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On the low-frequency unsteadiness in shock
wave–turbulent boundary layer interactions
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The shock wave–turbulent boundary layer interaction over a compression corner is studied
using global stability analysis (GSA) and resolvent analysis based on a separation of
scales between the low-frequency, large-scale motions and the turbulent fluctuations. The
GSA identifies a leading stationary mode, which becomes globally unstable as the ramp
angle is beyond a critical value. For globally stable flows, the resolvent analysis captures
two-dimensional and three-dimensional local maxima in optimal gain, both of which
are due to modal resonance between the forcing and the leading global mode. Notably,
the frequency-premultiplied optimal gain associated with two-dimensional disturbances
peaks at a low frequency. For different interaction strengths, the peak frequencies collapse
onto a universal value of 0.015 when non-dimensionalized using the length of the
separation region and the free-stream velocity. A numerical simulation perturbed with the
corresponding optimal forcing reveals that the response is in the form of a back-and-forth
shock motion.

Key words: supersonic flow, absolute/convective instability, turbulent boundary layers

1. Introduction

A shock wave–turbulent boundary layer interaction (STBLI) is a fundamental problem of
fluid mechanics, which is also of practical importance in the aerodynamics and propulsion
of high-speed flight vehicles (Clemens & Narayanaswamy 2014). A remarkable feature of
supersonic STBLIs is a low-frequency, large-scale motion of the flow structure, the source
of which is still an open issue.

In addition to the well-known low-frequency back-and-forth motion of the separation
shock, the separation bubble exhibits large-scale three-dimensionality. Settles, Fitzpatrick
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& Bogdonoff (1979) conducted a series of compression corner experiments with
different ramp angles at a Mach number of M∞ = 2.85 and a high Reynolds number
of Reδ = 1.7 × 106, where δ is the incoming boundary-layer thickness. For the strongest
interactions, both the separation and reattachment lines exhibited a zigzag pattern
indicated by surface oil flow visualization. A similar flow pattern near reattachment
over a 25° compression corner was found by Zheltovodov et al. (1990) at M∞ = 2.88
and Reδ = 1.3 × 105. Experiments of impinging shock interactions at M∞ = 2.3 and
Reδ = 5.8 × 104 revealed a three-dimensional (3-D) separation featuring counterrotating
streamwise vortices (Dussauge, Dupont & Debiève 2006). Zhuang et al. (2017) observed
large-scale streamwise streaks immediately behind the separation shock in a Mach 3
compression corner flow at Reδ = 8.4 × 104 using a Rayleigh scattering technique.

Numerically, streamwise vortices were identified by large-eddy simulations (LES)
(Loginov, Adams & Zheltovodov 2006; Grilli et al. 2012) under the experimental
conditions of Zheltovodov et al. (1990). Direct numerical simulation of a 24° compression
corner interaction at M∞ = 2.9 and Reδ = 4.4 × 104 showed that the low-frequency shock
motion was accompanied by a breathing motion of the separation bubble (Priebe &
Martin 2012). The size of the separation region changed dramatically during the so-called
bubble-collapse event. The direct numerical simulation data were further analysed
using dynamic mode decomposition by Priebe et al. (2016). Unsteady counterrotating
streamwise vortices that wander in the spanwise direction were identified. Similar
phenomena were found by Pasquariello, Hickel & Adams (2017) using LES in a Mach 3
impinging shock interaction with a strongly separated flow at Reδ = 2 × 105. However,
the bubble-collapse event was absent, which was attributed to the much larger separation
bubble.

