
APPROXIMATIONS OF THE GENERALISED POISSON
FUNCTION

LAURI KAUPPI and PERTTI OJANTAKANEN

Helsinki

i. Setting the problem

One of the basic functions of risk theory is the so-called general-
ised Poisson function F{x), which gives the probability that the
total amount of claims 5 does not exceed some given limit x during
a year (or during some other fixed time period). For F(x) is ob-
tained the well known expansion

e-nnk

where n is the expected number of claims during this time period
and Sk*(x) is the k:th convolution of the distribution function
S(z) of the size of one claim. The formula (i) is, however, much too
inconvenient for numerical computations and for most other
applications. One of the main problems of risk theory, which is
still partly open, is to find suitable methods to compute, or at least
to approximate, the generalised Poisson function.

A frequently used approximation is to replace F(x) by the normal
distribution function having the same mean and standard deviation
as F as follows:

where ai and a2 are the first zero-moments of S(z):

a« = )*dSM{z). (3)

SM(Z) is here again the distribution function of the size of one claim.
To obtain more general results a reinsurance arrangement is
assumed under which the maximum net retention is M. Hence the
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214 THE GENERALISED POISSON FUNCTION

portfolio on the company's own retention is considered. If the
reinsurance is of Excess of Loss type, then

( S(z) when z < M
SM(z) =

( i when z > M,

where S(z) is the distribution function of the size of one total claim.
The normal approximation is very simple to use and it gives a

good review of the interdependence of the different variables
involved in the risk process. In accordance with the central limit
theorem of probability calculus the normal approximation tends
asymptotically to the function F when n —> oo. Unfortunately,
however, especially for small values of n and when the risk distri-
bution is very heterogeneous it does not always give satisfactory
accuracy. Another drawback of the normal approximation is its
poor applicability in the Polya cases, where the formula (i) is
further generalised to allow for certain fluctuation of the basic
probabilities (and of n).

Another, and in practice much more accurate, approximation
formula is given by Esscher. This formula, although somewhat
cumbersome, allows the computations of the numerical values of
F, but it is not very suitable for giving a good general review of
the mutual dependence of the different variables.

Recently two methods of calculating F by means of electronic
computors have been presented. A Swedish team has performed
computations by means of a formula based on the inversion of the
characteristic function. Another method based on the Monte
Carlo method has been developed by some Finnish actuaries.

Our work consists of parallel computations made by the normal
approximation, Esscher formula and Monte Carlo method. Com-
parison of the results gives an illustration of the goodness of fit
of the different approximation methods. Further analysis of the
mutual deviations of the different results reveals certain clear
regularities. They made it possible to propose some corrections to
the normal approximation, which seem to improve the goodness
of fit in an essential degree without losing too much in simplicity.
This method was applied also to the Swedish material mentioned
above.
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The basic material of the study consists of claims statistics
concerning industrial fire insurance and third party motor insur-
ance furnished by Suomen Vahinkovakuutuksen Tilastokeskus (The
Statistical Centre of The Non-Life Insurance of Finland). At first,
these two classes of insurance were treated separately, until the
results obtained proved this to be unnecessary. The execution of
the study followed the pattern familiar from the natural sciences:
first a number of experiments and then an analysis of the results.
One generalised Poisson function derived from the basic material
can be regarded as an experiment in this sense. The results were
obtained by computing the material by both the Monte Carlo
method and the Esscher formula as well as the normal approxi-
mation. It was possible to increase the number of the experiments
by altering the fundamental distribution by giving different values
to the expected number of claims on one hand — and by reinsurance
on the other hand. The computations relate to the net retention
of the company, supposing that the top risks are cut by an Excess
of Loss reinsurance under which the maximum net retention M is
given values corresponding to those applied as a rule in practice.
The values corresponding to M = oo, i.e. a nonreinsured portfolio,
are also computed. The computations are thus carried out both with
"well behaving" claim distributions including only limited risks as
well as "dangerous" distributions including very large risks in order
that the results should represent the circumstances of claims usual
in practice on the company's net retention and also an extremely
dangerous one. In this manner 40 distributions were obtained, each
of which can be regarded as a different generalised Poisson func-
tion. Half of the distributions represent cases of industrial fire
insurance and the balance of third party motor insurance.

