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Abstract

In this paper we study two distributions, namely the distribution of the waiting times
until given numbers of occurrences of compound patterns and the distribution of the
numbers of occurrences of compound patterns in a fixed number of trials. We elucidate
the interrelation between these two distributions in terms of the generating functions.
We provide perspectives on the problems related to compound patterns in statistics and
probability. As an application, the waiting time problem of counting runs of specified
lengths is considered in order to illustrate how the distributions of waiting times can be
derived from our theoretical results.
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1. Introduction

Recently, the distribution theory associated with patterns has received a great deal of attention
(see Fu and Chang (2003), Fu and Lou (2003), Inoue and Aki (2002), and Inoue (2004)). Two
important distributions are related to patterns and applied in a wide range of areas (for example
quality control, reliability theory, psychology, genome sequence analysis, etc.). The first is
the distribution of the waiting times until given numbers of occurrences of compound patterns.
An especially interesting class of waiting time distributions are referred to as sooner and later
waiting time distributions (see Fu and Chang (2002), (2003)). The second is the distribution of
the numbers of occurrences of patterns in a fixed number of trials.

In this paper we study these distributions and elucidate the relationship between the two.
Koutras (1997) has investigated the relationship between the distributions of the waiting times
and the number of occurrences of a simple pattern. We generalize the results of Koutras (1997).
Our generalizations will not only be of theoretical interest but will also have some important
applications. Although the later waiting time problems for compound patterns are closely related
to many important applications and there is a need to study the later waiting time distributions
of compound patterns, currently the development of the relevant distribution theory is very slow
and there are not enough results to tackle practical problems in probability and statistics. We

Received 19 August 2005; revision received 13 December 2006.
∗ Postal address: Faculty of Economics, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musasino-shi, Tokyo, 180-8633,
Japan. Email address: kinoue@econ.seikei.ac.jp
∗∗ Postal address: Department of Mathematics, Faculty of Engineering, Kansai University, 3-3-35 Yamate-cho,
Suita-shi, Osaka, 564-8680, Japan.

71

https://doi.org/10.1239/jap/1175267164 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1175267164
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provide perspectives on the later waiting time problems for compound patterns and offer a very
efficient computational tool.

Let {Zn, n ≥ 1} be a sequence of multistate trials defined on the state space � = {0, . . . , m}.
Following Fu and Lou (2003) (see also Fu and Chang (2002) and Fu (1996)), we define a simple
pattern and a compound pattern.

Definition 1.1. We say that ε is a simple pattern if ε is composed of a specified sequence of k

states, i.e. ε = (a1, . . . , ak), ai ∈ �, 1 ≤ i ≤ k (k, the length of the pattern, is fixed, and the
states in the pattern are allowed to repeat).

Let ε1 and ε2 be two simple patterns of lengths k1 and k2, respectively. We say that ε1 and
ε2 are distinct if neither is a subsequence (segment) of the other. We define the union {ε1, ε2}
to be the occurrence of either the pattern ε1 or the pattern ε2.

Definition 1.2. We say that ε is a compound pattern if it is a union of c ≥ 2 distinct simple
patterns (a set of c distinct simple patterns). For c = 1, we identify the compound pattern with
the simple pattern.

Let εi = {εi,j , j = 1, . . . , ci}, i = 1, . . . , ν, be compound patterns. We assume that
the simple patterns εi,j , i = 1, . . . , ν, j = 1, . . . , ci , are distinct from each other. For i =
1, . . . , ν, let X

εi
n (αi) be the total number of occurrences of compound pattern εi in the trials

Z1, . . . , Zn under αi ∈ {N, O} counting, where αi represents the type of counting scheme
employed: αi = N will indicate nonoverlapping counting and αi = O will indicate overlapping
counting. Note that the compound patterns are observed independently and that we allow
overlapping counting of compound patterns. For i = 1, . . . , ν, we denote by E

εi
ri (αi) the

event that ri occurrences of the compound pattern εi are observed in the sequence of multistate
trials under type-αi counting. Let T ε

r (x; α) be the waiting time until the occurrence of the
xth event among E

εi
ri (αi), i = 1, . . . , ν, where ε = (ε1, . . . , εν), r = (r1, . . . , rν), and

α = (α1, . . . , αν). Note that each compound pattern εi is observed only ri times; that is, after
its ri th occurrence we are no longer interested in εi and are instead interested in when the
remaining events occur. It is clear that

T ε
r (1; α) ≤ T ε

r (2; α) ≤ · · · ≤ T ε
r (ν; α).