To explain the source of the low-frequency, large-scale unsteadiness, various physical
models have been proposed in the literature and can be categorized into two
types: upstream and downstream mechanisms (Souverein et al. 2010; Clemens &
Narayanaswamy 2014). Ganapathisubramani, Clemens & Dolling (2007) suggested that
the low-frequency unsteadiness was driven by large-scale structures in the incoming
boundary layer. Pirozzoli & Grasso (2006) proposed an acoustic feedback model similar to
the Rossiter model of cavity resonance (Rossiter 1964). Piponniau et al. (2009) assumed
that shear-layer entrainment resulted in a deficit in the mass of the separation bubble,
which was recharged later through the flapping of the shear layer near reattachment. They
suggested that such a mass recovery process may be responsible for the low-frequency
unsteadiness. More recently, the approach of global stability analysis (GSA) was applied
to time- and spanwise-averaged LES data of impinging shock interactions (Touber &
Sandham 2009; Nichols et al. 2017). A two-dimensional (2-D), zero-frequency, globally
unstable mode was captured, which takes the form of bubble expansion/contraction and
shock motion. However, the 2-D mean flow obtained from the LES is not an exact solution
of any governing equations that can be explicitly expressed, which may result in the
unusual zero-frequency unstable mode. Furthermore, only purely 2-D perturbations were
considered.

Nonetheless, interpretating the low-frequency unsteadiness as a linear behaviour of
large-scale coherent structures from a global stability point of view is very attractive.
According to Huerre & Monkewitz (1990), a flow is called an oscillator if globally unstable
and a noise amplifier if globally stable. An oscillator supports self-excited perturbations
and may bifurcate into three-dimensionality and/or unsteadiness. In fact, GSA based on
the Reynolds-averaged Navier-Stokes (RANS) equations has successfully predicted the
onset of transonic shock buffet over 2-D airfoils and 3-D wings (Crouch, Garbaruk &
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Figure 1. Schematic of the geometric configuration and computational domain.

Magidov 2007; Crouch et al. 2009; He & Timme 2021). In contrast, a noise amplifier feeds
on continuous input of external disturbances. Resolvent analysis is usually used to study
the dynamics of noise amplifiers, which has also been applied to turbulent flows (Hwang
& Cossu 2010; McKeon & Sharma 2010). Particularly, the importance of choosing an
appropriate eddy viscosity model was highlighted by Pickering et al. (2021).

In this study, we examine the intrinsic and extrinsic dynamics of STBLIs to reveal
the nature of the low-frequency unsteadiness using GSA and resolvent analysis under a
unified framework, in which low-frequency, large-scale motions are considered as coherent
structures and turbulent fluctuations are closed by turbulence modelling.

2. Geometric configuration and flow conditions

The considered geometry is a compression corner with a ramp angle of α = 25° (see
figure 1). A Cartesian coordinate system is constructed with the origin at the corner,
the x direction along the flat plate, the y direction perpendicular to the flat plate
and the z direction satisfying the right-hand rule. The flow conditions are taken from
the experiments of Zheltovodov et al. (1990). The lowRe case has M∞ = 2.95 and
Reδ = 63 560 with δ = 2.27 mm measured 15.4δ upstream of the corner. The free-stream
density is 0.314 kg m−3, and the free-stream temperature is 108 K. The highRe case has
M∞ = 2.88 and Reδ = 132 840 with δ = 4.1 mm measured 8.04δ upstream of the corner.
The free-stream density is 0.368 kg m−3, and the free-stream temperature is 114.8 K.
The length of the flat plate is determined by matching the experimental boundary-layer
thickness for the highRe and lowRe cases, respectively.

3. Computational details

3.1. Governing equations
The flow is governed by the 3-D compressible RANS equations as

∂U
∂t

= N (U), (3.1)

where U is the vector of conservative variables and N is the nonlinear RANS operator.
Air is modelled as a calorically perfect gas with a specific heat ratio of 1.4 and a

Prandtl number of 0.72. Sutherland’s law is used to calculate the molecular viscosity. The
Reynolds stresses are modelled using the Boussinesq assumption. The eddy viscosity is
obtained using the Spalart–Allmaras (S–A) turbulence model (Spalart & Allmaras 1992)
with the modification of Edwards & Chandra (1996). The reason why the S–A model
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is chosen is twofold. First, the length of the separation region predicted by the S–A
model agrees reasonably well with existing experimental and LES data for the considered
flow conditions as seen later. Second, the S–A model has been shown to be effective in
predicting shock buffet, which is also a STBLI problem. The turbulent Prandtl number
is set to 0.9. The flow-field variables are non-dimensionalized using the free-stream
parameters and a characteristic length of L = 1 mm.