2. Analysing the results obtained by the Esscher formula
When analysing the results it was found that the ruin limits

corresponding to a certain probability s = 1—F(x), which were
computed by the Esscher formula, deviated from those obtained
by means of the normal approximation, the larger deviations
arising with the greater values of the skewness

<X3
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The observed correlation between xz and yi is seen quite clearly

from Figure i. Values of the expression — —• i as a function of

•yi are drawn in the figure on a double logarithmic scale with
different ruin probabilities, xs denoting a standardised variable
in accordance with the Esscher formula and yz denoting the
corresponding normal variable. It is seen that the pairs of points
corresponding to one value of s are placed quite nicely on one
straight line, the lines corresponding to different values of e being
parallel. The figure gives the followmg equation between xt and ye

(4)

where Ce is a constant depending on s only and having the values
0.16, 0.30 and 0.44, for s 0.05, 0.01 and 0.001. In Figure 1 the
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results obtained from both the industrial fire insurance and the
third party motor insurance are included, which were, even con-
cerning the numerical values of the constant Ce, the same in spite
of the great difference in primary distributions.

3. Comparison with the Monte Carlo method

The computations were also carried out with the Monte Carlo
method (Pesonen: "Solvency measurement", Congress of Actuaries
1964, Hovinen: "A method to compute convolution", Congress of
Actuaries 1964, "A Procedure to Compute the Values of the
Generalised Poisson Function", ASTIN Colloquium 1965). In accor-
dance with this method the run of an insurance company corres-
ponding to every distribution was simulated in the 10.000 "obser-
vation years". The value of e corresponding to each value of the
variable s is the ratio of the ruined cases to the total number of
years (= 10.000). The number obtained in this manner is a random
quantity, to which is attached the usual random inaccuracy, for
which, however, the upper bounds can be estimated. The propor-
tional amount of this inaccuracy increases when s decreases and
the method was not (for 10.000 observation years) more suitable,
when e < 0.001.

When analysing the results it appeared that as to the analytic
form, the expression

(5)

seemed to be suited to approximate the results computed by the
Monte Carlo method, Be being a quantity depending only on e.
In this expression BE is to be determined by experiment. If Be is
solved from expression (5), we have

B _

The above mentoned inaccuracy, being a consequence of the
Monte Carlo method, is also reflected in the numbers Bz, and the
lesser yi is, the greater the inaccuracy.

Figure 2 shows values which have been computed using the
results of Be as the function of e, drawn on a semilogarithmic scale.

15

https://doi.org/10.1017/S0515036100008072 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100008072


2 l 8 THE GENERALISED POISSON FUNCTION

https://doi.org/10.1017/S0515036100008072 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100008072


THE GENERALISED POISSON FUNCTION 2IQ.

The points corresponding to the yi values 0.4 — 2.5 and > 2.5
are distinguished.

The following observations may be made:
i°. When yi < 0.4, the inaccuracy of Be as a consequence of the

Monte Carlo method is so great that it has not been possible to
draw any conclusions. In these cases, however, even a rather large
relative deviation in Bt does not give rise to any very significant
absolute error in the approximation obtained by formula (5).

2°. When 0.4 < yi < 2.5, the (e, Be) points respectively fall
within a certain range of the diagonal of the field, it is not unreason-
able to regard them as lying on a straight line. The deviations from
this hypothesis can, at least partly, be explained by the above
mentioned inaccuracy of the Monte Carlo method.