In the special cases in which x = 1 and, respectively, x = ν, the distributions of T ε
r (1; α) and

T ε
r (ν; α) are respectively called the sooner waiting time distribution and the later waiting time

distribution.
In Section 2 we introduce necessary definitions and notation. In Section 3 we study the

distribution of the waiting times T ε
r (x; α), x = 1, . . . , ν, using the distribution of (Xε1

n (α1),

. . . , X
εν
n (αν)). We also elucidate the relationship between the distributions of T ε

r (x; α) and
(Xε1

n (α1), . . . , X
εν
n (αν)). Section 4 serves as an illustration of how the general theory presented

in Section 3 can be used to derive probability functions and probability generating functions. We
apply the general results to the special case in which the compound patterns εi, i = 1, . . . , ν,
are sets of runs of certain lengths.

2. Definitions and notation

As above, let {Zn, n ≥ 1} be a sequence of multistate trials defined on the state space
� = {0, . . . , m}, let εi = {εi,j , j = 1, . . . , ci}, i = 1, . . . , ν, be compound patterns (under
the assumption that the simple patterns εi,j , i = 1, . . . , ν, j = 1, . . . , ci , are distinct from
each other), and let X

εi
n (αi), i = 1, . . . , ν, be the numbers of occurrences of compound pattern
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εi in Z1, . . . , Zn under αi ∈ {N, O} counting. We define the probability generating function
and the double generating function of (Xε1

n (α1), . . . , X
εν
n (αν)) by

φε
n(z; α) = E[zX

ε1
n (α1)

1 · · · zX
εν
n (αν)

ν ]
=

∑
x1,...,xν≥0

P(Xε1
n (α1) = x1, . . . , Xεν

n (αν) = xν)z
x1
1 · · · zxν

ν ,

�ε(z, t; α) =
∞∑

n=0

φε
n(z; α)tn

=
∞∑

n=0

∑
x1,...,xν≥0

P(Xε1
n (α1) = x1, . . . , Xεν

n (αν) = xν)z
x1
1 · · · zxν

ν tn,

respectively, where z = (z1, . . . , zν). Clearly, the probability generating function and double
generating function of (X

εi1
n (αi1), . . . , X

εij
n (αij )) can be expressed, for j = 1, . . . , ν, as

φ
εi1 ,...,εij
n (zi1 , . . . , zij ; αi1 , . . . , αij ) = φε

n(z; α)|ziu=1, u�=1,...,j ,

�
εi1 ,...,εij (zi1 , . . . , zij , t; αi1 , . . . , αij ) = �ε(z, t; α)|ziu=1, u�=1,...,j .

Again, let T ε
r (x; α) be the waiting time until the occurrence of the xth event among E

εi
ri (αi),

i = 1, . . . , ν. The probability generating function and the double generating function of
T ε

r (x; α), ri ≥ 0, i = 1, . . . , ν, are defined respectively by

H ε
r (t, x; α) = E[tT ε

r (x;α)] =
∞∑

n=0

P(T ε
r (x; α) = n)tn,

H ε(t, z, x; α) =
∑

r1,...,rν≥0

H ε
r (t, x; α)z

r1
1 · · · zrν

ν

=
∑

r1,...,rν≥0

∞∑
n=0

P(T ε
r (x; α) = n)tnz

r1
1 · · · zrν

ν .

3. Main results

In this section we study the distribution of T ε
r (x; α) using the distribution of (Xε1

n (α1), . . . ,

X
εν
n (αν)) and elucidate the relationship between the two distributions. We consider the three

cases in which x = 1, 2 ≤ x ≤ ν − 1, and, respectively, x = ν, and treat them separately.