3.2. Flow solver
The 2-D and 3-D simulations are performed using an in-house finite-volume solver called
PHAROS (Hao, Wang & Lee 2016; Hao & Wen 2020). The inviscid fluxes are calculated
using the modified Steger–Warming scheme (MacCormack 2014), while the viscous
fluxes are computed with a second-order central difference. An implicit line relaxation
method (Wright, Candler & Bose 1998) is employed for pseudo time stepping, while
a second-order implicit scheme is used for time-accurate simulations. The free-stream
conditions are specified on the far-field boundary. A simple extrapolation is applied to the
outflow boundary. The model surface is assumed to be no slip with a fixed wall temperature
of 275.4 K. Computational grids with different levels of resolution are constructed to
ensure grid independence (see Appendix A). Stability analysis requires a clean base flow
with little numerical noise. For all cases, a reduction of nine orders of magnitude in the
Euclidean norm of the density residual is achieved (see Appendix A).

3.3. Global stability analysis
It is assumed that vector U can be decomposed into a 2-D steady base flow (denoted by
an overbar) and a small-amplitude 3-D unsteady perturbation (denoted by a prime) as

U(x, y, z, t) = Ū(x, y) + U ′(x, y, z, t). (3.2)

Substituting (3.2) into (3.1) and neglecting the higher-order terms leads to the governing
equations of the perturbation as

∂U ′

∂t
= L(Ū)U ′, (3.3)

where L is the linearized RANS operator. The expression of the linearized source term
in the S–A model is given by Crouch et al. (2007). In other words, the turbulence
model equation is also linearized without simplifications such as the frozen eddy-viscosity
approach (cf. Carini et al. 2017). The perturbation U ′ is further assumed to be in the
following modal form:

U ′(x, y, z, t) = Û(x, y) exp[iβz − i(ωr + iωi)t], (3.4)

where Û is the 2-D eigenfunction, β is the spanwise wavenumber, ωr is the angular
frequency and ωi is the growth rate. Substituting (3.4) into (3.3) leads to an eigenvalue
problem, which is discretized in the same way as in the flow solver except that the inviscid
fluxes are calculated using a central scheme in smooth regions detected by a shock sensor
to reduce numerical dissipation. The boundary conditions are consistent with those for the
base-flow simulation. Sponge layers are placed near the far-field and outflow boundaries
to avoid any reflection of perturbations (Mani 2012). Note that the computational grids for
the base-flow computation are directly used for the GSA with no data interpolation. The
grid independence of the GSA is verified in Appendix A, where the effect of the size of
the computational domain is also examined.
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The discretized eigenvalue problem is solved using the implicitly restarted Arnoldi
method implemented in ARPACK (Sorensen et al. 1996) for a given β in the shift-invert
mode. The inversion is achieved using lower-upper decomposition implemented in
SuperLU (Li et al. 1999). For each β, 50 eigenvalues are requested with a Krylov subspace
of size 120. All the eigenvalues are converged with a residual less than 10−9. The flow
is globally unstable if an eigenvalue with ωi > 0 can be found. An eigenmode is called
stationary if ωr = 0 and oscillatory if ωr /= 0. The GSA solver has been applied to laminar
interactions over various configurations (Hao et al. 2021, 2022). Here, it is extended to the
RANS equations.

3.4. Resolvent analysis
To study the behaviour of the base flow as a noise amplifier, a small-amplitude forcing
term f ′ is added to (3.3) as

∂U ′

∂t
= LU ′ + Bf ′, (3.5)

where operator B constrains the forcing to a localized region and to the momentum
components (Sartor et al. 2015; Bugeat et al. 2019). Both the forcing and response are
assumed to be harmonic in time and in the spanwise direction as

f ′(x, y, z, t) = f̂ (x, y) exp(iβz − iωrt), (3.6)

U ′(x, y, z, t) = Û(x, y) exp(iβz − iωrt). (3.7)

Substituting (3.6) and (3.7) into (3.5) gives

Û = RBf̂ , R = (−iωrI − L)−1, (3.8a,b)

where R is the resolvent operator and I is the identity operator. The resolvent analysis
seeks the forcing and response pair that maximizes the energy amplification or the optimal
gain σ . The energies of the forcing and response are evaluated using the Euclidean norm
and the Chu energy norm (Chu 1965), respectively. The optimization problem is converted
to an eigenvalue problem (Bugeat et al. 2019), which is discretized in the same way as in
the GSA and solved using the power iteration.