30. When yi > 2.5, it is not possible to find a satisfactory ap-
proximation procedure which is based on yi alone.

If the equation of Bt is determined from Figure 2 and put into
expression (5) a formula

(5)'

is obtained. Even if it includes some anomalies in marginal values,
this can be regarded as an acceptable approximation formula
within reasonable limits of accuracy in the area of practical sig-
nificance.

It is immediately seen that, if in formula (4) the exponent 0.98 is
rounded off to 1 the formula is in fact the same as (5)' provided that

0.64 /o.i25N

Xe = Ve + O.64 y log

4. The formula derived theoretically
Had this paper been prepared a few months ago, the formula

(5)' would have been offered as a final approximation formula,
but at this stage of our study Mr. Loimaranta put forth the formula

0 (l), (6)
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where o (i/w) denotes an expression approaching to zero, when
n—> oo, in the same way as i/n. This formula is an application of a
more general expansion due to Cornish and Fisher and presente"
by Kendall in his book "The Advanced Theory of Statisticsh
(Part i, page 158). This series has been derived from the Edgewortd
expansion

e = I — <&(x) 4- — O<3) (x) 4- (7)
K ' ~ 6 v ' v / /

by solving x from this equation as a function of e and expressing e
as a function of y from 1 — e = 0(3/) and then developing x as an
expansion of y. Comparing values computed directly by means
of the Edgeworth expansion (7) and by means of its inversion for-
mula (6) it was quite surprisingly noticed that the latter gave es-
sentially closer approximations. This is seen in the comparisons
given in Figures 3-6 where the values computed by formula (6),
formula (7) and the Monte Carlo method are compared in graphs
drawn on a probability scale. It can be seen clearly that when yi is
> 0.5, the Edgeworth expansion does not give accurate values for
e (even the order of magnitude being uncertain), when x > 3.
On the other hand, the curves in accordance with the formula (6)
seem to run at least approximately in the right area. Only if yi
is very large (the case yi = 4.14 in Figure 3) are the results in-
accurate.

In Figure 2 the curve (s, Bz) is drawn according to formula (6).
The experimental points seem to fall more below rather than above
the curve corresponding to the formula (6).

To examine the accuracy of formula (6) theoretically, the remain-
der term o (i/n) must be analysed. The next term of the expansion is

V 2

24 ^ 36 J y*)> \ 1

where y2 is the excess a.i/a.1 n (cf. (3)). Naturally, nothing definite
regarding general applicability can be implied from the magnitude
of expression (8) because when yi is fixed and finite, y2 can even be
infinite.

By appealing purely to theory hardly any certain conlusions
about the influence of the expression can be drawn, as the expan-
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sion on which the formula (6) is based is divergent. However, it
seems that when including expression (8) into the approximation
according to the formula (6) the accuracy as compared with the
results computed by the Monte Carlo method in general increases.
There are however exceptions. On the other hand, within the limits
of the material here examined the expression (8) brings the ap-
proximation according to the formula (6) closer towards the values
computed by the Esscher formula in every case.

Table i includes all the results of the distributions computed by
the Monte Carlo method, the Esscher formula and the formula (6)
as well as the values of the remainder term (8). The distributions
are arranged in increasing order of the values of yi. The accuracy
of the formula (6) proved to be about the same as that of the
Esscher formula.

It is interesting to notice that formula (6) is in fact the same as
formula (4), provided the exponent 0.98 is rounded off to 1 and if

When computed from this formula the values 0.16, 0.32 and
0.46 for e = 0.05, 0.01 and 0.001 are found for the constant Ce,
which deviate only slightly from the "empirical" values mentioned
above.

