C Pp(m). In particular Pe(p) = Prp(m)
provided m € Mpyua(F).

(iii)) W (Pp(w)) is an infinite dihedral subgroup of W and is a maximal one.

(iv) 1y does not centralize W (Pr(p)).

The following lemma outlines the main combinatorial properties of the set
%EUCI(F )

Lemma 4.6 We have the following.

(i) Let P C #(F) be a line of walls. If there exists m € .# (F) such that the group
W (P U {m}) is a Euclidean triangle subgroup, then P C Mpyq(F).

(ii) Letm € M (F). If m & Mrna(F), then m meets every element of Mrpyc(F).

(iii) Letm,m’ € . (F). If the reflections r,, and 1., do not commute and if m and m’
are not F-parallel, then m € Mg, (F).

(iv) Let m,m’ € #(F). If the reflections r,, and r, do not commute and if m’ €
%Eucl(F)» thenm € '%Eucl(F)-

Before proving the lemma, it is convenient to introduce the following additional
terminology. A set P of walls of |W|y is said to be convex whenever the following
holds: for each wall m of |W | separating two walls of P, we have m € P. For example,
for all x, y € |W| the set .# (x, y) is convex; moreover, the set .# (F) is convex as
well.

Proof of Lemma 4.6 (i) Let u € P. Since P C .# (F) is a line of walls we have
P C Pg(u). There are finitely many walls separating two disjoint walls of |W|y. The
line of walls P may be written as a union of segments of walls {1, ity41} (n € Z) so
that no m € P separates i, from 1,11. Choose then a segment of walls P, C Pp(u)
such that P, N P = {,, ptyr1} and any wall m € P, \ {y, pye1} separates p,, from
pn1 and moreover P, is maximal with respect to these properties. Set P = | J, Py.
Then P C P C Pg(u), Pis a line and for every wall m’ of Pr(u) \ P the set PU {m’}
is not a line anymore.

By construction for every p € P there exist p’, p”’ € P such that p separates
p’ from p’’. Therefore, since W(P U {m}) is a Euclidean triangle subgroup, we
have W(P U {m}) C W(PU {m}) by Corollary 3.4. In particular, W(P U {m})
is a Euclidean triangle subgroup. Hence we are done if we show that P = Pr(y1). This
is what we do now.
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Let m’ denote a wall separating two walls p’, p’’ of P. Then m’ € .# (F) and by
Corollary 3.4 the subset PU {m’} is still Euclidean. By Lemma 3.2 PU {m'} is a line,
and by the maximality of P we have m’ € P. Thus P is a convex set of walls.

Assume by contradiction that there exists m’ € Pp(u)\P. By the maximality of
P, the set PU {m'} is not a line anymore. By Remark 4.4 this implies that m’ meets
at least one element of P. Let P’ denote the (nonempty) subset of P consisting of all
those walls which meet m’. Note that by the definition of P/, for all p € P, if there
exist p’, p’’ € P’ such that p separates p’ from p’/, then p € P’. Since P is convex,
this shows in particular that P’ is convex.

If P’ is finite, it is a segment of the line P and there exist p’, p’’ € P such that m’
separates p’ from p’’. Since P is convex, this implies that m’ € P, a contradiction.

Hence P’ is infinite. Since p € P’ and P’ is convex, we see that P’ is a ray of walls
(contained in P, and not containing ).

By Lemma 3.2 the group W (P) is infinite dihedral. Since P is a line of walls, the
wall 7 of any reflection r, of W(P) separates two walls p’, p’’ of P. By convexity we
then have € P: the reflections of W (P) are precisely the reflections along walls of
P. We note two consequences of that. First, P is invariant under W (P). Secondly,
we have W (P) = W(P,) for any convex subset Py C P of cardinality at least 2. In
particular we have W(P) = W (P’).

The reflection r,,» does not centralize W (P'), otherwise it would centralize W (P)
and, hence, m’ would meet p. Consequently r,,» does not centralize W (P}) for all
convex subsets Pj C P’ of cardinality at least 2. Hence there are infinitely many walls
p’ in the ray P’ such that the reflections r,,» and r, do not commute. Let p’ € P’
denote some wall such that the reflections 7, and r5, do not commute, and that the
collection of all walls of P” which separate p’ from p is of cardinality greater than the
constant L(> 1) of Lemma 3.1.

Let m" := rp/(m’). Let {p1,..., pr} denote the segment of walls of P" which
separate 1 from p’ (we have k > L). Then the walls ; = r;5:(p;) belong to
the ray P’ by convexity (remember that r5/ (1) € P). Hence each of them meets
m’. By construction each of them also meets m'’. By Lemma 3.1 we deduce that
W(m',m" iy, ... /¢, p') = W(m',my, ..., g, p') is a Euclidean triangle sub-
group. Since {1, ..., #y, p’} is a convex subsegment of P containing at least two
walls we see that W (P U {m’}) is a Euclidean triangle subgroup. Since i € P and
m’ Ny = &, this contradicts Lemma 3.2, thereby completing the proof of the desired
assertion.

