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ON HERING'S FLAG TRANSITIVE PLANE
OF ORDER 27

,L, NARAYANA RAO, K, KUPPUSWAMY RAO
AND K, SATYANARAYANA

The full collineation group of the flag transitive plane of order

27 constructed by Hering is determined. It is shown that the

stabilizer of the origin of this plane is of order

1.

A collineation group G of an affine plane ir is defined to be flag

transitive on TT if G is transitive on incident point line pairs or

flags of IT . The aim of this paper is to find the full collineation group

of the flag transitive plane of order 27 constructed by Hering [2].

Recently the first two authors [4] in a joint paper discussed some

properties of Her ing's plane irff .

2.

We give a brief description of Her ing's plane. Let 0 be a 3 x 3

zero matrix over GF(3) and let

0
v =

Bl S2
B3 h

h =
0

where
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The entry aba under the heading C.P. of M. means that the matrix M.

3 2
has the characteristic polynomial -A + a\ + b\ + a .
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, and L beAll the matrices in this paper are over GF(3) . Let L

three dimensional subspaces of V(6, 3) defined by basis vectors as

L 2 6 = < (i, o, o, o, o, o), (o, i, o, o, o, o ) , (o, o, i, o, o, o)> ,

£ 2 7 = < ( o , o, o, i, o, o ) , (o, o, o, o, i, o ) , (o, o, o, o, o, i)> .

Let L. = 0 5 i < 12 , 0 5 i 2 12 . The

incidence structure if with L. (0 - i - 27) and their cosets in the

n v

additive group of V{6, 3) as lines and vectors of V{6, 3) as points

with inclusion as incidence relation is the flag transitive plane of order

27 constructed by Her ing [2]. The subspace representing the lines L.

may also be realised by the following procedure.

Let

U =
1
0
0

0
1
0

0
0
1

2 0 0
0 2 0
2 0 2

M.

Let

, P, , 2/, GF(3), (p, <7, r) = (x,

for 0 S i S 26 and lov = L . It is easily verified that 1. = L. for
27 27 ^ ^

0 5 i 2 27 . The set of matrices M. is given in Table 2.1.
If

3.

Any nonsingular linear transformation T of V(6, 3) which permutes

the subspaces L. , 0 S i < 2T , among themselves induces a collineation
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of TTr. fixing the point corresponding to the zero vector [7, Satz 19], [3,n

p. 208]. We may denote the collineation X>y T itself. We now determine

the group G of all collineations which fix the point corresponding to

the zero vector. Obviously the linear transformations s, r and h given

earlier are elements of G_ . The actions of s, v and h restricted to

the lines L. , 0 £ £ £ 27 , are given below:

Is

s : (26)(27)(0, 1, .... 12)(13, lU, ..., 25) ;

r •. (0, 26)(13,
(9,

, 2U)(8, 21)

, 20)(lU, 25)(l6, 17)(22, 23) ;

h : (26, 27)(0, 13)(1, 17, 3, 25, 9, 23)(2, 21, 6, 2k, 5, 20)

(U, 16, 12, 22, 10, 1*0(7, 15, 8, 19, 11, 18) .

Hence (..., a, b, a, ...) means L is mapped onto L-, and so on.

THEOREM 3.1. Any ooVlineation of ir which fixes £_•- also fixes

Proof. [4, Theorem 5.1, p. 3U3].

THEOREM 3.2. There is no ooVlineation which fixes 26 and 27 and

maps 0 onto 13 .

Proof. Here and in the course of this paper line a means L . Any

collineation which fixes the lines 26 and 27 and sends 0 onto 13 is

of the form „] where A and B are 3 * 3 nonsingular matrices

over GF(3) and 0 is the zero matrix and B = A
2
0
2

0
2
0

0
0
2

A further

necessary and sufficient condition on A is for each i , 0 S i 5 26 ,

A~XM.A = M.
2
0
1

0
2
0

O'
0
2

for some j , 0 £ j £ 26 . But AL
2 0 0
0 2 0
1 0 2

2 2 1
1 2 2
1 0 0

3 2
has the characteristic polynomial -A + A + 2A + 2 which is not the

characteristic polynomial of any M. , 0 £ i £ 26 . Hence there is no
If

collineation that fixes lines 26 and 27 and sends line 0 to line

13 - We may conclude that the sets of lines {0, 1, ..., 12} and

{13, lk, ..., 25} are invariant under the group of all collineations
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fixing lines 26 and 27 .

THEOREM 3.3. The group of all oollineations flaring lines 26, 27, 0
2

and 13 is generated by h .

Proof. Any nonsingular linear transformation which fixes the lines

26, 27, 0 and 13 is of the form L . where A is a nonsingular
[y A)

3 * 3 matrix over GF(3) and 0 is the zero matrix and further

a
X

P

0
y
q

0
0
a

AM_ = MA . Then A is of the form x y 0 with a ? 0 t y . On

Hi.
examination of Table 2.1 we find that AL , M and M are the only

matrices having the characteristic polynomial -X + X + 1 and in fact,

they are similar. Thus if the above linear transformation is a

collineation, then it must map 1, 3 and 9 among themselves. This

2 0 0'
forces A to be an element of the group generated by the matrix 1 2 0

I2 2 2J
which forces in its turn that any collineation that fixes the lines 26,

2
27, 0 and 13 is a power of h and the group of all such collineations

is of order 6 .

THEOREM 3.4. The group G of all collineations which fix the point

corresponding to the zero vector and permute the lines L. among
is

themselves is generated by {s, r, h) .

Proof. Let ff g be the group of collineations from G which fix

26 . Since the restriction of G to the lines L. is transitive on the
U Is

set of lines L. , 0 5 i 5 27 , Gn is given by a disjoint union of

cosets of H s- "by the expression

U B AX.
i=0 2 6 ̂

where for each i , a. is a collineation from Gn which sends L^c onto

L^ . We now determine B , . The group H , contains the collineation e

which is transitive on the set of lines {0, 1, ..., 12} . In view of
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Theorem 3.2 we may conclude that # g is transitive on the set of lines

{0, 1, 2, ..., 12} . Let K^r -. he the group of all collineations from

ff?g that fix line 0 . Since the collineation s fixes the line 26

and sends line 0 to line i for 0 5 i 2 12 we may express #„,- as a

disjoint union of cosets of K-r Q given by the expression

4=12

We have to determine X_r _ . Suppose a collineation fixes the lines 26

do ,u

and zero. In view of Theorem 3.1 we may say that it fixes the line 27

also. Further its conjugate by r fixes lines 0 and 13 showing that

whenever line 0 is fixed by a collineation, the line 13 also is fixed

by the same collineation. Thus if a collineation fixes lines 26 and 0 ,

then it fixes lines 27 and 13 as well. The group L , consists of

all collineations from L , which fix simultaneously lines 26, 27, 0 and

13 . Theorem 3.3 implies that K^ = ( h > . Then

i=12 2 i
2 6 i=0

Let a s be the identity, a. = rs1 , 0 5 i 5 12 , and a . = h.rsV ,

0 £ i £ 12 , and a = h . It is easily seen that a. sends line 26

onto line £ for 0 < i 5 27 . We may nov conclude that

27 12 .
G = U U <?i > s V

j=0 i=0 3

and GQ contains 6'13*28 = 2181* elements. If G' is the group of all

translations, then the full collineation group G of TT« is given by

G = <G', GQ> .
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