4. Results

4.1. Base flows
Base-flow solutions are obtained using PHAROS for different Reynolds numbers and ramp
angles. The streamwise velocity contours superimposed with the isoline of ū/u∞ = 0.99
and the dividing streamline are displayed in figure 2 for the lowRe and highRe cases at
α = 25°. Both cases exhibit large flow separation with the separation shock penetrating
deeply into the incoming boundary layer. Figure 3 compares the 2-D RANS results with
the experimental data of Zheltovodov et al. (1990) and the LES results of Grilli et al.
(2012) in terms of the skin friction coefficient (Cf = τw/0.5ρ∞u2∞, where τw is the wall
friction) and wall pressure (normalized by the free-stream pressure p∞) distributions. The
skin friction drops suddenly to a negative value near the separation point on the flat plate
and recovers near the reattachment point on the ramp. The pressure rises in the separation
and reattachment processes, which are connected by a pressure plateau region. In general,
the 2-D RANS simulation agrees well with the experiments and LES with respect to the
separation location and the plateau pressure, except that the skin friction on the ramp is
underestimated.
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Figure 2. Contours of the streamwise velocity at (a) Reδ = 63 560 and (b) Reδ = 132 840 at α = 25°. The
dashed lines indicate the isoline of ū/u∞ = 0.99 and the dividing streamline. The open circles mark the
separation and reattachment points.
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Figure 3. Distributions of the skin friction coefficient and wall pressure at (a,b) Reδ = 63 560 and (c,d)
Reδ = 132 840 at α = 25°. The horizontal dashed lines indicate zero skin friction.

4.2. Global instability
In this section, we examine the global stability of the lowRe and highRe cases at
α = 25°. Figure 4 presents the growth rate of the most unstable mode as a function of
spanwise wavenumber. For the highRe case, the growth rate peaks at βL = 0.36, and
the corresponding eigenvalue spectrum is shown in figure 5(a). The most unstable mode
(referred to as the bubble mode) is stationary, whose streamwise and spanwise velocity
perturbations (u′ and w′) are present in both the separation bubble and the reattached
boundary layer (see figure 5c,d). The perturbation u′ has the same sign throughout the
computational domain, while w′ has opposite signs in the upstream and downstream
halves of the separation bubble. This mode greatly resembles the leading global mode
in supersonic laminar interactions over a compression corner (Hao et al. 2023).

Underneath the most unstable mode, there is another stationary mode (see figure 5a). As
β is decreased, these two modes move towards each other, leading to a modal coalescence
that has also been reported in laminar interactions (Hao et al. 2021). As a result, a pair of

971 A28-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

68
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.687


On the low-frequency unsteadiness in STBLIs

βL
ω

iL
/u

∞
0 0.2 0.4 0.6 0.8 1.0

–0.02

–0.01

0

0.01

Reδ = 63 560

Reδ = 132 840

Figure 4. Growth rates of the most unstable mode as a function of βL for different cases at α = 25°. The
horizontal dashed line indicates zero growth rate.
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Figure 5. (a,b) Eigenvalue spectra at βL = 0.36 and 0. (c,d) Real parts of u′ and w′ of the bubble mode at
βL = 0.36. (e) Real part of u′ of the shock mode at βL = 0. Here Reδ = 132 840 and α = 25°. The horizontal
and vertical dashed lines in (a,b) indicate zero growth rate and zero angular frequency, respectively. The dashed
lines in (c-e) indicate the isoline of ū/u∞ = 0.99 and the dividing streamline.

conjugate oscillatory stable modes is generated at βL = 0.065. As β approaches zero, the
oscillatory modes move back to the imaginary axis to form two stationary modes again at
βL = 0.025. The less stable one (referred to as the shock mode) has a peak growth rate
at βL = 0, and the corresponding eigenvalue spectrum is shown in figure 5(b). As shown
in figure 5(e), the perturbation u′ of this 2-D mode is mostly concentrated near the shock
foot and along the shock wave and the shear layer, which can be barely seen inside the
separation bubble. The shock mode resembles the 2-D unstable mode captured by Touber
& Sandham (2009) and Nichols et al. (2017). Lowering the Reynolds number stabilizes the
flow as expected, while the maximum growth rate shifts to a larger spanwise wavenumber.
The shape of the bubble and shock modes is insensitive to how the eddy viscosity is treated
in both base-flow computation and stability analysis (see Appendix B).