3.1. Sooner waiting time distribution

Here we study the distribution of the sooner waiting time, T ε
r (1; α). Note that the dual

relationship between the random variables T ε
r (1; α) and (X

ε1
n (α1), . . . , X

εν
n (αν)), namely

{T ε
r (1; α) > n} ⇐⇒ {Xε1

n (α1) < r1, . . . , Xεν
n (αν) < rν},

gives the probability identity

P(T ε
r (1; α) = n) = P(X

ε1
n−1(α1) < r1, . . . , X

εν

n−1(αν) < rν)

− P(Xε1
n (α1) < r1, . . . , Xεν

n (αν) < rν), n, r1, . . . , rν ≥ 1. (3.1)
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We set

P(T ε
r (1; α) = 0) =

{
1 if ri = 0 for some i = 1, . . . , ν,

0 otherwise.
(3.2)

Theorem 3.1. The double generating function H ε(t, z, 1; α) can be expressed in terms of the
double generating function �ε(z, t; α) as follows:

H ε(t, z, 1; α) = 1∏ν
i=1(1 − zi)

(
1 −

ν∏
i=1

zi(1 − t)�ε(z, t; α)

)
. (3.3)

Proof. By virtue of (3.1) and (3.2), we have

H ε(t, z, 1; α)

=
∑

r1,...,rν≥0

∞∑
n=0

P(T ε
r (1; α) = n)tnz

r1
1 · · · zrν

ν

=
∑

r1,...,rν≥0

P(T ε
r (1; α) = 0)z

r1
1 · · · zrν

ν

+
∑

r1,...,rν≥1

∞∑
n=1

∑
0≤ij ≤rj −1
j=1,...,ν

P(X
ε1
n−1(α1) = i1, . . . , X

εν

n−1(αν) = iν)t
nz

r1
1 · · · zrν

ν

−
∑

r1,...,rν≥1

∞∑
n=1

∑
0≤ij ≤rj −1
j=1,...,ν

P(Xε1
n (α1) = i1, . . . , Xεν

n (αν) = iν)t
nz

r1
1 · · · zrν

ν .

Using (3.2), for the three terms on the right-hand side of this expression we obtain

∑
r1,...,rν≥0

P(T ε
r (1; α) = 0)z

r1
1 · · · zrν

ν =
ν∏

i=1

1

1 − zi

−
ν∏

i=1

zi

1 − zi

,

∑
r1,...,rν≥1

∞∑
n=1

∑
0≤ij ≤rj −1
j=1,...,ν

P(X
ε1
n−1(α1) = i1, . . . , X

εν

n−1(αν) = iν)t
nz

r1
1 · · · zrν

ν

=
ν∏

i=1

zi

1 − zi

∞∑
n=1

∑
i1,...,iν≥0

P(X
ε1
n−1(α1) = i1, . . . , X

εν

n−1(αν) = iν)t
nz

i1
1 · · · ziν

ν

=
ν∏

i=1

zi

1 − zi

∞∑
n=1

φε
n−1(z; α)tn,

∑
r1,...,rν≥1

∞∑
n=1

∑
0≤ij ≤rj −1
j=1,...,ν

P(Xε1
n (α1) = i1, . . . , Xεν

n (αν) = iν)t
nz

r1
1 · · · zrν

ν

=
ν∏

i=1

zi

1 − zi

∞∑
n=1

φε
n(z; α)tn,

where we have interchanged the order of certain summations. The proof is thus complete.
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It should be noted that the inversion of (3.3) produces the following expression for �ε(z, t; α)

in terms of H ε(t, z, 1; α):

�ε(z, t; α) = 1∏ν
i=1 zi(1 − t)

(
1 −

ν∏
i=1

(1 − zi)H
ε(t, z, 1; α)

)
.

3.2. Later waiting time distribution

Now we consider the distribution of the later waiting time, T ε
r (ν; α). Note that the dual

relationship between the random variables T ε
r (ν; α) and (Xε1

n (α1), . . . , X
εν
n (αν)), namely

{T ε
r (ν; α) ≤ n} ⇐⇒ {Xε1

n (α1) ≥ r1, . . . , Xεν
n (αν) ≥ rν},

gives the probability identity

P(T ε
r (ν; α) = n) = P(Xε1

n (α1) ≥ r1, . . . , Xεν
n (αν) ≥ rν)

− P(X
ε1
n−1(α1) ≥ r1, . . . , X

εν

n−1(αν) ≥ rν), n ≥ 1, r1, . . . , rν ≥ 0.

