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ON THE DUALS OF FLAT BANACH SPACES 

BY 

ABRAHAM BICK 

ABSTRACT. We give a simpler proof to a theorem of L. A. Kar-
lovitz that the dual of a flat Banach space is flat, and also study some 
geometric properties of the dual space. 

1. Introduction. The notion of "flat Banach spaces" was introduced by 
Harrel and Karlovitz ([2], [3]). Since we shall make repeated use of some of 
their definitions and basic facts we reproduce them here. A real Banach space 
X is said to be flat if the girth of its unit ball (defined by Schafïer [7] to be the 
infimum of the lengths of all centrally-symmetric closed curves which lie in the 
surface of the unit ball) is four and if the girth is achieved by some curve. This 
is equivalent to the existence of a function g : R -> X such that for each s,teR 

(i) llg(OII = i, g(0=-g(*+2), | |g«-g(s)N|f-*l 

These conditions easily imply (see [3]) that 

(2) l|g(0-g(s)ll = l*-s| for | f - s |<2 

The restriction of g to every closed interval of length 4 is a centrally-
symmetric closed curve of length 4 on the surface of the unit ball which is 
arc-length parametrized, g (or its restriction) is called a girth curve. A flat 
Banach space X is called completely flat if X = span g(R) (we shall denote the 
right hand side by span g) where g is a girth curve. 

In the sequel we shall denote the unit ball and its boundary in a Banach 
space X by B(X) and S(X), respectively. 

Let X be a flat Banach space with a girth curve g. For each t e [0,2) choose 
ft e X* such that 

(3) il/t||=i, /,(g(f»=i 

We define ft= -ft-2 for re[2,4), and extend the definition periodically for 
all teR, and now (3) is satisfied for each teR. {ft;teR} are uniquely 
determined on span g, since (see [3]) 

(4) A(g(s) )=l - | s - t | for | s - ( | < 2 

It also follows that 

(5) /,(g(s)) = /.(g(t)) tor all t,seR 
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We shall use the notation 

AgUfc) = i [g(s-fc)-g(s)] for s e R, h €(0,2) 

We have ||Ag(s, h)||= 1, and, for he(0,2), | s - f | < 2 , \t-s + h\<2 

1 t<s-h 

(6) f^g(s,h))^[-\s-h-t\ + \s-t\]= \ 2slh-2tlh-l s - f i < r < 5 

- 1 s<r 

We shall need the following lemma. 

LEMMA 1. 

lim ft(x) = L(x) for each x e span g 
t-*t0 

In particular, if X = spang, then the function t-*ft from R into S(X*) is 
w*-continuous and the set {/,; teR} is w*-homeomorphic to the circle. 

Proof. Since {/,}<= S(X*), it is sufficient to consider xeg(R), but then it is 
immediate from (5). 

If X = span g, we can regard the function f—>/r as a function from the circle 
into S(X*) which is w*-continuous and one-to-one, that is, homeomorphism 
onto its image. 

2. The flatness of the dual space. We now present a simpler and "more 
continuous" proof for results of Karlovitz ([5], Theorems 1,3. The oversight 
that B(X*) need not be w*-sequentially compact is also corrected.) 

THEOREM 2. If X is a flat Banach space, then X* is flat. 

If X is completely flat, there exists in S(X*) a girth curve such that no 
functional from the curve attains its norm. 

Proof, (a) Suppose first that X is completely flat, X = span g, where g is a 
girth curve and suppose {/J are the corresponding functionals. 

For each reR consider the functional yr defined by 

%(*) = ! j " ft{x)dt XGX 

(i.e. 7r = èJr+2 ftdt where the integral is a w*-Riemann-integral). By Lemma 1 
the integrand is a continuous function of t and so the integral exists. Clearly 
||yr | |<l, and since yr(Ag(r + 2, h)) = (2-h)/2 it follows that ||yr||= 1. It is easily 
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verified that yr+2 = -tr- For r ^ j < r + 2we have 

(7) (y,-%)(*) = ! | [V.W^-£+
2 / ,(*)*| = 5 | ['(/.-/.«K*)* 

= \\°ft(x)dt\<\\x\\(s-r); 

hence | |7 r -7 s | |< | r - s | for | r - s | ^ 2 and it follows that the mapping 
r-*yr(r£[0,4]) defines a girth curve of length four. 

Now if yr(x) = 1 for some x e S(X) and r e R9 it follows that ft(x) = 1 for each 
f e[r, r + 2], but fr = -/r+2—a contradiction. 

(b) Suppose now that X is a flat Banach space with a girth curve g and 
corresponding functionals {/,}. For each rei? consider the functionals 

Gr=;r- I fun n = l , 2 , . . . 
^H i/ne[r.r+2) 

Clearly G ? G B ( X * ) , and hence there exists a net {na} of positive integers such 
that {GM„ converges- w*, for each r e # , to some Gr€B(X*) (For B(X*)R is 
compact in the product topology when B(X*) is taken with the w*-topology). 
Clearly Gr is an extension of yr€(spân g)* from part (a), hence ||Gr|| = 1. It is 
easily seen that Gn

r = -Gn
r+2 and (analogous to (7)) | G ? - G J | < | r - s | for 

| r - s | < 2 , hence also Gr = -Gr+2 and | |G r -G s | |< | r - s | for | r - s | < 2 . Thus the 
mapping r-*Gr defines a girth curve in S(X*). 

