(D - 2)-EXTREME POINTS AND A HELLY-TYPE THEOREM FOR STARSHAPED SETS

MARILYN BREEN

1. Introduction. We begin with some preliminary definitions. Let S be a subset of \mathbf{R}^{d}. For points x and y in S, we say x sees y via S if and only if the corresponding segment $[x, y]$ lies in S. The set S is said to be starshaped if and only if there is some point p in S such that, for every x in S, p sees x via S. The collection of all such points p is called the kernel of S, denoted ker S. Furthermore, if we define the star of x in S by $S_{x}=\{y:[x, y] \subseteq S\}$, it is clear that $\operatorname{ker} S=\cap\left\{S_{x}: x\right.$ in $\left.S\right\}$.

Several interesting results indicate a relationship between ker S and the set E of $(d-2)$-extreme points of S. Recall that for $d \geqq 2$, a point x in S is a ($d-2$)-extreme point of S if and only if x is not relatively interior to a ($d-1$)-dimensional simplex which lies in S. Kenelly, Hare et al. [4] have proved that if S is a compact starshaped set in $\mathbf{R}^{d}, d \geqq 2$, then $\operatorname{ker} S=\cap\left\{S_{e}: e\right.$ in $\left.E\right\}$. This was strengthened in papers by Stavrakas [6] and Goodey [$\mathbf{2}$], and their results show that the conclusion follows whenever S is a compact set whose complement $\sim S$ is connected.

Thus it seems natural to expect that the set E might be used in a Helly-type theorem for starshaped sets. A well-known result of Krasnosel'skii [3] states that for S compact in \mathbf{R}^{d}, S is starshaped if and only if every $d+1$ points of S see a common point via S. We show that, with suitable hypothesis, it suifices that every $d+1$ points of E see a common point via S. In fact, a stronger result is obtained, for an analogue of this statement may be used to determine the dimension of $\operatorname{ker} S$.

Since these results are perhaps most useful when E is finite, it seems appropriate to begin the paper by investigating this situation, and Section 2 shows that for S compact, E countable, and $S \neq E$, then S is planar. The third section studies the relationship between E and $\operatorname{ker} S$ to obtain a Helly-type theorem for the dimension of $\operatorname{ker} S$.

The following terminology will be used. Throughout the paper, conv S, aff S, cl S, int S, rel int S, bdry S, rel bdry S, and $\operatorname{ker} S$ will denote the convex hull, affine hull, closure, interior, relative interior, boundary, relative boundary, and kernel, respectively, of the set S, while card S will be the cardinality of S. If S is convex, ext S will represent the set of extreme points of $S, \operatorname{dim} S$ the dimension of S. Finally, for $x \neq y, R(x, y)$ will denote the ray emanating from x through y, and $L(x, y)$ will be the
line determined by x and y. The reader is referred to [7] for a thorough explanation of these concepts.
2. The cardinality of the set E of $(d-2)$-extreme points. We begin by investigating the case in which E is countable, and we have the following result.

Theorem 1. Let S be a compact set in \mathbf{R}^{d}, E the set of ($d-2$)-extreme points of S. If E is countable and $S \neq E$, then S is planar.

Proof. Clearly if x is a $(k-2)$-extreme point of S in the flat aff S, where dim aff $S=k \leqq d$, then x is a $(d-2)$-extreme point of S in \mathbf{R}^{d}. Hence without loss of generality we assume that aff $S=\mathbf{R}^{d}$. Also, if dim aff $S \leqq 1$, there is nothing to prove, so let $d \geqq 2$.

We begin by considering the case in which S is convex. Since S is at least 2-dimensional, bdry S is uncountable, and we may select some point s in bdry $S \sim E$. Then s is relatively interior to a ($d-1$)-simplex F in S, and since $s \in$ bdry S and S is convex, clearly $F \subseteq$ bdry S. Letting H denote the hyperplane aff F, H supports S at s, and we may assume that S lies in the closed halfspace cl H_{1} (where H_{1}, H_{2} denote distinct open halfspaces determined by H).

We assert that rel bdry $(H \cap S) \subseteq E$: Select $t \in$ rel bdry $(H \cap S)$. If t were relatively interior to a $(d-1)$-simplex G in S, then $G \subseteq \mathrm{cl} H_{1}$. However, since $t \in$ rel bdry $(H \cap S), G \nsubseteq H$. Hence $G \cap H_{1} \neq \emptyset$ and since $t \in$ rel int G, this forces $G \cap H_{2} \neq \emptyset$. We have a contradiction and t must belong to E, the desired result. Thus

$$
\text { rel bdry }(H \cap S) \subseteq E
$$

Now if $d \geqq 3$, then the set $H \cap S$ would be at least 2 -dimensional, and its relative boundary would be uncountable. However,

$$
\text { rel bdry }(H \cap S) \subseteq E
$$

and E is countable so this cannot occur. Hence $d=2$ and S is planar, finishing the argument for the case in which S is convex.