(3.4)

We set

P(T ε
r (ν; α) = 0) =

{
1 if ri = 0 for all i = 1, . . . , ν,

0 otherwise.
(3.5)

Using (3.4) and (3.5) and working in the same fashion as we did in the proof of Theorem 3.1,
we arrive at the following theorem.

Theorem 3.2. The double generating function H ε(t, z, ν; α) can be expressed in terms of the
double generating functions �

εi1 ,...,εij (zi1 , . . . , zij , t; αi1 , . . . , αij ), j = 1, . . . , ν, as follows:

H ε(t, z, ν; α) = 1∏ν
i=1(1 − zi)

(
1 +

ν∑
j=1

(−1)j
∑

1≤i1<···<ij ≤ν

j∏
u=1

ziu(1 − t)

× �
εi1 ,...,εij (zi1 , . . . , zij , t; αi1 , . . . , αij )

)
. (3.6)

It is noteworthy that the inversion of (3.6) produces the following expression for �ε(z, t; α)

in terms of H
εi1 ,...,εij (t, zi1 , . . . , zij , j ; αi1 , . . . , αij ), j = 1, . . . , ν, the double generating

functions of the later waiting times T
εi1 ,...,εij
ri1 ,...,rij

(j ; αi1 , . . . , αij ):

�ε(z, t; α) = 1∏ν
i=1 zi(1 − t)

(
1 +

ν∑
j=1

(−1)j
∑

1≤i1<···<ij ≤ν

j∏
k=1

(1 − zik )

× H
εi1 ,...,εij (t, zi1 , . . . , zij , j ; αi1 , . . . , αij )

)
.
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3.3. The waiting time for the occurrence of the xth event

Finally, in this section we examine the distribution of the waiting time T ε
r (x; α) for 1 ≤ x ≤

ν. Observe that

P(T ε
r (x; α) ≤ n)

=
ν∑

j=x

∑
1≤i1<···<ij ≤ν

{ij+1,...,iν }⊂{1,...,ν}\{i1,...,ij }

P(X
εi1
n (αi1) ≥ ri1 , . . . , X

εij
n (αij ) ≥ rij ,

X
εij+1
n (αij+1) < rij+1 , . . . , X

εiν
n (αiν ) < riν )

=
ν∑

j=x

ν∑
w=j

∑
1≤i1<···<iw≤ν

(−1)w−j

(
w

j

)
P(X

εi1
n (αi1) ≥ ri1 , . . . , X

εiw
n (αiw ) ≥ riw ),

yielding

P(T ε
r (x; α) = n) =

ν∑
j=x

ν∑
w=j

∑
1≤i1<···<iw≤ν

(−1)w−j

(
w

j

)

× (P(X
εi1
n (αi1) ≥ ri1 , . . . , X

εiw
n (αiw ) ≥ riw )

− P(X
εi1
n−1(αi1) ≥ ri1 , . . . , X

εiw

n−1(αiw ) ≥ riw )),

n ≥ 1, r1, . . . , rν ≥ 0.

(3.7)

We set

P(T ε
r (x; α) = 0)

=
{

1 if ri1 = · · · = rij = 0 for 1 ≤ i1 < · · · < ij ≤ ν and j = x, x + 1, . . . , ν,

0 otherwise.
(3.8)

Using (3.7) and (3.8), we can express the double generating function H ε(t, z, x; α) in
terms of the double generating functions �

εi1 ,...,εij (zi1 , . . . , zij , t; αi1 , . . . , αij ), j = 1, . . . , ν.
Working in a similar fashion to in Sections 3.1 and 3.2, we can establish a formula for the double
generating function. The details can be worked out easily and are thus omitted here.

Theorem 3.3. The double generating function H ε(t, z, x; α) is given, for x = 1, . . . , ν, by

H ε(t, z, x; α) = 1 +
ν−x∑
j=1

∑
1≤i1<···<ij ≤ν

j∏
u=1

ziu

1 − ziu

+ 1∏ν
i=1(1 − zi)

ν∑
j=x

ν∑
w=j

w∑
v=1

∑
1≤i1<···<iv≤ν

(−1)w−j+v

(
ν − v

ν − w

)(
w

j

)

×
v∏

u=1

ziu((1 − t) �εi1 ,...,εiv (zi1 , . . . , ziv , t; αi1 , . . . , αiv ) − 1).