At different ramp angles, the same modal features as for the 25° cases are obtained.
As α is increased, the growth rate of the leading mode increases, and the corresponding
spanwise wavenumber decreases (see figure 6). The flow becomes globally unstable as the
ramp angle is beyond a critical value. Notably, the wavelength of the leading mode scales

971 A28-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

68
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.687


J. Hao

α (deg.)

ω
iL

/u
∞

19 20 21 22 23 24 25
–0.02

–0.01

0

0.01

Reδ = 63 560

Reδ = 132 840

α (deg.)

βL

2
π

/(
β

L se
p)

19 20 21 22 23 24 25
0

0.4

0.8

1.2

0

1

2

3(a) (b)

Figure 6. (a) Growth rates and (b) spanwise wavenumbers and wavelengths of the most unstable bubble
mode as a function of α for different cases.

with the length of the separation region Lsep, as shown in figure 6(b). Here, Lsep is defined
as the axial distance between the separation and reattachment points.

A 3-D unsteady RANS simulation is performed using PHAROS for the highRe case at
α = 25°, which is initialized by duplicating the 2-D base flow in the spanwise direction. No
initial disturbances are introduced, which means that global instability is expected to arise
from the numerical round-off error. Only one spanwise wavelength of the most unstable
mode is considered with 50 grid cells. The time step is set to 20 ns. Either increasing the
number of spanwise grid cells or lowering the time step does not change the flow evolution
(see Appendix A). The time history of the root mean square of the spanwise velocity
(σw) on a wall-normal plane through x/L = 2.65 is shown in figure 7(a). After some
initial transients, σw experiences an exponential growth following the GSA prediction,
which verifies the effectiveness of both methods. The contour of spanwise velocity on
an x–y plane through z/L = 2.16 in the linear stage (tu∞/L = 6195) further confirms the
emergence of the most unstable mode by comparing figures 7(b) and 5(d). Figure 7(c)
shows the iso-surfaces of |w/u∞|= 1.5 × 10−4 at tu∞/L = 6195 obtained from the 3-D
RANS simulation. Also shown in the figure is the streamwise velocity contour at z/L = 0 to
highlight the flow structure. A 3-D representation (see figure 7d) of the spanwise velocity
perturbation is constructed using the eigenfunction of the bubble mode according to (3.4),
which confirms that the exponential growth is governed by the bubble mode. Note that
there is a phase difference in the spanwise direction between the RANS simulation and the
GSA. Recall that the spanwise velocity perturbations have opposite signs in the upstream
and downstream halves of the separation region, which stretch along the shear layer and
the ramp surface, respectively. As seen later, such a perturbation field induces a pair of
streamwise streaks in the reattached boundary layer after reaching a certain amplitude.

Following the exponential growth, the flow saturates into a new steady state. No
supercritical Hopf bifurcation that leads to unsteadiness is found until the end of the
simulation. Shown in figure 8(a–c), three wall-normal slices are extracted at x/L = 2.65,
20 and 40 in the saturated stage (tu∞/L = 29 734). The in-plane streamlines indicate
a pair of counterrotating streamwise vortices along the ramp. The contour of the skin
friction coefficient in figure 8(d) shows corrugated separation and reattachment lines
in a zigzag pattern. Note that the contour is extended to two periods in the spanwise
direction. As shown in figure 8(e), the presence of the streamwise vortices elevates the
spanwise-averaged Cf in comparison with the base-flow result, leading to better agreement
with the experiments and the LES on the ramp.