The remainder of the proof will be concerned with the argument for S not convex. The following lemmas will be useful.

Lemma 1. Without loss of generality, we may assume that $\sim S$ is connected.

Proof of Lemma 1. Let A denote an unbounded component of S. (Since S is compact, standard arguments reveal that A is unique.) Define $T=\sim A$ and define D to be the set of $(d-2)$-extreme points of T. We will show that T is compact, that $D \subseteq E$, and that it suffices to prove the theorem for the set T. Notice that

$$
\sim \operatorname{conv} S \subseteq A=\sim T
$$

so $T \subseteq \operatorname{conv} S$ and T is bounded. Also, since \mathbf{R}^{d} is locally connected and $\sim S$ is open, the component A is open, and T is closed. Thus T is compact. Also, $A \subseteq \sim S$ so $S \subseteq \sim A=T$.
In order to prove that $D \subseteq E$, first we verify that bdry $T \subseteq$ bdry S. Let $x \in$ bdry T and let N be any neighborhood of x. Then $N \cap A \neq \emptyset$, but $A \subseteq \sim S$, so $N \cap(\sim S) \neq \emptyset$. Now if $N \subseteq \sim S$, then $x \in \sim S$ and some neighborhood M of x would lie in the (open) component of $\sim S$ containing x. But each neighborhood of x contains points of A, so this would imply that $M \subseteq A$. However, then M could contain no point of $\sim A=T$, inpossible since $x \in$ bdry T. Hence $N \nsubseteq \sim S$ and $N \cap \mathrm{~S} \neq \emptyset$. We conclude that $x \in$ bdry S and bdry $T \subseteq$ bdry S.

Now it is easy to show that $D \subseteq E$. For y in D, y is not relatively interior to a ($d-1$)-simplex in T, so $y \in \operatorname{bdry} T \subseteq$ bdry S, and $y \in S$. Furthermore, since $S \subseteq T, y$ is not relatively interior to a $(d-1)$ simplex in S, and we conclude that y is a ($d-2$)-extreme point of S. Thus $D \subseteq E$, the desired result.

In summary, T is a compact set in \mathbf{R}^{d} whose set D of $(d-2)$-extreme points lies in E and hence is countable. Since $D \subseteq E \subseteq S \subseteq T$ and $E \neq S$, certainly $D \neq T$ so T satisfies the hypothesis of our theorem. In addition, $\sim T=A$ is connected. If we are able to show that T is planar, then its subset S must also be planar, and the proof of Lemma 1 is complete.

Lemma 2. Let S^{\prime} be any component of S with E^{\prime} the corresponding set of (d -2)-extreme points of S^{\prime}. The set S^{\prime} is compact, E^{\prime} is countable, and if S^{\prime} is not a singleton set, then $S^{\prime} \neq E^{\prime}$.

Proof of Lemma 2. Standard arguments reveal that S^{\prime} is closed and therefore compact. Furthermore, it is easy to show that $E^{\prime} \subseteq E$ and hence E^{\prime} is countable: For $y \in S^{\prime} \sim E, y$ is relatively interior to a ($d-1$)simplex in S, and this simplex necessarily lies in the component S^{\prime}. Thus $y \in S^{\prime} \sim E$ and $E^{\prime} \subseteq E$.

Finally, we must prove that if S^{\prime} is not a singleton set, then $S^{\prime} \neq E^{\prime}$, and clearly it suffices to show that S^{\prime} is uncountable. Choose points s, t in S^{\prime}, and let N be a neighborhood of s disjoint from t. The following argument by Robert Sternfeld (private communication) shows that $N \cap S^{\prime}$ is uncountable: Otherwise, the set of distances

$$
P=\{\operatorname{dist}(s, u): u \in N \cap S\}
$$

would be countable, and we could choose some positive number $r \notin P$ so that the r-sphere V about s would lie in N. But then $V \cap S^{\prime},(\sim V) \cap S^{\prime}$ would give a separation for S^{\prime}, contradicting the fact that S^{\prime} is connected. We conclude that $S^{\prime} \cap N$ is uncountable and hence $S^{\prime} \neq E^{\prime}$, finishing the proof of Lemma 2.

Lemma 3. If some nontrivial component S^{\prime} of S is planar, then S is planar. Thus without loss of generality we may assume that S is connected.

Proof of Lemma 3. By the proof of Lemma 2, if S^{\prime} is a component of S and S^{\prime} is not a singleton set, then S^{\prime} will be uncountable. Assume that S^{\prime} lies in the plane π, and let B denote the set of relative boundary points of S^{\prime} (as a subset of π). Now if S is not planar, then aff $S=\mathbf{R}^{d}$ for some $d \geqq 3$, and it is easy to show that each point in B is a ($d-2$)extreme point of S. However, we see that B is uncountable: If S^{\prime} has no relative interior points in π, then $S^{\prime}=B$. Otherwise, S^{\prime} will have a relative interior point p in π, and every ray in π emanating from p will contain a distinct member of B. Hence B will be uncountable, impossible since $B \subseteq E$ and E is countable. We conclude that S must be planar.