(3.9)

Needless to say, for x = 1 and x = ν, (3.9) corresponds to (3.3) and (3.6), respectively, giving
alternative formulae for the double generating functions H ε(t, z, 1; α) and H ε(t, z, ν; α).
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4. Applications

For a sequence of Bernoulli trials (with two possible outcomes, ‘1’ or ‘0’), in the literature
there are various ways of counting the number of ‘1’-runs of length k (see Fu and Koutras (1994)
and Balakrishnan and Koutras (2002)). The important and frequently used ways of counting
the number of ‘1’-runs of length k are as follows:

(i) the type-I enumeration scheme, namely the way of counting the number of nonoverlap-
ping and recurrent ‘1’-runs of length k, in the sense of Feller’s (1968) counting;

(ii) the type-II enumeration scheme, namely the way of counting the number of ‘1’-runs of
length at least k, in the sense of Goldstein’s (1990) counting;

(iii) the type-III enumeration scheme, namely the way of counting the number of overlapping
‘1’-runs of length k, in the sense of Ling’s (1988) counting,

For i = 1, 2, . . . , ν, let εi = {(i, i, . . . , i)} be the ‘i’-run of length ki . As stated previously,
αi represents the scheme employed in counting the ‘i’-run of length ki and here takes the value I,
II, or III as appropriate.

We will propose extensions to the sooner and later waiting time problems. In this section
we assume that Z1, Z2, . . . are independent and identically distributed random variables taking
values in � = {0, 1, . . . , m} with probabilities pi = Pr(Zt = i), 1 ≤ t, i = 0, 1, . . . , m.

4.1. Sooner waiting time distributions for runs

For the ‘i’-run of length ki , i = 1, . . . , ν, we will study the distribution of the sooner waiting
time, T ε

r (1; α), using the three different counting schemes (types I, II, and III). For ν = 2, the
corresponding waiting time distribution is known as the type-(α1, α2) sooner negative binomial
distribution of order (k1, k2) and has been studied by several authors (see Ebneshahrashoob and
Sobel (1990), Aki et al. (1996), Aki and Hirano (1993), Uchida and Aki (1995), Han and Aki
(2000), and Balakrishnan and Koutras (2002)).

Inoue and Aki (2005) derived the double generating function of (Xε1
n (α1), . . . , X

εν
n (αν)) and

found it to be

�ε(z, t; α) = 1

1 − p0t − ∑ν
i=1 Q(zi, pit, αi)

, (4.1)

where

Q(zi, pit, αi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pit − (pit)
ki + (pit)

ki zi(1 − pit)

1 − (pit)ki
, αi = I,

pi t − (pit)
ki (1 − zi)

1 − (pit)ki (1 − zi)
, αi = II,

pi t − (pit)
ki (1 − zi) − (pit)

2zi

1 − pitzi − (pit)ki (1 − zi)
, αi = III,

(4.2)

for i = 1, 2, . . . , ν. From this, we obtain the following proposition.

Proposition 4.1. The double generating function H ε(t, z, 1; α) is given by

H ε(t, z, 1; α) = 1∏ν
i (1 − zi)

(
1 −

∏ν
i=1 zi(1 − t)

1 − p0t − ∑ν
i=1 Q(zi, pit, αi)

)
, (4.3)

where Q(zi, pit, αi), αi = I, II, III, i = 1, . . . , ν, is as defined in (4.2).
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By expanding the double generating function (4.3) in a Taylor series around z = 0 and
picking out the coefficient of z1 · · · zν , we obtain the following explicit expression for the
probability generating function H ε

1,...,1(t, 1; α), known as the sooner geometric distribution of
order (k1, k2, . . . , kν):

H ε
1,...,1(t, 1; α) =

∑ν
i=1 (pit)

ki (1 − pit)/(1 − (pit)
ki )

1 − t + ∑ν
i=1(pit)ki (1 − pit)/(1 − (pit)ki )

. (4.4)

As indicated by Koutras and Alexandrou (1997), the waiting time distributions of runs, in
particular the sooner waiting time distributions, play an important role in applications in a
wide range of areas (see Balakrishnan and Koutras (2002), Shmueli and Cohen (2000), and
Balakrishnan et al. (1997)).