In the 3-D simulation, the eddy viscosity is allowed to evolve. One may argue that the
increasing eddy viscosity may have an unphysical stabilizing effect on the ending of the
linear growth and any secondary instabilities after saturation. In this study, we fully rely
on the predictive capability of the S–A model for 3-D large-scale flow structures. This is
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Figure 7. (a) Time history of σ w at x/L = 2.65 in comparison with the growth rate of the most unstable bubble
mode. (b) Spanwise velocity contour on an x–y plane through z/L = 2.16 at tu∞/L = 6195. (c) Iso-surfaces of
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streamwise velocity contour obtained from the base-flow solution. Here Reδ = 132 840 and α = 25°.
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Figure 8. (a-c) Contours of the spanwise velocity on three wall-normal planes through x/L = 2.65, 20 and
40 at tu∞/L = 29 734 superimposed with in-plane streamlines. (d) Contour of the skin friction coefficient
at tu∞/L = 29 734 superimposed with the separation and reattachment lines in black. (e) Distribution of the
spanwise-averaged Cf with the spanwise maximum and minimum values marked by the dotted lines. The
horizontal dashed lines in (a-c) mark the isolines of ū/u∞ = 0.99 obtained from the base-flow solution. Here
Reδ = 132 840 and α = 25°.
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Figure 9. (a) Optimal gains at different angular frequencies and (b-d) optimal gains and the
frequency-premultiplied values at βL = 0, 0.7 and 1.2 and the corresponding optimal responses at Reδ = 63 560
and α = 23°. Local maxima are indicated by the vertical dashed lines and open circles.

consistent with previous unsteady RANS studies on shock buffet (Crouch et al. 2009; He
& Timme 2021), where the eddy viscosity was unfrozen throughout the simulations. The
effect of different RANS models on the flow bifurcation will be examined in a future study.

4.3. Response to upstream disturbances
We further examine the response of globally stable flows to external disturbances
using resolvent analysis. Unless otherwise specified, the forcing is always localized
approximately 10δ upstream of the corner to represent upstream disturbances, which
extends from the wall to the far field. In fact, the optimal response is found to be insensitive
to the forcing location (see Appendix C). Figure 9(a) shows the optimal-gain curves at
ωrL/u∞ = 10−4, 10−3, 10−2 and 10−1 as a function of spanwise wavenumber for the
lowRe case at α = 23°. A low-pass feature similar to laminar interactions (Bugeat et al.
2022) is observed. Further lowering the frequency no longer changes the optimal-gain
curve. At low frequencies, there are two local maxima in optimal gain at βL = 0 and 0.7.
At high frequencies, the maximum optimal gain is found at βL = 1.2. The optimal gain
and its frequency-premultiplied value are plotted in figure 9(b–d) as a function of angular
frequency at βL = 0, 0.7 and 1.2. Only ωrL/u∞ ≤ 0.2 is considered, which is at least one
order of magnitude lower than the characteristic frequency in the incoming boundary layer
and consistent with the assumption of separation of scales. However, this assumption holds
less rigorously for the spanwise wavenumber. At the three wavenumbers, the weighted gain
has a local maximum at ωrL/u∞ = 6.5 × 10−3, 4.0 × 10−4 and 7.5 × 10−3, respectively.
At the three angular frequencies, the optimal response shown in the inset of figure 9(b–d)
resembles the corresponding global mode predicted by the GSA, which indicates that the
amplification is due to modal resonance.

Quantitatively, the 2-D optimal response at ωrL/u∞ = 6.5 × 10−3 is compared with
the 2-D shock mode (ωrL/u∞ = 0 and βL = 0) obtained from the GSA in figure 10(a)
by plotting the distributions of the Chu energy density integrated in the wall-normal
direction. The Chu energy densities are normalized by their respective maximum values.
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Figure 10. Distributions of the normalized Chu energy density integrated in the wall-normal direction for (a)
the optimal response at ωrL/u∞ = 6.5 × 10−3 and βL = 0 and the shock mode at βL = 0 and (b) the optimal
response at ωrL/u∞ = 4.0 × 10−4 and βL = 0.7 and the bubble mode at βL = 0.7 at Reδ = 63 560 and α = 23°.
The vertical dashed lines mark the separation and reattachment points.
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Figure 11. Optimal forcings at (a) ωrL/u∞ = 6.5 × 10−3 and βL = 0, (b) ωrL/u∞ = 4.0 × 10−4 and βL = 0.7
and (c) ωrL/u∞ = 7.5 × 10−3 and βL = 1.2 at Reδ = 63 560 and α = 23°.