To complete the proof of the lemma, note that since a singleton point component of S will be a $(d-2)$-extreme point of S for $d \geqq 2$, and since $S \neq E$, it follows that S has at least one nontrivial component S^{\prime}. By Lemma 2, S^{\prime} satisfies the hypothesis of our theorem. Moreover, by the argument above, if S^{\prime} is planar, then S is planar also. Therefore, it suffices to prove the theorem for any nontrivial component S^{\prime} of S, and without loss of generality, we may assume that S is connected. This finishes the proof of Lemma 3.

Now we return to the proof of the theorem. Using our lemmas, we may assume that S is a connected set in \mathbf{R}^{d} whose complement $\sim S$ is also connected. Furthermore, since we have proved the theorem for the case in which S is convex, we assume that S is not convex. Then there are points z, z^{\prime} in S such that $\left[z, z^{\prime}\right] \nsubseteq S$. Select x on $\left(z, z^{\prime}\right) \sim S$. Also, since S is compact, we may choose a point $x_{0} \notin \operatorname{conv} S$ with x_{0} not collinear with z and z^{\prime}.

Using an argument employed in [2], since $\sim S$ is open and connected, it is polygonally connected, and there is a path λ in $\sim S$ from x to x_{0}. Let $v_{1}=x, v_{2}, \ldots, v_{n}=x_{0}$ denote consecutive vertices of λ, and assume that no segment of λ is collinear with z. Since $R(z, x) \sim[z, x)$ meets S at z^{\prime} and $R\left(z, x_{0}\right) \sim\left[z, x_{0}\right)$ clearly cannot meet S, we may select a last vertex of λ, say v_{i}, for which $R\left(z, v_{i}\right) \sim\left[z, v_{i}\right)$ meets S. Certainly $1 \leqq i<n$, and the ray $R\left(z, v_{i+1}\right) \sim\left[z, v_{i+1}\right)$ contains no point of S. Furthermore, for some convex neighborhood N of v_{i+1}, N in $\sim S$, and for each point w in $N, R(z, w) \sim[z, w)$ contains no point of S : Otherwise, there would be a sequence of rays $R\left(z, w_{n}\right) \sim\left[z, w_{n}\right)$ converging to $R\left(z, v_{i+1}\right) \sim\left[z, v_{i+1}\right)$, each containing a point s_{n} of S, and a subsequence of $\left\{s_{n}\right\}$ would converge to a point of S on $R\left(z, v_{i+1}\right) \sim\left[z, v_{i+1}\right)$, which is impossible.

Since $\sim S$ is open and $\lambda \subseteq \sim S$, we may choose an open convex cylinder C about $\left[v_{i}, v_{i+1}\right]$ whose closure is disjoint from S. Then $z \notin C$, and we may consider the open convex set

$$
U \equiv \cup\{R(z, c) \sim[z, c): c \text { in } C\} .
$$

Recall that $R\left(z, v_{i}\right) \sim\left[z, v_{i}\right)$ intersects S at some point q, and $q \notin \mathrm{cl} C$. Let M be any neighborhood of q contained in U and disjoint from $\mathrm{cl} C$. By the proof of Lemma $2, M \cap S$ is uncountable and hence contains points not in E. Thus we may select point r in $(M \cap S) \sim E$, and we choose a corresponding point c_{0} in C such that $R\left(z, c_{0}\right) \sim\left[z, c_{0}\right)$ contains r.

Since $r \notin E, r$ is relatively interior to a $(d-1)$-simplex P in S. Select a point $v_{i+1}{ }^{\prime}$ in $C \cap N$ so that $\left[v_{i+1}{ }^{\prime}, c_{0}\right] \subseteq \operatorname{aff} P$ and so that $v_{i+1}{ }^{\prime}, c_{0}, z$ are not collinear. Let π denote the plane determined by $v_{i+1}{ }^{\prime}, c_{0}, z$.

In case aff $P \subseteq \pi$, then the dimension of P is at most 2 . However, $\operatorname{dim} P \neq 2$, for otherwise, then aff $P=\pi$, which is impossible by our choice of $v_{i+1}{ }^{\prime}$. Thus $\operatorname{dim} P \equiv d-1 \leqq 1$, and since $d \geqq 2$, this implies $d=2$ and S is planar, finishing the argument.

