ON THE DUALS OF FLAT BANACH SPACES

BY

ABRAHAM BICK

ABSTRACT. We give a simpler proof to a theorem of L. A. Karlovitz that the dual of a flat Banach space is flat, and also study some geometric properties of the dual space.

1. **Introduction.** The notion of "flat Banach spaces" was introduced by Harrel and Karlovitz ([2], [3]). Since we shall make repeated use of some of their definitions and basic facts we reproduce them here. A real Banach space X is said to be flat if the girth of its unit ball (defined by Schaffer [7] to be the infimum of the lengths of all centrally-symmetric closed curves which lie in the surface of the unit ball) is four and if the girth is achieved by some curve. This is equivalent to the existence of a function $g: R \to X$ such that for each $s, t \in R$

(1)
$$||g(t)|| = 1$$
, $g(t) = -g(t+2)$, $||g(t) - g(s)|| \le |t-s|$

These conditions easily imply (see [3]) that

(2)
$$||g(t)-g(s)|| = |t-s|$$
 for $|t-s| \le 2$

The restriction of g to every closed interval of length 4 is a centrally-symmetric closed curve of length 4 on the surface of the unit ball which is arc-length parametrized. g (or its restriction) is called a girth curve. A flat Banach space X is called completely flat if $X = \overline{\text{span }} g(R)$ (we shall denote the right hand side by $\overline{\text{span }} g$) where g is a girth curve.

In the sequel we shall denote the unit ball and its boundary in a Banach space X by B(X) and S(X), respectively.

Let X be a flat Banach space with a girth curve g. For each $t \in [0, 2)$ choose $f \in X^*$ such that

(3)
$$||f_t|| = 1, \quad f_t(g(t)) = 1$$

We define $f_t = -f_{t-2}$ for $t \in [2, 4)$, and extend the definition periodically for all $t \in R$, and now (3) is satisfied for each $t \in R$. $\{f_t; t \in R\}$ are uniquely determined on $\overline{\text{span}} g$, since (see [3])

(4)
$$f_t(g(s)) = 1 - |s - t| \text{ for } |s - t| \le 2$$

It also follows that

(5)
$$f_t(g(s)) = f_s(g(t)) \text{ for all } t, s \in \mathbb{R}$$

Received by the editors Nov. 3, 1976 and, in revised form, Feb. 17, 1977.

We shall use the notation

$$\Delta_{g}(s, h) = \frac{1}{h} [g(s-h) - g(s)]$$
 for $s \in R, h \in (0, 2)$

We have $\|\Delta_{s}(s, h)\| = 1$, and, for $h \in (0, 2)$, $|s - t| \le 2$, $|t - s + h| \le 2$

(6)
$$f_{t}(\Delta_{g}(s,h)) = \frac{1}{h} [-|s-h-t|+|s-t|] = \begin{cases} 1 & t \leq s-h \\ 2s/h - 2t/h - 1 & s-h \leq t \leq s \\ -1 & s \leq t \end{cases}$$

We shall need the following lemma.

LEMMA 1.

$$\lim_{t \to t_0} f_t(x) = f_{t_0}(x) \quad \text{for each} \quad x \in \overline{\text{span}} \ g$$

In particular, if $X = \overline{\text{span}} g$, then the function $t \to f_t$ from R into $S(X^*)$ is w^* -continuous and the set $\{f_t; t \in R\}$ is w^* -homeomorphic to the circle.

Proof. Since $\{f_t\} \subset S(X^*)$, it is sufficient to consider $x \in g(R)$, but then it is immediate from (5).

If $X = \overline{\text{span}}$ g, we can regard the function $t \to f_t$ as a function from the circle into $S(X^*)$ which is w^* -continuous and one-to-one, that is, homeomorphism onto its image.

2. The flatness of the dual space. We now present a simpler and "more continuous" proof for results of Karlovitz ([5], Theorems 1,3. The oversight that $B(X^*)$ need not be w^* -sequentially compact is also corrected.)

THEOREM 2. If X is a flat Banach space, then X^* is flat.

If X is completely flat, there exists in $S(X^*)$ a girth curve such that no functional from the curve attains its norm.

Proof. (a) Suppose first that X is completely flat, $X = \overline{\text{span}} g$, where g is a girth curve and suppose $\{f_t\}$ are the corresponding functionals.