(ii) Let m € .# (F). Assume that there exists 1 € .#guq(F) which does not meet
m. In other words m € Pp(u). By Lemma 4.6(i), it € Mpua(F) implies Pr(p) C
%Eucl(F)- Thus m € '%Eucl(F)-

(iii) Let M be the F-parallel class of m and let m'’ := r,,(m’). Since m and m' are
not F-parallel, there are points x, y on m N F which are separated by m’. Thus m"’
separates x from y as well. It follows that m’’ € .# (F).

We now show that m’’ is not F-parallel to m. To this end, first note that m’’
contains m N m’ N F which is nonempty. Hence, if m’’ were F-parallel to m, then
we would have m N F = m’’ N F. This yields successively m N F = r,(m’) N F
and then m N r,,(F) = m’ N r,(F). Since m N F is pointwise fixed by r,,, we have
mNF C mN r,(F), whence finally m N F C m’, which contradicts the fact that m
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and m’ are not F-parallel. This shows that m’’ is not F-parallel to m and it follows
that m’ and m’’ both meet every element of the F-parallel class M.

By Lemma 4.3, M contains a line P containing m. In particular P is infinite. By
Lemma 3.1, the group W (P U {m’}) is a Euclidean triangle subgroup. Therefore, we
deduce from Lemma 4.6(i) that m € .#gua(F).

(iv) Let m € #(F) and m’ € #g.a(F) be such that the reflections r,,, and r,,/
do not commute. By Lemma 4.6(i), we have Pr(m’) C My (F). Let P’ := Pp(m’).
Hence P’ is a line of walls and for all € P’, we have Pr(u’) = P’.

By Lemma 4.6(ii) we may assume that m meets every element of P/, and in fact
that every element of Pr(m) meets every element of P/, otherwise m € .#g,q(F) and
we are done. By Lemma 4.3, Pr(m) contains a line of walls P which contains m.

Let C (resp. C’) denote the set of walls of P (resp. P’) which meet m'’ := r,,,(m’).

Assume that C’ is finite. Then there exists a (convex) segment of walls
(p+, P1,- -, Pn, p—) contained in P’ such that C' = {py, ..., p,} and m’’ is disjoint
from p; and p_. We let x,, x_ denote points lying on m N p., m N p_, respectively.
Since m’ separates p. from p_ and m \ m'’ = m \ m’, we deduce that m’’ separates
x4+ from x_. Thus m’/ separates p. from p_. It follows that m'’ € .# (F), and in fact
m'" € Pp(p*). By hypothesis m’ € #g,a(F), whence Pr(p*) = Pr(m’). Since m’’
meets m’, this implies m’ = m’’ from which it follows that the reflections r,,, and r,,/
commute, which is a contradiction. Thus C’ is infinite.

By Lemma 3.1, it follows that W (C’U{m}) is a Euclidean triangle subgroup. Since
P’ is Euclidean, we have W (P’) = W (P{) for any convex chain Pj C P’ of cardinality
at least 2 (see Lemma 3.2). Since C’ is infinite and convex, we deduce W(P’) C
W(C'" U {m}). Since r,,/ belongs to the Euclidean triangle subgroup W(C’ U {m})
and r,,,/7,+ has finite order for every p” € C’, we see that r,,/7,,s has finite order for
every p1' € P’. Thus C’ = P’. Moreover for all 1/ € P’, the reflection r,, does not
commute with r,,,.

Let i1 be any element of P different from . Let a denote the half-space bounded
by m such that u Na = &. Let hy denote the half-space bounded by m’ such that
anhy C ry(hy). Extend hy to a chain of half-spaces (h;)icz such that h; C h;y; for
all i € Z and that {Oh; | i € Z} = P’. Since W(P’ U {m}) is a Euclidean triangle
subgroup it follows that the relation a N h; C 7,,(h;) holds for every i € /. For each
i € Z, choose a point y; € p N Oh; and a point y! € Oh; in the interior of a. Then
yi € Oh; and y/ € Oh; are separated by m. Since r,, and ry;,, do not commute, it
follows that y; and y/ are separated by r,,,(Oh;). Since y! € a N h;, we deduce that
yi & r(h;) for all i € Z. Now choose a point x; € m N Oh; for each i € 7. We have

xo € mN Ohy C 1,,(Ohg) C 1(hg) C 1u(hy) C 1(hy) C--- .