Remark 4.1. Aki and Hirano (2000) introduced a generalized enumeration scheme known as
�-overlapping counting (see also Inoue and Aki (2003)). By setting

Q(zi, pit, αi) = pit − (pit)
ki + (pit)

ki zi − (pit)
ki−�i−1zi

1 − (pit)ki + (pit)ki zi − (pit)ki−�i zi

, 0 ≤ �i ≤ ki − 1,

in (4.1), the results presented in this section can easily be extended to cover this case.

Example 4.1. (Birthday problem.) Assume that p0 = 0 and εi = {(i)}, i = 1, . . . , ν. By
expanding the double generating function (4.3) in a Taylor series around z = 0 and picking
out the coefficient of z

r1
1 · · · zrν

ν , we obtain an explicit expression for the probability generating
function H ε

r (t, 1; α). Furthermore, we obtain an explicit expression for the expected value of
the waiting time T ε

r (1; α) by differentiating H ε
r (t, 1; α) with respect to t . We find that

H ε
r (t, 1; α) = 1 −

∑
0≤ij ≤rj −1
j=1,...,ν

(
i1 + i2 + · · · + iν

i1, i2, . . . , iν

)
p

i1
1 p

i2
2 · · · piν

ν (1 − t)t i1+i2+···+iν , (4.5)

E[T ε
r (1; α)] =

∑
0≤ij ≤rj −1
j=1,...,ν

(
i1 + i2 + · · · + iν

i1, i2, . . . , iν

)
p

i1
1 p

i2
2 · · · piν

ν . (4.6)

For ν = 365, p1 = · · · = p365 = 1
365 , and r1 = · · · = r365 = r ≥ 2, the waiting time

problem is known as the birthday problem. Suppose that we interview people at random, one
by one, until we find r people with a common birthday. How many people will we have to
interview? The case in which r = 2 has been investigated by many authors (see, for example,
Johnson and Kotz (1977) and references therein). However, there are relatively few papers
dealing with the general case (r > 2) and general arbitrary probabilities p1, . . . , pν . Equations
(4.5) and (4.6) provide useful clues to the general birthday problems. In Table 1 we present
illustrative numerical results for the expected value E[T ε

r (1; α)].
Klamkin and Newman (1967) gave the following asymptotic expression for E[T ε

r (1; α)]:

E[T ε
r (1; α)] ∼ (r!)1/r�

(
1 + 1

r

)
3651−1/r .

For r = 3, 4, 5, their expression gives the respective values 82.87, 167.53, and 268.28.
Comparing these results with those in Table 1 suggests that the asymptotic expression is not
particularly accurate.
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Table 1: The expected value of T ε
r (1; α) in the birthday problem.

r E[T ε
r (1; α)]

2 24.62
3 88.74
4 187.05
5 311.45
6 456.02
7 616.62
8 790.30
9 974.89

4.2. Later waiting time distributions for runs

In this section we consider the distribution of the later waiting time, T ε
r (ν; α), under the

three different counting schemes (types I, II, and III). For ν = 2, the corresponding waiting
time distribution is known as the type-(α1, α2) later negative binomial distribution of order
(k1, k2).

Proposition 4.2. The double generating function H ε(t, z, ν; α) is given by

H ε(t, z, ν; α) = 1∏ν
i=1(1 − zi)

(
1 +

ν∑
j=1

(−1)j
∑

1≤i1<···<ij ≤ν

j∏
u=1

ziu(1 − t)

× 1

1 − (1 − ∑j
u=1 piu)t − ∑j

u=1 Q(ziu, piu t, αiu)

)
,

(4.7)

where Q(zi, pit, αi), αi = I, II, III, i = 1, . . . , ν, is as defined in (4.2).