For each $r \in R$ consider the functional γ_r defined by

$$\gamma_r(x) = \frac{1}{2} \int_r^{r+2} f_t(x) dt \qquad x \in X$$

(i.e. $\gamma_r = \frac{1}{2} \int_r^{r+2} f_t dt$ where the integral is a w^* -Riemann-integral). By Lemma 1 the integrand is a continuous function of t and so the integral exists. Clearly $\|\gamma_r\| \le 1$, and since $\gamma_r(\Delta_g(r+2, h)) = (2-h)/2$ it follows that $\|\gamma_r\| = 1$. It is easily

verified that $\gamma_{r+2} = -\gamma_r$. For $r \le s \le r+2$ we have

(7)
$$(\gamma_{r} - \gamma_{s})(x) = \frac{1}{2} \left| \int_{r}^{s} f_{t}(x) dt - \int_{r+2}^{s+2} f_{t}(x) dt \right| = \frac{1}{2} \left| \int_{r}^{s} (f_{t} - f_{t+2})(x) dt \right|$$

$$= \left| \int_{r}^{s} f_{t}(x) dt \right| \leq ||x|| (s-r);$$

hence $\|\gamma_r - \gamma_s\| \le |r - s|$ for $|r - s| \le 2$ and it follows that the mapping $r \to \gamma_r (r \in [0, 4])$ defines a girth curve of length four.

Now if $\gamma_r(x) = 1$ for some $x \in S(X)$ and $r \in R$, it follows that $f_t(x) = 1$ for each $t \in [r, r+2]$, but $f_r = -f_{r+2}$ —a contradiction.

(b) Suppose now that X is a flat Banach space with a girth curve g and corresponding functionals $\{f_i\}$. For each $r \in R$ consider the functionals

$$G_r^n = \frac{1}{2n} \sum_{i/n \in [r,r+2)} f_{i/n}$$
 $n = 1, 2, ...$

Clearly $G_r^n \in B(X^*)$, and hence there exists a net $\{n_\alpha\}$ of positive integers such that $\{G_r^{n_c}\}_\alpha$ converges $-w^*$, for each $r \in R$, to some $G_r \in B(X^*)$ (For $B(X^*)^R$ is compact in the product topology when $B(X^*)$ is taken with the w^* -topology). Clearly G_r is an extension of $\gamma_r \in (\overline{\text{span}} \ g)^*$ from part (a), hence $\|G_r\| = 1$. It is easily seen that $G_r^n = -G_{r+2}^n$ and (analogous to (7)) $|G_r^n - G_s^n| \le |r - s|$ for $|r - s| \le 2$, hence also $G_r = -G_{r+2}$ and $\|G_r - G_s\| \le |r - s|$ for $|r - s| \le 2$. Thus the mapping $r \to G_r$ defines a girth curve in $S(X^*)$.

3. The geometry of the dual space. Let X be a flat Banach space with a girth curve g and corresponding functionals $\{f_t\}$. We turn to study the role played by $\{f_t\}$ in the geometry of the dual space.

Proposition 3. (a) $\overline{\text{conv}}\{f_t: t \in [\alpha, \alpha+2)\} \subset S(X^*)$

- (b) $[f_t, f_s] \subset S(X^*)$ for $t \neq s + 2 \pmod{4}$
- (c) $\overline{\operatorname{conv}}^{w^*} \{f_t; t \in [\alpha, \beta]\} \subset S(X^*) \text{ for } \alpha \leq \beta < \alpha + 2$
- (d) $||f_t f_s|| = 2$ for $t \neq s \pmod{4}$
- (e) $\{f_t; t \in [0, 2)\}$ are linearly independent

Proof. (a) Let $f = \sum_{i=1}^{n} \lambda_i f_{t_i}$ where $\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} |\lambda_i| = 1$ and, $\alpha \le t_1 < t_2 < \cdots < t_n < \alpha + 2$. Then $||f|| \le 1$ and, by (6), $f(\Delta_g(\alpha + 2, h)) = 1$ for $h \in (0, \alpha + 2 - t_n)$, hence ||f|| = 1.

This implies the desired result.