5. Comparison with a Swedish material
To check the reliability of formulae (5)' and (6) they were ap-

plied to risk distributions which a Swedish team of actuaries had
used, for computation of the function F(x) by means of a method
based on the inversion of the Fourier transforms (Bohman and
Esscher "To Compute the Distribution Function when the Char-
acteristic Function is known", Skandinavisk Aktuarietidskrift
1964). This comparison is illustrated in Figure 7 which is con-
structed as Figure 2. The figure shows that the above mentioned
results can also be applied to these distributions. It should be
observed that no reinsurance was assumed. Hence the distri-
butions were of a very heterogeneous type for which the ap-
proximation methods can be expected to be least suitable. However,
the compatibility seems to be fairly satisfactory except for large
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values of yi. In this region, as in the Finnish material for the
great values of yi, larger deviations appear and the formula may not
be applicable in this area, confirmation of the earlier conclusion.

It is interesting to observe that the figure also includes Polya
cases, where fluctuation of the basic probabilities is assumed. No
significant differences between Poisson and Polya cases can be
noted. In fact a closer examination reveals that the formula (6)
is even more suited for the Polya cases than for the Poisson cases
as can be seen from the table below. In this table k is the Polya
constant (& = oo corresponds the Poisson case). The first two rows
are outside the area of suitability (because yi is so great).

LIFE INSURANCE B

Values of xz computed by the formula (6)

n

I O O

5 0 0

1000

10000

h

2 0

00

2 0

00

2 0

00

2 0

00

Yi

3-45
3-85
1.20

1.72

0.77
1.22

o-45
0.38

Correct value
x = 2.00

3.26
3-48
2.03
2.22
2.02
2.06

2.01
2.01

Correct value
x = 3.00

3-89
4.12

3 0 5
3-19
3.01
3 0 5
3.01
3.01

6. Comparison and criticism of the results

The study has given three approximation formulae to deal with
the generalised Poisson function. The first, formula (4), is an en-
deavour to approximate the Esscher formula, the second, formula
(5)' gives results computed by the Monte Carlo method and the
third, formula (6), was deduced theoretically, without however
paying close regard to accuracy.

Formula (4) is valid as an approximation in the same area as the
Esscher formula, at least no significant deviations are to be found.
As to the formula (5)' it can be deduced in the distributions ob-
served herein that statistically it gives a somewhat better result
than formula (6). As regards formula (6) it is clearly more accurate
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Table i

Comparison of ̂ -values obtained by means of Monte Carlo method, Esscher formula and formula (6)
/ = Industrial fire insurance M = Third party motor insurance

Branch

/

I
M
I
I
M
M
I
M
I
M

i-
i

M

i—
i

M
M
Ii—

i

M
M
I
MI-I

M
M
Ii-i

M
I
M

i-
i

M
MI-I

M

i—
i

M

n

IO OOO

IO OOO

IO OOO

2 OOO

IO OOO

IO OOO

IO OOO

2 OOO

2 OOO

500

IO OOO

2 COO

2 OOO

500

2 OOO

5OO
too
500

2 OOO

5OO
IO OOO

500
IOO

IOO

500

20

IOO

IOO

2 OOO

IOO

20

20

IOO

2O

20

5OO
2O

7

z
z
z
7
7
7
Z
7
7

7
7
Z
Z
Z
Z
Z

Z

Z
Z
Z

Z
Z
Z

Z
Z
z
z
z

z

M

+ 1/20
+ 2a
+ 5°
+ 1/20

+ 5<*
+ 100
+ 180
+ 2a
+ 51
+ 1/20
00

+ 5CT
+ 10a
+ 20-
+ 180-

+ 5^
+ 1/20
+ 5<J
00

-f 10a
00

+ 180
+ 2CT

+ 5CT
00

+ 1/20

+ 5°
+ 10a
00

+ 180
+ 2a

+ 5a
00

+ 50
+ 10a
00

+ 180

Y'