Since .# (xo, yo) is finite and since yo & r,,(ho), there exists j > 0 such that y, €
rm(h;). Thus the wall r,,(Oh;) separates y, from y; forall i > j. Since y, and y; both
lie on the wall y, it follows that Oh; meets i for all i > ;.

This argument holds for any & € P\ {m}. In particular, if we choose y such that m
and y are separated by at least L elements of P, where L is the constant of Lemma 3.1,
we deduce from this lemma that W ({m, ., Oh;}) is a Euclidean triangle subgroup. By

Corollary 3.4, we obtain ry;, € W({m, j1,0h;}) forall i > j. As before, this implies
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that W(P') < W({m, u1,0h;}) and, in particular, that m"" = r,(m’) = r,,(0h)
meets p. Thus we have o € C.

Since this holds for all walls ¢ € P which are sufficiently far apart from m and
since C is convex, we finally deduce that C = P. By Lemma 3.1 this implies that
W(P U {m’}) is a Euclidean triangle subgroup. By Lemma 4.6(i), we have
P C Myua(F) whence m € Myua(F). [ |

The main results of this section are the following two propositions.

Proposition 4.7 The group W (Mrua(F)) is isomorphic to a direct product of finitely
many irreducible affine Coxeter groups, each of rank > 3.

Proof We claim that for all m, m’ € #g,q(F), either Pe(m) = Pp(m’) or the groups
W (Pr(m)) and W (Pp(m’)) centralize each other or W (Pr(m)UPr(m’)) is a Euclidean
triangle subgroup.

We first deduce the desired result from the claim. We know that W (.#g.q(F)) is
isomorphic to a Coxeter group. Let W (Agya(F)) = W, x - - - x Wy be the decompo-
sition of W (g (F)) in its direct components. Hence W; is an irreducible Coxeter
group for eachi = 1,..., k. Let M; denote the set of walls m € .#g,a(F) such that
rm € W;. We note that . A#z,a(F) = M, L --- U Mgand W; = W(M;).

We must prove that W; is affine. We record the following easy observations, which
follow from the fact that the W;’s are the irreducible components of W (.#g,a(F)).

* Ifm € Mrua(F) is a wall such that r,, € W;, then W(Pr(m)) < W;.

* Ifm,m’ € Mrua(F) are two walls such that Pr(m) # Pr(m’) and that r,,, and r,,,/
both belong to W;, then there exists a sequence of walls m = mg, my, ..., my = m’
such that for each j, one has m; € M;, rm; € Wi and T, does not commute with
tm;_, (a priori the order of r,,, 7,,_, might be infinite).

In view of the above claim, we show that these two observations imply that for any
wall m € .#gua(F) such that r,, € W;, one has

W (Pp(m)) < W; < W(Pp(m)),

where Wm)) is the irreducible affine Coxeter group provided by Lemma 3.3.

By the first observation we just have to check that W; < W(Pgp(m)). Since W; =
W(M;), it is enough to show that r,,, € W (Pp(m)) for any m’ € M;. For such
an m’ we have a sequence of walls m = myg, m,...,my = m’ such that for each
j> one has m; € M; and r,,; does not commute with r,,,,_,. We are going to show
by induction that for each € Pr(m;) we have r, € W(Pr(m)), which implies in

particular r,,, € W(Pg(m)).

This is clearly true for i = 0. Assume this is true for Pp(m;_;), with i > 0.
Either m; € Pp(m;_,), thus Pp(m;) = Pp(m;_,) and we have nothing to prove. Or,
by the initial claim, 7,7, , has finite order > 2 and W(Pgp(m;_1) U Pr(m;)) is a
Euclidean triangle subgroup. Since r,, and r,, , do not commute, it follows that
W (Pp(m;—1) U {m;}) is a Euclidean triangle subgroup. Thus by Lemma 3.3 we have
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e~

Tm, € W(Pp(m)). In fact the same argument applies to any wall © € Pg(m;), which
ends the proof.

The inclusion W; < W(Pg(m)), is now established. In particular W; is an infinite
reflection subgroup of an irreducible affine Coxeter group; hence it must be itself an
affine Coxeter group, as desired.

It remains to prove the claim. Let m, m’ € #gya(F).

Suppose that Pg(m) # Pr(m'). Then by Lemma 4.5 m meets m’.

If there exists m’’ € Pgp(m) N Pp(m’) then, by Lemma 4.6(i), we have m'’ €
My (F) which implies that the elements of Pr(m’’) are pairwise disjoint (see Lem-
ma 4.5). Since m’’ € Pp(m) N Pp(m’), we have {m,m'} C Pr(m'’) and, hence,
m = m’ because m meets m’. This contradicts the fact that Pr(m) # Pr(m’), thereby
showing that Pr(m) N Pr(m’) is empty. In other words, m meets every element of
Pr(m’) and m’ meets every element of Pr(m).