- (b) Because of periodicity in the index, it can be assumed that $s \le t < s + 2$, and then (b) is a result of (a)
- (c) Let $\alpha \le \beta < \alpha + 2$, and take $h \in (0, \alpha + 2 \beta)$. Then, as in (a), we get $f(\Delta_g(\alpha + 2, h)) = 1$ for each $f \in \text{conv}\{f_t, t \in [\alpha, \beta]\}$ and therefore also for each $f \in \overline{\text{conv}}^{w^*}\{f_t, t \in [\alpha, \beta]\}$

- (d) (see [5]. Th. 2) As in (b), we can assume $s < t \le s + 2$. Then $||f_s f_t|| \le 2$ and $(f_s f_t)(\Delta_g(t, h)) = 2$ for $h \in (0, t s)$, hence $||f_s f_t|| = 2$
- (e) Analogous to the proof that $\{g(t); t \in [0, 2)\}$ are linearly independent ([4]. Cor. 2). Suppose $\sum_{i=1}^{n} \alpha_i f_{t_i} = 0$ where $\alpha_i \in R$ and $0 \le t_1 < t_2 < \cdots < t_r < 2$. Then, for each $s \in [t_i, t_{i+1}]$

$$0 = \sum_{i=1}^{n} \alpha_{i} f_{t_{i}}(g(s))$$

$$= \sum_{i=1}^{j} \alpha_{i} (1 - s + t_{i}) + \sum_{i=j+1}^{n} \alpha_{i} (1 - t_{i} + s)$$

$$= [\text{term independent of } s] + s \left(-\sum_{i=1}^{j} \alpha_{i} + \sum_{i=j+1}^{n} \alpha_{i} \right)$$

Therefore $-\sum_{i=1}^{j} \alpha_i + \sum_{i=j+1}^{n} \alpha_i = 0$ $j = 1, \ldots, n$, which imply $\alpha_i = 0$ $j = 1, \ldots, n$.

PROPOSITION 4. (a) If X is completely flat, then $\{f_t\}$ are exposed points of $B(X^*)$ (where X^* is with the normed topology or w^* -topology)

- (b) If X is flat, $\{f_t\}$ can be chosen so that they are extreme points of $B(X^*)$.
- **Proof.** (a) If X is completely flat, then $\{f_t\}$ are uniquely determined. This means that for a fixed $t \in R$, the functional $X^* \to R$ defined by $f \to f(g(t))$ attains its norm only at f_t .
- (b) Suppose X is flat, and let $Y = \overline{\text{span}} g$, where g is a girth curve. Let $\{f_t\} \subset S(Y^*)$ be the corresponding functionals. Then by (a), they are extreme points of $B(Y^*)$, and they can be extended to extreme points of $B(X^*)$ by taking $F_t \in S(X^*)$ to be an extreme point of the convex and w^* -compact set of the Hahn-Banach extensions of f_t .

COROLLARY 5. The Banach space C(K), where K is compact Hausdorff, is not completely flat.

Proof. It is known that $\operatorname{ext} B(C^*(K)) = \hat{K} \cup (-\hat{K})$, where \hat{K} is the set of evaluation functionals. $\hat{K} \cap (-\hat{K}) = \phi$ and $\hat{K}, -\hat{K}$ are w^* -closed, that is, $\operatorname{ext} B(C^*(K))$ is not w^* -connected. Now if C(K) is completely flat, and $\{f_t\}$ are the corresponding functionals, then this set has members in both \hat{K} and $-\hat{K}$ (since $f_t = -f_{t+2}$), therefore it is not w^* -connected, a contradiction to Lemma 1.

The question now arises when are $\{f_t\}$ all the extreme points of $B(X^*)$? The answer will follow from the next theorem.

Let $C_{\sigma}(T)$ be the Banach space of all the real continuous functions f defined on the circle T such that f(t) = -f(-t) for each $t \in T$, with the sup-norm.

THEOREM 6. $C_{\sigma}(T)$ is a completely flat Banach space. There exists a girth curve $g: R \to C_{\sigma}(T)$ such that $C_{\sigma}(T) = \overline{\text{span}} g$ and such that if $X = \overline{\text{span}} g_1$ is an arbitrary completely flat Banach space spanned by a girth curve g_1 , then there

exists a linear operator $P: X \to C_{\sigma}(T)$ such that ||P|| = 1, $g = P \circ g_1$ and $\overline{PX} = C_{\sigma}(T)$.