3. The geometry of the dual space. Let X be a flat Banach space with a 
girth curve g and corresponding functionals {/,}. We turn to study the role 
played by {/,} in the geometry of the dual space. 

PROPOSITION 3. (a) côïïv {/, : t e [a, a + 2)}c S(X*) 
(b) [/„ /.] c S(X*) for t± s + 2(mod 4) 
(c) cônvw*{/r;re[a,/3]}c:S(X*)/ora</3<a + 2 
(d) ||/f - / s | | = 2 for t*s(mod 4) 
(e) {/, ; t G [0,2)} are linearly independent 

Proof, (a) Let f=lUiKU where I"-i A,=Er-i|Ai|=l and, a<h<t2< 
• • • < t»<a + 2. Then ||/||< 1 and, by (6), /(Ag(a + 2, h)) =1 for he 
(0,a + 2 - O , hence | | / | |=1. 
This implies the desired result. 

(b) Because of periodicity in the index, it can be assumed that s ^ t < s + 2, 
and then (b) is a result of (a) 

(c) Let a < / 3 < a + 2, and take fte(0, a + 2 - 0 ) . Then, as in (a), we get 
/(Ag(a + 2, ft))= 1 for each /€conv{/„ re [a, 0]} and therefore also for each 
/econvw* {/,,*€[«,£]} 
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(d) (see [5]. Th. 2) As in (b), we can assume s<t<s + 2. Then | | / s - / , | | <2 
and (/, - / , )(AgU h)) = 2 for h e (0, t-s), hence ||/. - / , || = 2 

(e) Analogous to the proof that {g(t); te[0, 2)} are linearly independent 
([4]. Cor. 2). Suppose X?-i «iA = 0 where at e R and 0 < fx < t2 < • • • < fr < 2. 
Then, for each se[f„ fJ+i] 

o=Î4(gW) 

= [term independent of s] + si - £ <*i + X a« I 

Therefore ~XUi «f +Zr=j+i af = 0 ; = 1 , . . . , n, which imply a7 = 0 / = 1 , . . . , n. 

PROPOSITION 4. (a) If X is completely flat, then {/,} are exposed points of 
JB(X*) (where X* is with the normed topology or w*-topology) 

(b) / / X is flat, {ft} can be chosen so that they are extreme points of B(X*). 

Proof, (a) If X is completely flat, then {/,} are uniquely determined. This 
means that for a fixed teR, the functional X*->R defined by f-^f(g(t)) 
attains its norm only at ft. 

(b) Suppose X is flat, and let Y = spang, where g is a girth curve. Let 
{/t}cS(Y*) be the corresponding functionals. Then by (a), they are extreme 
points of B(Y*), and they can be extended to extreme points of B(X*) by 
taking Ft e S(X*) to be an extreme point of the convex and w*-compact set of 
the Hahn-Banach extensions of ft. 

COROLLARY 5. The Banach space C(K), where K is compact Hausdorff, is not 
completely flat. 

Proof. It is known that ext B(C*(K)) = KU(-K), where K is the set of 
evaluation functionals. Jf H ( - £ ) = <£ and K,-K are w*-closed, that is, 
extB(C*(K)) is not w*-connected. Now if C(K) is completely flat, and {/,} are 
the corresponding functionals, then this set has members in both K and -K 
(since ft = -/ f+2), therefore it is not unconnected, a contradiction to Lemma 1. 

The question now arises when are {/J all the extreme points of B(X*)1 The 
answer will follow from the next theorem. 

Let CUT) be the Banach space of all the real continuous functions / defined 
on the circle T such that f(t) = -f(-t) for each te T, with the sup-norm. 

THEOREM 6. Q-CT) is a completely flat Banach space. There exists a girth 
curve giR-^CviT) such that 0.(70 = span g and such that if X = span gx is an 
arbitrary completely flat Banach space spanned by a girth curve gl5 then there 
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exists a linear operator P.X-+CAT) such that \\P\\= 1, g = P ° gi and PX = 
CAT). 

Proof. We shall identify CAT) with the space of the real continuous 
functions / defined on the real line JR which satisfy f(s) = -f(s + 2) for each 
seR. 

Let X = span gx be a completely flat Banach space spanned by a girth curve 
gi, and let {/,} be the corresponding functionals. 