For every 1 € Pp(m) we have i € Mgy (F) by Lemma 4.6(i) and, hence, Pr(m) =
Pr(p) by Lemma 4.5. Similarly, for all 4/ € Pgr(m’), we have Pr(m’) = Pgp(u’).
Therefore, we deduce from the previous paragraph that every element of Pr() meets
every element of Pr(m’).

Suppose moreover that W (Pg(m)) does not centralize W(Pg(m’)). Then there
exist p € Pp(m) and p’ € Pp(m’) such that r, and r, do not commute. Let p’’ :=

rp(p").
Suppose p’’ meets only finitely many elements of the line of walls Pg(m). Then
there exists a segment of walls (p_, p1, p2,..., pn, p*) inside Pr(m) such that

{p1, P2y ---, pu} is the set of walls of Pr(m) which meet p’’, and p’’ is disjoint from
p— and p,. We let x_, x, denote points in p’ N p_, p’ N p, respectively. Since
p separates p_ from p, and p’ \ p = p’ \ p”’ we deduce that p'’ separates x_
from x,. Thus p’’ separates p_ from p,. In particular since p_ and p, meet F, we
have p'’ € .# (F) and clearly p’’ € Pp(p_). As we have already observed, we have
Pr(p_) = Pr(m) = Pr(p). Thus p’’ € Pr(p), which is a contradiction.

Thus in fact p’’ meets infinitely many elements of Pr(m). By Lemma 3.1, this
shows that W (Pr(m)U{p’}) is a Euclidean triangle subgroup. Similarly W (Pr(m’) U
{p}) is a Euclidean triangle subgroup. The order of the product r,r, is thus inde-
pendent of the wall n’ chosen in the line of walls Pr(m’). It follows that for each
n’ € Pp(m') the reflections r, and r,,» do not commute. Then by Lemma 3.1 the sub-
group W(Pr(m) U {n’}) is also a Euclidean triangle subgroup. By Corollary 3.4 we
now deduce that r,, € W(Pp(m) U {p’}). Thus W(Pp(m’)) C W(Pe(m)U {p’}),
and in particular the group W (Pr(m) U Pr(m’)) is a Euclidean triangle subgroup,
which proves the claim. u

Corollary 4.8 Forevery m € Mpwa(F) andy € W(Mrna(F)), if y. mNm = & then
v.m € Mrwa(F).

Proof By assumption, the group (r,,7,,) is an infinite dihedral group which is
contained in W (g, (F)). Therefore, since W (#g,a(F)) is an affine Coxeter group
by Proposition 4.7, the group W (Pp(m) U {y.m}) is an infinite dihedral group and,
by Lemma 4.5(iii), we have r, ,, € W(Pp(m)). Since Pr(m) is a convex line of walls,
we deduce finally that y.m € Pp(m) C Meua(F). [ |
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Proposition 4.9 One of the following assertions holds.
(i)  There exists an infinite subset M C .# (F) which satisfies the following conditions:

(a) Foreverym,m’ € M, eithermNF=m'NFormNFNm' = &;
(b) The groups W (M) and W (.4 (F)\M) centralize each other.

(ii) The group W (. (F)) is isomorphic to an affine Coxeter group.

Proof Assume first that .#p,q(F) = .# (F). Then by Proposition 4.7, property (ii)
holds.

Assume now that there exists m € # (F)\.#gua(F). Let M be the set of all those
elements of .# (F) which do not belong to .#g,q(F) and which are F-parallel to m. By
Lemma 4.6(ii), we have Pp(m) C M; in particular M is infinite. Let m’ € .# (F)\M.
If m' is not F-parallel to m, then r,, centralizes W (M) by Lemma 4.6(iii). If m’
is F-parallel to m, then m’ € #g,a(F) since m’ ¢ M. In view of Lemma 4.6(iv),
this implies that r,,» centralizes W(M). This shows that the groups W (M) and
W (. (F)\M) centralize each other. Thus property (i) holds. [ |

5 From Geometric Flats to Free Abelian Groups

Let X be a combinatorially convex subcomplex of the Davis complex [W|o, and I" be
a subgroup of W which stabilizes X and whose induced action on X is cocompact.
The distance function on |W/|j is denoted by d.

Lemma 5.1 Let p C X be any unbounded subset through a given point x, and let
M (p) = Uy,zep M (y, z) be the set of walls which separate points of p. There exists
a constant K (depending on p and I') with the following property: given any positive
real number r, there exists a chamber ¢ at distance at most K from x and an element
~v € T NW(A (p)) such that c and y.c both meet p, and that d(c,y.c) > r.