Proof. We shall identify $C_{\sigma}(T)$ with the space of the real continuous functions f defined on the real line R which satisfy f(s) = -f(s+2) for each $s \in R$.

Let $X = \overline{\text{span}} g_1$ be a completely flat Banach space spanned by a girth curve g_1 , and let $\{f_t\}$ be the corresponding functionals.

For each $t \in R$, consider the function $F_t \equiv f_t \circ g_1 : R \to R$. Obviously $F_t \in C_{\sigma}(T)$, $||F_t|| = 1$ and $F_t = -F_{t+2}$. For $s, t \in R$ we have

$$||F_t - F_s|| = \max_{r} |f_t(g_1(r)) - f_s(g_1(r))|$$

$$= \max_{r} |f_r(g_1(t)) - f_r(g_1(s))| \le ||g_1(t) - g_1(s)|| \le |t - s|$$

Thus the mapping $g: R \to C_{\sigma}(T)$ defined by $t \to F_t$ is a girth curve in $S(C_{\sigma}(T))$. We note that $F_t(s) = 1 - |s - t|$ for $|t - s| \le 2$, thus each F_t is uniquely determined on R, independently of the space X and the girth curve g_1 . Consider now the linear operator $P: X \to C_{\sigma}(T)$ defined by $(Px)(t) = f_t(x)$. Clearly $||P|| \le 1$. $P(g_1(s))(t) = f_t(g_1(s)) = f_s(g_1(t)) = F_s(t) = g(s)(t)$, so $P \circ g_1 = g$ which implies that ||P|| = 1 and $\overline{PX} = \overline{\text{span}} g$.

It is left to prove that $C_{\sigma}(T) = \overline{\text{span}} g$. We observe that $F_t(s) = F_0(s-t)$ and thus $\overline{\text{span}} g$ is the closed span of all the translations of F_0 . Consider the 2π -periodic function defined by $G_0(t) = 1 - |2t/\pi|$, $t \in [-\pi, \pi]$ which is the image of F_0 under the natural isometry of $C_{\sigma}(T)$ onto a space of 2π -periodic functions. $G_0(t+\pi) = -G_0(t)$, and so the Fourier transform of G_0 is given by

(8)
$$\hat{G}_{0}(n) = \int_{-\pi}^{\pi} G_{0}(t)e^{-int} dt = \int_{0}^{\pi} G_{0}(t)[-e^{-in(t+\pi)} + e^{-int}] dt$$

$$= \begin{cases} 0 & n \text{ even} \\ \frac{4}{\pi n^{2}} & n \text{ odd} \end{cases}$$

It is known from Harmonic Analysis: if V is a translation-invariant subspace of the complex Banach space of the continuous 2π -periodic functions (with the sup-norm) then the function e^{int} (as a function of t) belongs to V if and only if $\hat{f}(n) = \int_{-\pi}^{\pi} f(t)e^{-int} dt \neq 0$ for some $f \in V$ (if V is the closed span of all the translations of one function F, this is equivalent to $\hat{F}(n) \neq 0$) and V is the closed span of the functions e^{int} which belong to V. (See [6] Chapter 1.)

In our case, returning to the real space $\overline{\text{span}}$ g, it follows that the functions $\sin{(\pi nt/2)}$, $\cos{(\pi nt/2)}$ belong to $\overline{\text{span}}$ g if and only if n is odd, and $\overline{\text{span}}$ g is the closed span of this family. On the other hand, it follows, as in (8), that the Fourier transform of each $f \in C_{\sigma}(T)$ vanishes for even n and since $C_{\sigma}(T)$ is also translation invariant we conclude that $C_{\sigma}(T) \subseteq \overline{\text{span}}$ g.

COROLLARY 7. The following properties are equivalent for a completely flat Banach space $X = \overline{\text{span}}$ g where g is a girth curve and $\{f_t\}$ are the corresponding functionals:

- (a) $\{f_t; t \in [0, 4)\}$ are all the extreme points of $B(X^*)$.
- (b) $||x|| = \sup_{t \in [0,2)} |f_t(x)|$ for each $x \in X$
- (c) $B(X^*) = \overline{\text{conv}}^{w^*} \{ f_t; t \in [0, 4) \}$
- (d) X is isometric to $C_{\sigma}(T)$.