Therefore, we need only consider the case in which aff $P \nsubseteq \pi$. That is, we will assume that $d \geqq 3$ to reach a contradiction. Let L be a line in π through z and disjoint from $\mathrm{cl} C$. Select a point p in $(P \sim \pi) \cap U$ so that the corresponding plane aff $(L \cup\{p\})$ intersects $N \cap C$. (Certainly this is possible for p sufficiently close to r.) For p_{1}, p_{2} distinct points on $[p, r]$, clearly the planes aff $\left(L \cup\left\{p_{1}\right\}\right)$, aff $\left(L \cup\left\{p_{2}\right\}\right)$ intersect only in L.

We will show that for p^{\prime} on $[p, r]$, the plane $\pi^{\prime} \equiv \operatorname{aff}\left(L \cup\left\{p^{\prime}\right\}\right)$ contains a point of $E \sim L$: By our choice of p,

$$
N \cap C \cap \operatorname{aff}(L \cup\{p\}) \neq \emptyset,
$$

and since $N \cap C$ is convex, it is easy to see that there is a point $v_{i+1}{ }^{\prime \prime}$ in $N \cap C \cap$ aff $\left(L \cup\left\{p^{\prime}\right\}\right)$. Recall $v_{i+1}{ }^{\prime \prime}$ in N implies that $R\left(z, v_{i+1}{ }^{\prime \prime}\right) \sim$ $\left[z, v_{i+1}{ }^{\prime \prime}\right)$ does not intersect S. However, $p^{\prime} \in U$ so for some c^{\prime} in C, $R\left(z, c^{\prime}\right) \sim\left[z, c^{\prime}\right)$ intersects S at p^{\prime}. Also,

$$
\left[v_{i+1} 1^{\prime \prime}, c^{\prime}\right] \subseteq C
$$

and therefore $\left[v_{i+1}{ }^{\prime \prime}, c^{\prime}\right]$ is disjoint from L. Since S is compact, there is a last point y on $\left[c^{\prime}, v_{i+1}^{\prime \prime}\right]$ such that $R(z, y) \sim[z, y)$ meets S, and $c^{\prime} \leqq y<v_{i+1}{ }^{\prime \prime}$. Let u denote the last point of S on the ray; that is, the point of S on $R(z, y) \sim[z, y)$ whose distance to y is maximal.

We assert that $u \in E \sim L$: If u were relatively interior to a ($d-1$)simplex in S, then that simplex would meet the plane π^{\prime} in at least a segment, so u would be relatively interior to a segment (a, b) in $\pi^{\prime} \cap S$. But by our choice of u as the last point of S on our ray, a and b could both lie on the ray, so a and b would lie on opposite sides of the corresponding line $L(z, y)$ in π^{\prime}. However, this contradicts our choice of y. Our assumption is false and $u \in E$. Furthermore, $u \notin L$, for otherwise $y \in L$, which is impossible since $y \in C$ and $L \cap C=\emptyset$.

We conclude that for each point p_{α} on $[p, r]$, we may associate a ($d-2$)-extreme point u_{α} in $\pi_{\alpha} \sim L$, where $\pi_{\alpha}=\operatorname{aff}\left(L \cup\left\{p_{\alpha}\right\}\right)$. For distinct points on $[p, r]$, their associated planes meet only in L, and hence
the points u_{α} are necessarily distinct. Thus E must be uncountable, violating our hypothesis. Our assumption that $d \geqq 3$ must be false, so $d=2$ and S is planar, finishing the proof of the theorem.

Corollary. Let S be a nonempty compact set in $\mathbf{R}^{d}, d \geqq 2, S^{\prime}$ a component of S with corresponding set of $(d-2)$-extreme points E^{\prime}. Then $E^{\prime} \neq \emptyset$, and if S^{\prime} is nontrivial, card $E^{\prime} \geqq 2$.

Proof. It is easy to show that every extreme point of the compact set $\operatorname{conv} S^{\prime}$ is in $E^{\prime}:$ Let $x \in \operatorname{ext}\left(\operatorname{conv} S^{\prime}\right)$. Then x is not relatively interior to a segment whose endpoints are in conv S^{\prime}, so x is certainly not relatively interior to a $(d-1)$-simplex in S^{\prime}. Furthermore, $x \in S^{\prime}$, for otherwise, by Carathéodory's theorem in \mathbf{R}^{d}, x would be relatively interior to a k-simplex with vertices in S^{\prime} for some $1 \leqq k \leqq d$, clearly impossible. Hence $x \in E^{\prime}$. Since

$$
\operatorname{conv} S^{\prime}=\operatorname{conv}\left(\operatorname{ext} \operatorname{conv} S^{\prime}\right) \neq \emptyset
$$

$E^{\prime} \neq \emptyset$.
Now if S is not planar and S^{\prime} is nontrivial, then by Theorem 1 and arguments in Lemmas 2 and $3, E^{\prime}$ will be uncountable (regardless of dim aff S^{\prime}). In case S is planar and aff S^{\prime} is a line, then S^{\prime} must be a segment, and card $E^{\prime}=2$. For S planar and aff S^{\prime} also planar, then conv S^{\prime} has at least 3 extreme points, and card $E^{\prime} \geqq 3$. Of course, whenever S^{\prime} is a singleton set, $E^{\prime}=S^{\prime} \neq \emptyset$ for every $d \geqq 2$.