Proof Recall that a combinatorially convex subcomplex is a (CAT(0) convex) union
of chambers.

Let C(p) denote the set of chambers of X meeting p: thus p is covered by the
chambers of C(p). Recall that I" has finitely many orbits on the set of all chambers
of X. Since p is unbounded, the set C(p) is infinite and it follows that there exists a
chamber ¢ € C(p) such that I'.c N C(p) is infinite.

We write T'.c N C(p) = {vo0.¢,11-¢, .-, 7i-C, ... } (withyy = 1). We pick a point
x; in each intersection p N 7;.c. By Lemma 1.2 there exists g € W (.# (xo,x;)) such
that g;xo and x; lie in a common chamber. Thus g;~!7; is an element of W sending ¢
to a chamber meeting c. There are finitely many such elements.

Thus, up to extracting a subsequence, we may suppose that the sequence
(g 'yi)i>1 is constant. Then for each i the element 7/ = ~;7,~! belongs to
I'NW (4 (p)). And also 7/ sends the chamber ;¢ to the chamber +;c. The lemma
follows because the set of chambers (v;c);>; is infinite. [ |

As before, let .# (F) denote the set of all walls which separate points of F. Theo-
rem 1 of the introduction is a straightforward consequence of the following.
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Theorem 5.2 Let F be a geometric flat which is isometrically embedded in X; let n
denote its dimension. Then the intersection I' "W (.2 (F)) contains a free abelian group
of rank n.

Proof By Selberg’s lemma, the group I has a finite index subgroup which is torsion
free. Since I is cocompact on X, any finite index subgroup of I' is cocompact as well,
hence we may assume without loss of generality that I is torsion free.

The proof works by induction on the dimension 7 of the flat F. We may assume
that n > 0.

Suppose first that .# (F) possesses a subset M which satisfies Proposition 4.9(i).
Let then m be any element of M and set F/ := FNm. By Lemma 4.1, F’ is a geometric
flat of dimension n — 1.

Let p denote any geodesic ray of F meeting transversally infinitely many walls
of M. Let x denote the origin of p, and let x, denote the unique point of p with
d(x,x,) = n. By Lemma 2.1 there exists a point z, € X such that .#Z(x,x,) =
M (x,20) U M (24, %), With A (x, z,) = M (x,x,) N M. Observe that the cardinality
of # (x,z,) tends to infinity with », and thus d(x,z,) — +oo. There is a subse-
quence (z,,)r>o such that the geodesic segment [x, z,,] C X converges to a geodesic
ray p’ C X (with origin x). Note that for every y € p’ we have 4 (x, y) C .M (x,zy,)
for k large enough. In particular .# (x, y) C M. Thus .# (p’) C M.

We now apply Lemma 5.1 to the ray p’ for some (large) positive real number r > 0.
We then get a nontrivial element v € I' N W(M). Observe that v must be of infinite
order since I is torsion free.

It follows from the definition of M that « centralizes W (.# (F’)). Furthermore,
since W (. (F’)) is isomorphic to a Coxeter group and since the center of any Coxeter
group is a torsion group (this is well known and is a straightforward consequence of
[Hum90, Exercise 1, p. 132]), the intersection W (. (F")) N () is trivial. We deduce
that the group generated by W (. (F’)) together with ~ is isomorphic to the direct
product W(.# (F')) x (7). The desired result follows by induction.

Suppose now that Proposition 4.9(ii) holds. Let p; be any element of .Z (F).
Again by Lemma 4.1 the intersection p; N F is a geometric flat of dimension n — 1.
Note that any flat ® of dimension > 1 is unbounded and thus has .# (®) # @. Thus
for each i = 2, ..., n we may choose successively

i—1

pi € A (N pj) NF).

j=1

In view of Lemma 4.1, the set ((;_, u;) N F consists of a single point x of F and for
eachi € {1,..., n}, the set

Ai = ( ﬂ ,uj) NF
je{1,m\{i}

is a geodesic line of F.
We need the following auxiliary result.
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Lemma 5.3 T has a finite index subgroup T such that for any wall m and any cham-
ber ¢ meeting m, if v € '’ sends ¢ to a chamber meeting m, then ym = m.

Proof It is enough to prove the lemma when I' = W. Recall that the stabilizer of
a wall m is the centralizer of the involution r,,. Since W is residually finite, the cen-
tralizer Z(r,,) is a separable subgroup, that is to say, Z(r,,) is an intersection of finite
index subgroups. (In any residually finite group W the centralizer of any element g
is separable. Indeed, for x ¢ C = Zy(g), we have [x,g] # 1, thus there is a finite
quotient ¢: W — G such that [¢(x), #(g)] # 1. Then ¢(x) ¢ Zz(¢(g)) and the
finite index subgroup ¢~ Zx(¢(g)) separates x from C.)