0 0387
0 0603

0 0702

0 0874
0 0886
0 0951
0 1220

0 1349
0 1570
0 1732
0 1866

0 1953
0 2127
0 2694
0 2729

O3H4
03879
0 3912
04174
0 4? 66
0 5410

O547O
0 6037

07033
0 8366
0 8 6 7 4
0 8 7 4 6
09527
1 2092

1 2217

1 35oo

15727
1 8564
1 9557
2 1304
24178

2732

s =

Monte
Carlo

2 33
2 33
2 35
238

2 34
2 35
2 34
2 42

2 47
2 43
2 39
2 53
2 45
2 53
2 54
2 75
2 62
2 60
2 60

2 77
2 72
283
2 73
2 80

3 06
281

2 84
2 86

3 19
286
3 22

3 4°
3 75
3 49
3 44
385
4 02

0 01

Esscher

2 35
2 37
238
2 39
2 39
238
242

2 43
2 44

2 45
2 46

2 47
2 48

252
2 53
2 55
2 60

2 59
2 63
2 63
2 70
2 72

2 74
2 80

2 95
2 89
2 92
2 97
316
3 15
3 20

3 34
3 71

3 55
366
—
4 10

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3
3
3
3
3
3
3
3
4
4

y* =

(6)

35
37
38
39
39
40

42
43
44
45
46
47
48
52
53
56
61
61

63
64
72
73
77
84
94
96
97
°3
21

22

32
48
69
76
89
10

33

2 326

(8)

—0 01

—0 01

—0 01

—0 02
—0 02

—0 02
—0 01

—0 02
—0 04
—005
+ 0 01
—0 09
—008
—0 09
—0 07
—0 11
—0 21

—0 25
+ 0 0 2

—039
—044
—030

—O57

E =

Monte
Carlo

3 09
304
316

325
316
3 °9
3 °9
3 37
3 50
3 48
3 17
3 52
3 50
365
3 50
3 66
3 60
385
364
398
381
4 10

3 94
3 60
4 62

4 32
411

4 17
487
4 10
4 68
4 82

5 37
5 20

5 45
638
—

0 001

Esscher

3 15
3 l 8

3 19
3 21
3 22
3 23
3 26

3 29
3 31
3 33
3 36
3 36
3 38
3 45
3 47
3 52
3 60

363
3 71

367
384
383
388
4 01

4 34
4 19
4 22
4 32
4 71

468
4 75
5 00

—

—
—

—

—

ye =

(6)

3 15
3 I8
3 19
3 22
3 22
323
3 26
3 28

3 32

3 34
3 36
3 37
3 39
3 47
3 48
3 54
364
365
369
3 70
386
387
3 95
409
4 28

4 33
4 34
4 45
4 82

483
502

5 33
5 74
588
613
6 53
6 99

3091

(8)

—0 01

+0 01
—0 01

—0 01

—0 02
—0 01

—0 02
—0 04
—004
+003
—0 04
—0 01

—0 04
—0 10
—0 11

+0 12
—0 22
—017
—018
—006
—0 19

-048
—054
+057
-085
—090
—023
—097

https://doi.org/10.1017/S0515036100008072 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100008072


THE GENERALISED POISSON FUNCTION 225

in
cs UJ

10

Ml

r v *
• V Z MI

d o"
II II

in

A

or
n

o

CO

o
in

IN
'o

https://doi.org/10.1017/S0515036100008072 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100008072


226 THE GENERALISED POISSON FUNCTION

than the Edgeworth expansion; in fact it is suitable for use on the
same area as the Esscher formula and almost equal in accuracy.

The study outlined above has revealed that it is possible, based on
the normal distribution, to develop an improved method of ap-
proximating the generalised Poisson function. The use of the
method itself is very simple. The values of yt, which are obtained
from tables concerning the normal distribution, have to be altered
in the manner of the formulae (4), (5)' or (6). The mapping out of
the area of suitability is still an open question, but the material
available was, in fact, already fairly abundant and represented
different types of risk distributions. It has, without exception,
established the suitability for at least approximate calculations to
be acceptable, provided the skewness yi < 2.5. Some other materials
have proved that the reliability of formula (6) can become ques-
tionable if yi > 1.5.
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