To conclude this section, we show that the full hypothesis of Theorem 1 is required. It is easy to see that S must be closed: In particular, any open set in \mathbf{R}^{d} has no ($d-2$)-extreme points. The following examples reveal that S must be bounded with $S \neq E$.

Example 1 . To see that S must be bounded, let D be the d-dimensional unit disk in $\mathbf{R}^{d}, d \geqq 3$, and let $S=\mathrm{cl}\left(\mathbf{R}^{d} \sim D\right)$. Then S has no $(d-2)$ extreme points yet S is certainly nonplanar.

Example 2. To see that we must require $S \neq E$, for $d \geqq 3$ let T denote any sequence in \mathbf{R}^{d} converging to the origin Φ, with aff $T=\mathbf{R}^{d}$. Then the set $S \equiv T \cup\{\Phi\}$ is a countable, compact set, every point of S is a ($d-2$)-extreme point, and S is nonplanar.
3. A Helly-type theorem for dim ker S. In this section we obtain a Helly-type theorem which uses the set E of $(d-2)$-extreme points of S to determine $\operatorname{dim} \operatorname{ker} S$. First we develop an analogue of some results in [6] and [2], then use a technique given in [7] to prove our main results.

In [6], Stavrakas introduced the following definition: A set S in \mathbf{R}^{d} is said to have the half-ray property if and only if for every point x in $\sim S$, there exists a ray emanating from x and disjoint from S. Furthermore, he
used this property to characterize compact sets S for which

$$
\operatorname{ker} S=\cap\left\{S_{e}: e \text { in } E\right\} .
$$

Goodey [2] obtained a parallel theorem, replacing the half-ray property with the weaker requirement that $\sim S$ be connected, and the following lemma is an analogue of his result for convex hulls of the sets S_{e}.

Lemma 4. Let S be a compact set in \mathbf{R}^{d}, E the set of ($d-2$)-extreme points of S, and assume that $\sim S$ is connected. If

$$
\cap\left\{\text { int conv } S_{e}: \text { e in } E\right\} \neq \emptyset
$$

then S has the half-ray property.
Proof. Select a point $z \in \cap\left\{\right.$ int conv $S_{e}: e$ in $\left.E\right\}$. We use an argument similar to one in [2] to show that for x in $\sim S$, the ray $R(z, x) \sim[z, x)$ is disjoint from S. Choose $x_{0} \notin$ conv S. Then $R\left(z, x_{0}\right) \sim\left[z, x_{0}\right)$ cannot intersect S. As in the proof of Theorem 1, since $\sim S$ is open and connected, we may choose a polygonal path λ in $\sim S$ from x to x_{0}, with no segment of λ collinear with z. We let $v_{1}=x, v_{2}, \ldots, v_{n}=x_{0}$ be consecutive vertices of λ.

Now if $R(z, x) \sim[z, x)$ does not intersect S, the argument is finished. Hence we assume that the ray meets S, to reach a contradiction. Choose a last vertex v_{i} of λ such that $R\left(z, v_{i}\right) \sim\left[z, v_{i}\right)$ meets S. Let A be the translate of $L\left(v_{i}, v_{i+1}\right)$ through z, and let C be an open convex cylinder about $\left[v_{i}, v_{i+1}\right]$ whose closure is disjoint from $S \cup A$. Using an argument from Theorem 1, let N be the closure of a spherical neighborhood of v_{i+1} contained in C such that for w in $N, R(z, w) \sim[z, w)$ does not intersect S.

Consider the family of translates of N centered on $\left[v_{i}, v_{i+1}\right]$, and for $0 \leqq \lambda \leqq 1$, let N_{λ} denote that translate of N whose center is $\lambda\left(v_{i}\right)+$ $(1-\lambda) v_{i+1}$, so that $N_{0}=N$. Certainly each $N_{\lambda} \subseteq C$. Since S is compact, there is a smallest $\alpha, 0<\alpha \leqq 1$, such that bdry N_{α} contains a point y with $R(z, y) \sim[z, y)$ intersecting S. Let u be the point of $(R(z, y) \sim$ $[z, y)) \cap S$ whose distance to z is maximal.

We will show that $u \in E$. Recall that the line A through z is disjoint from C. Since $y \in C, y \notin A$ and $u \notin A$. Thus $\pi \equiv \operatorname{aff}(A \cup\{u\})$ is a plane. Moreover, $N_{\lambda} \cap \pi$ is a translate of $N \cap \pi$ for every $0 \leqq \lambda \leqq 1$. Letting v_{i+1}^{\prime} denote the center of $N_{0} \cap \pi$, since $v_{i+1}^{\prime} \in N, v_{i+1}{ }^{\prime} \notin$ $L(z, u)$. Furthermore, if L_{1} denotes the open halfplane of π determined by $L(z, u)$ and containing $v_{i+1}{ }^{\prime}$, notice that $\left(N_{\alpha} \cap \pi\right) \subseteq \operatorname{cl} L_{1}$.