We fix some wall m and claim that there is a finite index subgroup W,, C W such
that for any chamber ¢ meeting m, if v € W,,, sends ¢ to a chamber meeting m, then
~vm = m. The lemma will follow since we may assume that W, is normal, and there
are only finitely many orbits of walls under W.

Let B,, be the subset of W consisting of all those elements v € W such that there
exists a chamber ¢ such that #m and ~.c both meet m. Note that B,, is invariant by left-
and right-multiplication under Z(r,,). In fact it is a finite union of double classes:
B, = Z(ry) U Z(ry)nZ(rp) U -+ - U Z(1)Z(11), where 1, ..., do not be-
long to Z(r,,) (the finiteness follows from the fact that Z(r,,) acts co-finitely on the
set of chambers meeting m, and from the local compactness of the Davis complex).
The claim follows if we take for W, any finite index subgroup of W containing the
separable subgroup Z(r,,) but none of the elements vy, ..., . ]

By Lemma 5.3 we may assume that for any wall m and any chamber ¢ meeting m,
if v € I" sends ¢ to a chamber meeting m, then ym = m. Note that this implies in
particular that if ym intersects m, then ym = m.

Let r be any positive real number. For each i we choose one of the two rays con-
tained in \; with origin x, and denote it by p;. For eachi € {1,...,n}, Lemma 5.1
provides a chamber ¢; at distance at most K; of x, and an element

%i(r) € W (X)) NT

(C W(A(F)) NT), such that ¢; N p; and ~;(r).c; N p; are both nonempty, and that
d(ci,7i(r).c;i) > r. Here ¢; and ;(r) depend on r, but K; depends only on p;. Note
that ~;(r) is of infinite order because I' is torsion free.

It immediately follows from the fact that p; C p; that each v;(r) preserves p;
(j#i).

Since x € p; N i, but p; ¢ p;, it follows from Lemma 4.2 that there is a constant
r; such that, given any point y of p;, if y is at distance at least r; from x, then y is at
distance larger than K; + D from p;, where D is the diameter of a chamber. Therefore,
for each r > r;, we have d(x,~i(r).c;) > d(ci,~i(r).c;) > r and hence any point on
~i(r).ci N p; is at distance larger than K; + D from p;. Thus v;(r).c; is at distance
larger than K; from p;. On the other hand v;(r).¢; is at distance at most K; from
~i(r)pi, from which it follows that v;(r)u; # i for all r > r;. By the above, this
yields v;(r)p; N pi = S forall r > r;.

Let a; be the half-space bounded by y; and containing p;. We define an element ~;
as follows.
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If yi(ri)a; C a;, we set v; = i(r;).

If not, then we choose r > r; as follows. Note that v;(r)u; € Apua(F) for all r by
Corollary 4.8. In particular, 7;(r;); meets p;, but p; ¢ 7i(ri)p; because x € p; N ;i
and p; N 7i(r;)pi = @. Thus, by Lemma 4.2, every point of p; sufficiently far away
from x is also far away from ~;(r;)u;. Repeating the arguments used to define the
constant r;, we obtain a constant r > r; such that v; (r)p; # 7vi(ri) i

Now, if v;(r)a; C a; we set y; = ~;(r). Otherwise we set v; = ;(r)~'v;(r;). Let us
check that in the latter case we also have v;a; C a;. The walls p;, v; (r;) i and ; (r)
belong to .#g,a(F) by Corollary 4.8 and are pairwise disjoint by construction. Thus
they form a chain and it follows that ~;(r;)a; C ~(r)a;, whence v;a; C a;. Therefore,
for all m > 0, we have ¥/"a; C a; and hence /" ; N p; = & while v/"p; = p; for
j#i.

Choose integers my, . .., m, divisible enough so that each v/ := ;" belongs to
the translation subgroup of the affine Coxeter group W (.# (F)). Thus the ~/’s gen-
erate an abelian group. In view of the action of each «y/ on the walls y1, . . ., uy, the
intersection (7/) N (y; | j # i) is trivial for all i. This implies that the ;s generate a
free abelian group of rank . ]

We note that the complete proof of Theorem 5.2 is much shorter when (W, S) is
assumed to be right-angled (in this case .#g,q(F) is empty).

6 Geometric Flats in Tits Buildings

The purpose of this section is to prove Theorem 5.