For each teR, consider the function Ft^ft ° gi :R-*R. Obviously Fte 
CAT), ||Ff||= 1 and F, = -F t + 2 . For s, teR we have 

||Ff-F,|| = max|/f(g1(r))-/.(g1(r)| 
r 

= max |/r(gl(0) - /r(gl(s))| < ||gl(r) - gl(s)H *\t-s\ 
r 

Thus the mapping g:fl-»CUT) defined by t-*Ft is a girth curve in S(CAT)). 
We note that Ft(s) = 1 - \s -1| for |f- s\ ̂  2, thus each F, is uniquely determined 
on JR, independently of the space X and the girth curve gi. Consider now the 
linear operator P :X-»C(T) defined by (Px)(t) = ft(x). Clearly | |P | |^1. 
P(gi(s))(0=J^(gi(s)) = /s(gi(0) = Fs(r) = g(s)(r), so Pog l = g which implies that 
||P||=1 and PX = spang. 

It is left to prove that CAT)-span g. We observe that Ft(s) = F0(s- t) and 
thus span g is the closed span of all the translations of F0. Consider the 
27r-periodic function defined by G0(t) = 1 — |2f/7r|, t e [—ir, TT] which is the image 
of F0 under the natural isometry of CAT) onto a space of 27r-periodic 
functions. G0(t + TT) = - GQ(t), and so the Fourier transform of G0 is given by 

(8) ï0(n)= j " Go(0e"imdr= rG0(r)[-e~ in(t+7r) + e-im]dr 

0 n even 
4 

— 5 n odd 
17m 

It is known from Harmonic Analysis: if V is a translation-invariant subspace of 
the complex Banach space of the continuous 27r-periodic functions (with the 
sup-norm) then the function eint (as a function of t) belongs to V if and only if 
f(n) = $17rf(t)e-intdt*0 for some feV (if V is the closed span of all the 
translations of one function F, this is equivalent to F ^ ^ O ) and V is the 
closed span of the functions eint which belong to V. (See [6] Chapter 1.) 

In our case, returning to the real space span g, it follows that the functions 
sin (7rnf/2), cos (irntll) belong to span g if and only if n is odd, and span g is the 
closed span of this family. On the other hand, it follows, as in (8), that the 
Fourier transform of each feCAT) vanishes for even n and since CAT) is also 
translation invariant we conclude that CUT) c: span g. 
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COROLLARY 7. The following properties are equivalent for a completely flat 
Banach space X = span g where g is a girth curve and {ft} are the corresponding 
Junctionals : 

(a) {/,; fe[0,4)} are all the extreme points of B(X*). 

(b) ||JC||= sup \ft(x)\ for each xeX 
te[0,2) 

(c) JB(X*) = cônvw*{/r;re[0,4)} 
(d) X is isometric to CUT). 

Proof. {/,} is a w*-compact set (by Lemma 1) of extreme points of B(X*)9 

and thus the equivalence between (a), (b), (c) follows from known theorems on 
extreme points (see[l], Chap. V§1). (b) implies that the operator P from 
Theorem 6 is a surjective isometry, therefore (b) implies (d). 

To show that (d) implies (a), it is sufficient to prove that (a) holds for CUT), 
with respect to any spanning girth curve and its corresponding functionals. For 
teR, let eteC%(T) be the evaluation functional et(f) = f(t), feC^T). It is 
known that extB(C*(T)) = {et; teR}, and this set is easily shown to be 
w*-homemorphic to the circle. (This also follows from the previous results: {et} 
are obviously the corresponding functionals for the girth curve g from 
Theorem 6, and by Proposition 4, {et}<=^ext JB(C*(T)). Thus the equivalent 
properties (a), (b), (c) are satisfied, for (b) is merely the definition of the norm 
in CriT). The argument is completed by using Lemma 1). Since a proper 
subset of the circle is not homeomorphic to it, Lemma 1 and Prop. 4 imply that 
the set of the corresponding functionals for any spanning girth curve in C^iT) 
must be equal to ext J3(C*(T)), thus (a) is satisfied. 

REMARKS, (a) The geometry of flat Banach spaces in which the semi-norm 
|JC| = supf \ft(x)\ is a norm equivalent to the original one, was studied by Harrel 
and Karlovitz in [3] without characterizing these spaces. In fact it is enough to 
assume there equivalence on span g. Now we have that this condition is 
satisfied if and only if P: span g-»CUT) from Theorem 6 is an isomorphism 
(necessarily surjective). 

(b) The operator P from Theorem 6 is not necessarily surjective. Consider 
the completely flat Banach space L*[0, 1] with the spanning girth curve 
(introduced in [4]) girtO^]-»!,1^), 1] defined by gi(t) = -xioxtm + Xtw2>,ï\ 
where x denotes the characteristic function. The corresponding functionals, 
considered as elements of L°°[0,1], are obviously ft =-X[o,a/2)) + X[(*/2),i] for 
t € [0,2]. Now, for x e !/[(), 1], 5 G [0,2] 

f i rs/2 r l 

(Px)(s)= fs(t)x(t) dt= - x(t) dt+ x(t) dt 
Jo Jo Js/2 

and it is easily seen that the function Px is Lipschitz continuous with constant 
||jt||. On the other hand, not every element of CUT) is Lipschitz continuous. 
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