Now if u were not in E, then using arguments in the proof of Theorem 1 , u would be relatively interior to a segment (s, t) in $S \cap \pi$, with s and t on opposite sides of $L(z, u)$, say with s in L_{1}. However, then for some $0<\beta<\alpha$, and for some b in bdry $\left(N_{\beta} \cap \pi\right), R(z, b) \sim[z, b)$ would meet (s, u), which is impossible by our choice of α. Thus $u \in E$, the desired result.

Now since u is in $E, z \in$ int conv S_{u}. To finish the argument, we will show that this cannot occur. Let H be a hyperplane supporting the convex cone $K \equiv \bigcup\left\{R(z, v): v\right.$ in $\left.N_{\alpha}\right\}$ at point u, with K in the closed halfspace cl H_{1} determined by H. Clearly $v_{i+1} \in H_{1}$ by our choice of α. Furthermore, u can see no point p in $S \cap H_{1}$, for otherwise the halfplane of aff $(L(z, u) \cup\{p\})$ determined by $L(z, u)$ and containing p would meet int N_{α}, and for some $0<\beta<\alpha$ and some b in bdry $N_{\beta}, R(z, b) \sim[z, b)$ would meet (p, u), impossible by our choice of α. We conclude that $S_{u} \cap H_{1}=\emptyset$ and $S_{u} \subseteq \mathrm{cl} H_{2}$. However, $z \in H$ so this implies $z \notin$ int conv S_{u}. We have a contradiction, our assumption must be false, and the ray $R(z, x) \sim[z, x)$ necessarily is disjoint from S. Therefore S has the half-ray property, and the proof of Lemma 4 is complete.

It is interesting to notice that the hypothesis

$$
\cap\left\{\operatorname{int} \operatorname{conv} S_{e}: \text { e in } E\right\} \neq \emptyset
$$

in Lemma 4 may be replaced with the requirements that

$$
\cap\left\{\operatorname{conv} S_{e}: e \text { in } E\right\} \neq \emptyset \text { and } S \subset \mathbf{R}^{2},
$$

and we have the following corollary.
Corollary. Let S be a compact set in \mathbf{R}^{2}, E the set of $(d-2)$-extreme points of S, and assume that $\sim S$ is connected. If

$$
\cap\left\{\operatorname{conv} S_{e}: \text { e in } E\right\} \neq \emptyset,
$$

then S has the half-ray property.
Proof. The argument involves only slight modifications in the proof of Lemma 4. Select $z \in \cap\left\{\operatorname{conv} S_{e}: e\right.$ in $\left.E\right\}$ and proceed as in Lemma 4 to obtain $y \in C, u \in E$, and hyperplane H, with $S_{u} \subseteq \mathrm{cl} H_{2}$. Notice that for S planar, $H=L(z, u)$. Furthermore, since $y \notin S$ and $y \in(u, z)$, u sees no point of S on $R(u, z) \sim[u, y)$. Hence

$$
S_{u} \subseteq H_{2} \cup R(y, u), z \notin \operatorname{conv} S_{u},
$$

and we have the required contradiction.
To obtain an analogue of the Krasnosel'skii theorem, we use the approach given in [7, Lemma 6.2 and Theorem 6.17], suitably adapted for the set E of $(d-2)$-extreme points of S.

Lemma 5. Let S be a nonempty compact set in $\mathbf{R}^{d}, d \geqq 2$, having the half-ray property. If $y \in S$ and $[x, y] \subseteq S$, then there exist $a(d-2)$ extreme point e of S and a hyperplane H through e separating S_{e} from x.

Proof. Select a point p in $(x, y) \sim S$. Since S has the half-ray property, there exists a ray l emanating from p and disjoint from S, and since S is compact, l may be chosen so that it is not collinear with x and y. Further-
more, there is a convex neighborhood of l disjoint from S, and we may select a closed, spherical neighborhood V of $p, x \notin V$, and a point w collinear with $l, w \notin V \cup l$, so that the cone

$$
C=\cup\{R(w, v): v \in V\}
$$

is a closed neighborhood of l disjoint from S. Notice that $R(w, p)$ is the axis of C.