As before, let (W, S) be a Coxeter system of finite rank. Let Z = (C(#4), ) be a
building of type (W, S). Recall that C(Z) is a set whose elements are called chambers,
and that §: C(#) x C(H) — W is a mapping, called W-distance, which satisfies the
following conditions where x, y € C(#) and w = d(x, y):

Bul w = lifand onlyif x = y;

Bu2 if z € C(%) is such that 6(y,z) = s € S, then d(x,z) = w or ws, and if,
furthermore, I(ws) = I(w) + 1, then 6(x, z) = ws;

Bu3 if s € S, there exists z € C(A) such that §(y,z) = sand 6(x, z) = ws.

For example the map W x W — W sending (x, y) to x~ !y satisfies the above.
An apartment of the building B is a subset C(27) C C(Z) such that there exists a
bijection f: C(&/) — W satisfying §(x, y) = f(x)"' f(»).

The composed map ¢ o §: C(#) x C(HB) — N, where £ is the word metric on
W with respect to S, is called the numerical distance of 2. 1t is a discrete metric on
C(4A).

The following lemma is well known.
Lemma 6.1 Let C(<f) be an apartment and C be a subset of C(%). Suppose that
there exists a map f: C — C(&7) such that §(f(c), f(d)) = d(c,d) forall ¢c,d € C.
Then there exists an apartment C(<f") such that C C C(«").

Proof Follows from [Tit81, §3.7.4]. |
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Let T C S and let ¢ be a chamber of the building B. The residue of type T of ¢ is
the set pr(c) of those chambers ¢’ for which d(c,c’) € W(T). The residue is called
spherical whenever W (T) is finite. Given any residue p of B and any chamber x, there
exists a unique chamber c in p at minimal numerical distance from x. This chamber
has the property that d(x, d) = d(x, ¢)d(c, d) for each chamber d of p. The chamber ¢
is called the projection of x onto p and is denoted by proj ,(c) [Ron89, Corollary 3.9].

Lemma 6.2 Let C(o/) be an apartment of 28 and C C C(/) be a set of chambers.
Suppose that there exists a residue p and a chamber ¢ € C such that ¢ € C(p) and
proj,(c") = cforall ¢’ € C. Then for any chamber d € C(p)\{c} there exists an
apartment C(fy) such that C U {d} is contained in C(27y).

Proof Letd € C(p)\{c} and let wy := d(c,d). Let d’ be the unique chamber of
C(«) such that §(c,d’) = wy. For any ¢’ € C, we have 6(c’,d) = 0(c’,c).wy =
d(c’,d") because projp(c') = c. It follows that the function f: CU {d} — CU
{d’}, which maps d to d’ and induces the identity on C, preserves the W-distance 4.
Therefore, the existence of an apartment C(<7;) such that C(<;) contains C U {d}
follows from Lemma 6.1. |

Before stating the main result of this section, we need to introduce some additional
terminology and notation.

* |4y denotes the CAT(0)-realization of the building 43, as defined in [Dav98]; it
is a piecewise Euclidean simplicial complex. For each chamber ¢ € B there is an
associated CAT(0)-convex subcomplex |c|o C | %]y, which we call the associated
geometric chamber. For every subset C C C(%) we denote by |C|y the union of
geometric chambers |c|o associated to chambers ¢ € C. We say that a subcomplex
X C |A|o is combinatorial whenever it is a union of geometric chambers. If o/
is any apartment of Z the subcomplex |o7|y is isometric to [W|y. As a simpli-
cial complex, |.«7|, is isomorphic to the first barycentric subdivision of the Davis
complex |[W/|o.

* Givenx € |#lo, we set p(x) := {c € €(B) | x € [c|o} and 7(x) := (¢ ) [Clo-
The set p(x) is a (spherical) residue. The subcomplex |p(x)]o is a neighbourhood
N(x) of x in | %|y. For every chamber ¢ € C(2), the set Int(c) of points x € | B,
such that p(x) = {c} is an open subset of |Z|y. It is the interior of |c|y and its
closure is | clo.

* Given E C |A|o, we set C(E) := {c € C(A) | |clo C E}. For example, given
any x € |%|o we have C(N(x)) = p(x). We say that a subcomplex &/ C |4,
is a geometric apartment provided 7 is combinatorial and C(.27) is an apartment
of A.

* Givena geometric flat F C ||y and any subset E C ||y, we denote by dim(FNE)
the dimension of the Euclidean subspace of F generated by E N F; by convention,
the empty set is a Euclidean subspace of dimension —1.

Now let F C |2y be a geometric flat of dimension n. Since the combinatorial
subcomplexes N (x) are neighborhoods of x, we have

Vx € F, ¢ € C(A) such that x € |c|p and dim(F N |c|y) = n.
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And since every geometric chamber is the closure of its interior, we deduce that
Vx € F, 3y € Fsuch thatx € o(y) and dim(F No(y)) = n.