By expanding the double generating function (4.7) in a Taylor series around z = 0 and
picking out the coefficient of z1 · · · zν , we obtain the following explicit expressions for the
probability generating function H ε

1,...,1(t, ν; α), known as the later geometric distribution of
order (k1, k2, . . . , kν):

H ε
1,...,1(t, ν; α)

= 1 +
ν∑

j=1

(−1)j
∑

1≤i1<···<ij ≤ν

1 − t

1 − t + ∑j
u=1(piu t)

kiu (1 − piu t)/(1 − (piu t)
kiu )

, (4.8)

or, equivalently,

H ε
1,...,1(t, ν; α)

=
ν∑

j=1

(−1)j−1
∑

1≤i1<···<ij ≤ν

∑j
u=1(piu t)

kiu (1 − piu t)/(1 − (piu t)
kiu )

1 − t + ∑j
u=1(piu t)

kiu (1 − piu t)/(1 − (piu t)
kiu )

. (4.9)

Balakrishnan and Koutras (2002) have also given formulae for the probability generating
functions (4.4), (4.8), and (4.9). Their derivation was based on a completely different technique.
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Example 4.2. (Coupon collector problems.) Assume that p0 = 0 and εi = {(i)}, i = 1, . . . , ν.
By expanding the double generating function (4.7) in a Taylor series around z = 0 and picking
out the coefficient of z

r1
1 · · · zrν

ν , we obtain an explicit expression for the probability generating
function H ε

r (t, ν; α). Furthermore, we obtain an explicit expression for the expected value of
the waiting time T ε

r (ν; α) by differentiating H ε
r (t, ν; α) with respect to t . We find that

H ε
r (t, z, ν; α) = 1 +

ν∑
j=1

(−1)j
∑

1≤i1<···<ij ≤ν

∑
0≤yiu≤riu−1

u=1,...,j

(
yi1 + · · · + yij

yi1 , . . . , yij

)

×
p

yi1
i1

· · · pyij

ij
(1 − t)t

yi1+···+yij

(1 − (1 − ∑j
u=1 piu)t)

yi1+···+yij
+1 ,

(4.10)

E[T ε
r (ν; α)] =

ν∑
j=1

(−1)j+1
∑

1≤i1<···<ij ≤ν

∑
0≤yiu≤riu−1

u=1,...,j

(
yi1 + · · · + yij

yi1 , . . . , yij

)

×
p

yi1
i1

· · · pyij

ij

(pi1 + · · · + pij )
yi1+···+yij

+1 .

(4.11)

Assume that r1 = · · · = rν = 1. The waiting time problem in this case is well known as
the coupon collector problem: suppose that there are ν distinct types of coupons bearing the
numbers 1, . . . , ν and that the coupon of type i is collected with probability pi, i = 1, . . . , ν.
We are interested in the number of coupons we need to collect in order to have at least one of
each type. From (4.10) and (4.11), we have

H ε
1,...,1(t, ν; α) = 1 + (−1)ν(1 − t) +

ν∑
j=1

∑
1≤i1<i2<···<ij ≤ν

(−1)ν−j (1 − t)

1 − (pi1 + · · · + pij )t
,

E[T ε
r (ν; α)] =

ν∑
j=1

∑
1≤i1<i2<···<ij ≤ν

(−1)j+1

pi1 + pi2 + · · · + pij

.

In closing, we would like to mention a generalization of the coupon collector problem which
is called the coupon subset collection problem (seeAdler and Ross (2001)). Let S = {1, . . . , m},
and let Si = {si,1, . . . , si,ci

}, i = 1, . . . , ν, be subsets of S such that
⋃ν

i=1 Si = S. Suppose
that we may choose subset Si with probability qi, i = 1, . . . , ν, with

∑ν
i=1 qi = 1. We are

interested in the number of subsets that must be chosen before the coupons 1, . . . , m are all
contained in at least one of these subsets. Clearly, when all subsets are of size 1 the waiting
time problem corresponds to the coupon collector problem.

Since we readily find the double generating function to be

�ε(z, t; α) = 1

1 −
(∑m

i=1 qi

∏m
j=1 z

1(si,1=j)+···+1(si,ci =j)

j

)
t
,

where 1(· · · ) denotes the indicator function, the distribution of the waiting time T ε
1,...,1(ν; α)

can be easily evaluated by direct application of Theorem 3.2.
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