Let π denote the plane aff $(l \cup\{y\})$. Rotate the cone C in the following manner: Let μ represent the measure of the smaller angle in π determined by rays $R_{\mu} \equiv R(w, p)$ and $R_{0} \equiv R(w, y)$. Then for $0<\lambda<\mu$, there is a corresponding ray R_{λ} emanating from w and between R_{0} and R_{μ} such that the angle determined by R_{0} and R_{λ} has measure λ. Moreover, for $0 \leqq \lambda \leqq \mu$, there is a cone C_{λ} having axis R_{λ} and congruent to C. Choosing the largest α such that bdry C_{α} contains a point of S, clearly $0<\alpha<\mu$. Finally, select a point e in $S \cap$ bdry C_{α} whose distance to w is maximal. If G denotes the hyperplane which contains the ray R_{α} and whose normal vector lies in π, notice that x and y lie in opposite open halfspaces G_{1} and G_{2}, respectively, determined by G, and e lies in $\mathrm{cl} G_{2}$.

Let H be the hyperplane supporting the cone C_{α} at e, with C_{α} in the closed halfspace $\mathrm{cl} H_{1}$ determined by H. We assert that e and H satisfy the lemma. To see that e is a $(d-2)$-extreme point of S, let L represent the line in π which contains w and is parallel to $L(x, y)$. Thus for $0 \leqq$ $\lambda \leqq \alpha, L \cap C_{\lambda}=\{w\}$. Also, let π^{\prime} denote the plane determined by L and e. By previous arguments, if e were not a $(d-2)$-extreme point of S, e would be relatively interior to some segment in $\pi^{\prime} \cap S$, with endpoints of this segment on opposite sides of $L(w, e)$. However, then for some $\beta>\alpha$, (bdry $\left.C_{\beta}\right) \cap \pi^{\prime}$ would contain points of S, violating our choice of α.

It remains to show that H separates S_{e} from x. Recall that $C_{\alpha} \subseteq \mathrm{cl} H_{1}$. Now e can see no point p in $C_{\alpha} \cap H_{1}$, for otherwise the halfplane determined by w, e, p and containing p would meet the interior of C_{α}, and for some $\beta>\alpha$, bdry $C_{\beta} \cap S \neq \emptyset$, and this is impossible. Thus $S_{e} \nsubseteq \mathrm{cl} H_{2}$. Finally, we see that $x \in H_{1}$: If e is in π, this is obvious. Otherwise, examine the 3 -dimensional flat

$$
\operatorname{aff}(\pi \cup\{e\}) \equiv B
$$

Then $e \in\left(\mathrm{cl} G_{2}\right) \cap B$, so clearly $x \in H_{1} \cap B \subseteq H_{1}$, and Lemma 5 is proved.

Theorem 2 provides the desired analogue of Krasnosel'skii's theorem for the set of $(d-2)$-extreme points of S. To simplify the statement of the theorem, we interpret a 0 -dimensional ϵ-neighborhood to be a singleton point.

Theorem 2. Let S be a nonempty compact set in $\mathbf{R}^{d}, d \geqq 2$, having the half-ray property, and assume that for some $\epsilon>0$, every $f(d, k)$ or fewer
(d -2)-extreme points of S see via S a common k-dimensional ϵ-neighborhood, where $f(d, 0)=f(\mathrm{~d}, k)=d+1 \operatorname{and} f(d, k)=2 d$ for $1 \leqq k \leqq d-1$. Then S is starshaped and $\operatorname{dim} \operatorname{ker} S \geqq k$.

Proof. The first part of our proof is an adaptation of the argument in [7, Theorem 6.17]. Let E denote the set of $(d-2)$-extreme points of S, and for z in E, let D_{z} represent the intersection of the closed halfspaces which contain S_{z} and whose boundaries contain z. (If no such halfspace exists, then $D_{z}=\mathbf{R}^{d}$.) We assert that $\operatorname{ker} S=\cap\left\{D_{z}: z\right.$ in $\left.E\right\}$: Clearly
$\operatorname{ker} S \subseteq \cap\left\{S_{z}: z\right.$ in $\left.E\right\} \subseteq \cap\left\{D_{z}: z\right.$ in $\left.E\right\}$,
so we need only establish the reverse containment. Let x be a point in $\mathbf{R}^{d} \sim \operatorname{ker} S$. Then there is some y in S such that $[x, y] \nsubseteq S$, and by Lemma 5 there exist some ($d-2$)-extreme point e of S and corresponding hyperplane H through e separating S_{e} from x. Hence

$$
x \notin D_{e}, \cap\left\{D_{z}: z \text { in } E\right\} \subseteq \operatorname{ker} S,
$$

and the sets are equal.
To complete the proof, define

$$
\mathscr{D} \equiv\left\{D_{2} \cap \operatorname{conv} S: z \text { in } E\right\} .
$$

Then \mathscr{D} is a uniformly bounded collection of compact convex sets in \mathbf{R}^{d}, and clearly

$$
\cap\{D: D \text { in } \mathscr{D}\} \equiv \cap \mathscr{D}=\operatorname{ker} S .
$$

For $1 \leqq k \leqq d$, every $f(d, k)$ members of \mathscr{D} contain a common k-dimensional ϵ-neighborhood, so by [1, Lemma], $\operatorname{dim} \cap \mathscr{D} \geqq k$. For $k=0$, by a direct application of Helly's theorem in $\mathbf{R}^{d}, \cap \mathscr{D} \neq \emptyset$, and $\operatorname{dim} \cap \mathscr{D} \geqq 0$. Hence $\operatorname{dim} \operatorname{ker} S \geqq k$ for $0 \leqq k \leqq d$, and the theorem is proved.