These two basic facts will be used repeatedly in the following.

Theorem 6.3 LetF C || be a geometric flat of dimension n and let ¢y be a chamber
such that dim(F N ¢y) = n (the geometric chamber associated to ¢, is also denoted by
co)- Define C(F, o) := {proj,(,(co) | x € F}. Then there exists a geometric apartment
o such that C(F, ¢y) C C(). In particular, we have F C <.

Proof The proof is by induction on n, the case n = 0 being trivial. We assume now
that n > 0.

Let Fy C Fbea Euclidean hyperplane such that dim(FyNcyp) = n—1. By induction,
the set C(Fy, ¢o) is contained in the set of chambers of some apartment. In view of
Lemma 6.1, it follows from Zorn’s lemma that the collection of all those subsets of
C(F, ¢y) which contain C(Fy, ¢y) and which are contained in the set of chambers of
some apartment, has a maximal element.

Let C; be such a maximal element and choose a geometric apartment .27 such that
Cy C C(). Set X := o N F. Note that X is closed and convex.

Suppose by contradiction that Cy is properly contained in C(F, ¢y). The rest of the
proof is divided into several steps. The final claim below contradicts the maximality
of Cy, thereby proving the theorem.

Claim 1 Forevery x € X, we have projp(x)(co) € Cy.

Since .27 is a combinatorial subcomplex, we have o(x) C 7. Since ¢y € C(4),
we have proj p(x)(CO) € C(#). Therefore, the claim follows from the maximality
ofCl.

Claim 2 Forevery c € Cy, there exists x € X such that proj ,,(co) = c.

Given ¢ € C(F, ), there exists x € F such that proj p(x)(co) = c¢. Ifnowc € Cy,
then o(x) C |clo C . Thusx € FN o = X.

Claim 3 dim(FNX)=n.
This is clear since co N F C X and dim(F N ¢g) = n.

Claim 4 There exists a Euclidean hyperplane F; C F which is contained in o/, and
which bounds an open half-space of F, none of whose points is contained in /). In other
words, the hyperplane F, is contained in the Euclidean boundary 0X of X.

Let ¢ € C(F, ¢y)\C; and let x € F be such that Proj () (co) = c. By Claim 1, x does
not belong to X. Given xo € ¢y N F, we have [xp,x] N X = [xo, y] for some y € X
because X is closed and convex. Let F; C F be the Euclidean hyperplane parallel to
Fy and containing y. We have F; C X by convexity. Furthermore, it is clear from the
definition of y and F, that any point z € F\F; on the same side of F; as x does not
belong to .27.

https://doi.org/10.4153/CJM-2009-040-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2009-040-8

760 P.-E. Caprace and F. Haglund

Claim 5 Letx; € F be such that dim(F, No(x;)) = n — 1. Forall c € Cy, we have
Pr0j ;) (€) = Proj (. (co)-

Let ¢ := proj,,,(c). Suppose by contradiction that there exists ¢ € C such that
proj p(xl)(c) # ¢1. Let h be a (Coxeter) half-space of the apartment C(27 ) containing
c; butnot ¢; := projp(xl)(c). Thus h contains ¢y but not c.

Since o(x1) C |c1|o N |e2]o, we have o(x;) C O|h|o. Therefore, since F; C <
(see Claim 4) and since dim(F; N o(x;)) = n — 1, we deduce from Lemma 4.1 that
F, C 0|hlo. By Claim 4, the set X, as a subset of F, is entirely contained in one of the
Euclidean half-spaces of F determined by F,. Since F; C 9|h|y, we deduce that X, as a
subset of .27, is entirely contained in one of the Coxeter half-spaces of @7 determined
by 0|h|o. Since ¢g C X N ||y, we obtain X C |h]o.

Since ¢ € Cy, there exists x € X such that proj, (o)) = ¢ by Claim 2. Since
X C |h|o and since |hy is a combinatorial subcomplex, we have o(x) C |h|y and
hence proj ., (co) € h by the combinatorial convexity of Coxeter half-spaces. This
contradicts the fact that 4 does not contain c.

Claim 6 There exist d € C(F, ¢y) and an apartment o7y such that C, U{d} C C(<7).

Let x; € F; be as in Claim 5. By Claim 1 we have ¢; := projp(xl)(co) e C,.
Let y € F\X be such that x; € o(y). Letd := projg(y)(co). Clearly d € C(F, c).
Furthermore d ¢ C;, otherwise we would have y € o(y) C d C @4, whence y € X,
which is absurd. Since o(x;) C o(y) C d, the claim follows from Lemma 6.2 together
with Claim 5. [ |

Clearly, Theorem 5 of the introduction is an immediate consequence of Theo-
rem 6.3, combined with Corollary 3.
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