Proof. $\{f_i\}$ is a w^* -compact set (by Lemma 1) of extreme points of $B(X^*)$, and thus the equivalence between (a), (b), (c) follows from known theorems on extreme points (see [1], Chap. V §1). (b) implies that the operator P from Theorem 6 is a surjective isometry, therefore (b) implies (d).

To show that (d) implies (a), it is sufficient to prove that (a) holds for $C_{\sigma}(T)$, with respect to any spanning girth curve and its corresponding functionals. For $t \in R$, let $e_t \in C_{\sigma}^*(T)$ be the evaluation functional $e_t(f) = f(t)$, $f \in C_{\sigma}(T)$. It is known that ext $B(C_{\sigma}^*(T)) = \{e_t; t \in R\}$, and this set is easily shown to be w^* -homemorphic to the circle. (This also follows from the previous results: $\{e_t\}$ are obviously the corresponding functionals for the girth curve g from Theorem 6, and by Proposition 4, $\{e_t\} \subset \text{ext } B(C_{\sigma}^*(T))$. Thus the equivalent properties (a), (b), (c) are satisfied, for (b) is merely the definition of the norm in $C_{\sigma}(T)$. The argument is completed by using Lemma 1). Since a proper subset of the circle is not homeomorphic to it, Lemma 1 and Prop. 4 imply that the set of the corresponding functionals for any spanning girth curve in $C_{\sigma}(T)$ must be equal to ext $B(C^*(T))$, thus (a) is satisfied.

REMARKS. (a) The geometry of flat Banach spaces in which the semi-norm $|x| = \sup_t |f_t(x)|$ is a norm equivalent to the original one, was studied by Harrel and Karlovitz in [3] without characterizing these spaces. In fact it is enough to assume there equivalence on $\overline{\text{span}} g$. Now we have that this condition is satisfied if and only if $P: \overline{\text{span}} g \to C_{\sigma}(T)$ from Theorem 6 is an isomorphism (necessarily surjective).

(b) The operator P from Theorem 6 is not necessarily surjective. Consider the completely flat Banach space $L^1[0,1]$ with the spanning girth curve (introduced in [4]) $g_1:[0,2] \to L^1[0,1]$ defined by $g_1(t) = -\chi_{[0,(t/2))} + \chi_{[(t/2),1]}$ where χ denotes the characteristic function. The corresponding functionals, considered as elements of $L^{\infty}[0,1]$, are obviously $f_t = -\chi_{[0,(t/2))} + \chi_{[(t/2),1]}$ for $t \in [0,2]$. Now, for $x \in L^1[0,1]$, $s \in [0,2]$

$$(Px)(s) = \int_0^1 f_s(t) x(t) dt = -\int_0^{s/2} x(t) dt + \int_{s/2}^1 x(t) dt$$

and it is easily seen that the function Px is Lipschitz continuous with constant ||x||. On the other hand, not every element of $C_{\sigma}(T)$ is Lipschitz continuous.

ACKNOWLEDGEMENT. The author is grateful to Prof. A. J. Lazar, under whose supervision the work on this paper was done.

REFERENCES

- 1. M. M. Day, Normed linear spaces 3rd. Ed. Springer-Verlang 1973.
- 2. R. E. Harrel and L. A. Karlovitz, Girths and flat Banach spaces, Bull. Amer. Math. Soc. 76 (1970) 1288-1291.
- 3. R. E. Harrel and L. A. Karlovitz, The geometry of flat Banach spaces. Trans. Amer. Math. Soc. 192 (1974) 209-218.
- 4. R. E. Harrel and L. A. Karlovitz, Flat and completely flat Banach spaces, University of Maryland Technical Note BN-714, 1971.
 - 5. L. A. Karlovitz, On the duals of flat Banach spaces, Math. Ann. 202 (1973) 245-250.
 - 6. Y. Katzenelson, An introduction to Harmonic Analysis, Wiley 1968.
 - 7. J. J. Schaffer, Inner diameter, perimeter and girth of spheres, Math. Ann. 173 (1967) 59-79.

THE HEBREW UNIVERSITY, JERUSALEM