In case E is finite, we use a theorem of Meir Katchalski to obtain the following corollary. Notice that the half-ray property may be replaced with the weaker requirement that $\sim S$ be connected.

Corollary 1. Let S be a nonempty compact set in $\mathbf{R}^{d}, d \geqq 2$, with $\sim S$ connected and with the corresponding set E of ($d-2$)-extreme points of S finite. Assume that every $g(2, k)$ or fewer points in E see via S a common k-dimensional neighborhood, where $g(2,0)=g(2,2)=3$ and $g(2,1)=4$. Then $\operatorname{dim} \operatorname{ker} S \geqq k$.

Proof. It is easy to show that $S \neq E$, and hence S must be planar by Theorem 1. Thus by previous arguments, we may assume that $d=2$. Define the family

$$
\mathscr{C} \equiv\left\{\operatorname{conv} S_{2}: z \text { in } E\right\} \neq \emptyset
$$

Then \mathscr{C} is a finite family of convex sets in the plane, every $g(2, k)$ or
fewer members of \mathscr{C} have at least a k-dimensional intersection, so by [3], $\operatorname{dim} \cap \mathscr{C} \geqq k$. Since

$$
\cap\left\{\operatorname{conv} S_{z}: z \text { in } E\right\} \neq \emptyset,
$$

by the corollary to Lemma $4, S$ has the half-ray property. To complete the argument, define the family

$$
\mathscr{D} \equiv\left\{D_{z}: z \text { in } E\right\}
$$

as in the proof of Theorem 2 above and use Lemma 5 to show that $\cap \mathscr{D}=\operatorname{ker} S$. Since conv $S_{z} \subseteq D_{z}$ for z in E,
$\cap\left\{\operatorname{conv} S_{z}: z\right.$ in $\left.E\right\} \subseteq \cap\left\{D_{z}: z\right.$ in $\left.E\right\}=\operatorname{ker} S$.
Clearly $\operatorname{ker} S \subseteq \cap\left\{\operatorname{conv} S_{z}: z\right.$ in $\left.E\right\}$, so the sets are equal, and
$\operatorname{dim} \operatorname{ker} S=\operatorname{dim} \cap \mathscr{C} \geqq k$.
Corollary 2. Let S be a nonempty compact set in $\mathbf{R}^{d}, d \geqq 2$, with $\sim S$ connected. Assume that for some $\epsilon>0$, every $d+1$ or fewer $(d-2)$ extreme points of S see via S a common d-dimensional ϵ-neighborhood. Then $\operatorname{dim} \operatorname{ker} S=d$.

Proof. Again let E denote the set of $(d-2)$-extreme points of S. Apply [1. Lemma] to the family $\mathscr{C}=\left\{\operatorname{conv} S_{z}: z\right.$ in $\left.E\right\}$ to conclude that $\operatorname{dim} \cap \mathscr{C}=d$. Hence
$\cap\left\{\right.$ int conv $S_{z}: z$ in $\left.E\right\} \neq \emptyset$,
and by Lemma $4, S$ has the half-ray property. Finally, using the argument in Corollary 1 above, $\cap \mathscr{C}=\operatorname{ker} S$ and $\operatorname{dim} \operatorname{ker} S=d$.

In conclusion, we remark that if S is the boundary of a planar triangle (an example given in [6]), then $\cap\left\{\operatorname{conv} S_{z}: z\right.$ a $(d-2)$-extreme point of $S\}$ is the 2 -dimensional set conv S, although the compact set S is not starshaped. Thus the hypothesis that $\sim S$ be connected (or that S have the half-ray property) is needed in Theorem 2 and its corollaries.

References

1. M. Breen, K-dimensional intersections of convex sets and convex kernels, submitted.
2. P. R. Goodey, A note on starshaped sets, Pacific J. Math. 61 (1975), 151-152.
3. M. Katchalski, The dimension of intersections of convex sets, Israel J. Math. 10 (1971), 465-470.
4. J. W. Kenelly, W. R. Hare et. al. Convex components, extreme points, and the convex kernel, Proc. Amer. Math. Soc. 21 (1969), 83-87.
5. M. A. Krasnosel'skii, Sur un critère pour qu'un domain soit étoilé, Math. Sb. (61) 19 (1946), 309-310.
6. N. Stavrakas, A note on starshaped sets, (k)-extreme points and the half ray property, Pacific J. Math. 53 (1974), 627-628.
7. F. A. Valentine, Convex sets (McGraw Hill, 1964).

University of Oklahoma, Norman, Oklahoma