The global mode is supported by the separation bubble and is thus absent in the incoming
boundary layer. The optimal response has a local peak at the forcing location, decreases
monotonically along the flat plate and experiences an abrupt increase near the separation
point. Inside the separation region, the Chu energy density of the optimal response
agrees well with that of the global shock mode. The slight difference downstream
of reattachment is likely due to the non-zero frequency of the optimal response and
potential non-normalities. A similar comparison is made between the optimal response
at ωrL/u∞ = 4.0 × 10−4 and βL = 0.7 and the bubble mode at the same spanwise
wavenumber in figure 10(b). The almost overlapping Chu energy density distributions
downstream of separation confirm that the local maxima of the optimal gain are essentially
caused by modal resonance, while both convective-type non-normality (e.g. the Görtler
instability) and component-type non-normality (e.g. transient growth of streamwise
vortices) are insignificant (Chomaz 2005).

The optimal-forcing profiles corresponding to the optimal responses at ωrL/u∞ =
6.5 × 10−3, 4.0 × 10−4 and 7.5 × 10−3 are plotted in figure 11. The 2-D optimal forcing
works as a streamwise momentum pump in the incoming boundary layer, resulting
in a periodic variation of the velocity profile. The 3-D forcings are characterized
by streamwise vortices with the forcing energy contributed mostly by the spanwise
momentum component. The spanwise component has its largest amplitude close to the
wall and changes its sign near y/δ = 0.3. Interestingly, part of the forcing is present outside
the boundary layer for both the 2-D and 3-D cases.
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Figure 12. Premultiplied optimal gain at βL = 0 as a function of (a) ωrL/u∞ and (b) fLsep/u∞ at different
ramp angles. Local maxima are indicated by the vertical dashed lines. Solid lines, Reδ = 63 560; dash-dotted
lines, Reδ = 132 840.
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Figure 13. Time histories of (a) wall pressure at the base-flow separation point and (b) locations of the
separation and reattachment points for the highRe case at α = 25°. The dashed lines in (b) indicate the base-flow
solution.

Of particular interest is the 2-D optimal response as an excitation of the shock mode
by external disturbances. Recall that the base flow is always stable to 2-D perturbations,
which allows resolvent analysis at different Reynolds numbers and ramp angles. The
resulting weighted gain is presented in figure 12. For the lowRe case, the angular frequency
associated with the low-frequency peak decreases as α is increased. At α = 25°, increasing
the Reynolds number further decreases the frequency. When non-dimensionalized using
the length of the separation region, the frequencies with different interaction strengths
collapse onto a universal value of fLsep/u∞ = 0.015, which is consistent with the findings
of Dussauge et al. (2006).

To reveal its nonlinear behaviour, a 2-D unsteady RANS simulation is performed,
which is initialized using the 2-D base flow for the highRe case at α = 25°. The base
flow is perturbed by the optimal forcing at fLsep/u∞ = 0.015. The forcing amplitude is
set to 0.01ρ∞u2∞/L. The time step is also 20 ns. The wall pressure is monitored at the
base-flow separation point (x/L = −16.75), as shown in figure 13(a). The signal exhibits
the well-known intermittent feature with the pressure oscillating between the free-stream
pressure and the pressure behind the separation shock. The separation shock undergoes a
back-and-forth motion (see the supplementary movie available at https://doi.org/10.1017/
jfm.2023.687) with an intermittent region of approximately 0.6δ. The locations of the
separation and reattachment points are shown in one cycle in figure 13(b). The bubble
undergoes a breathing motion with the separation and reattachment points moving in
opposite directions.
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Figure 14. (a) Time history of wall pressure at the base-flow separation point and (b) the corresponding PSD
for the highRe case at α = 25°.

A more informative simulation is performed with the 2-D base flow perturbed by
white noise at the same forcing location as the resolvent analysis for the highRe case at
α = 25°. The random forcing is added to the right-hand side of the momentum equations
with an amplitude of 0.1ρ∞u2∞/L and updated every 2500 steps to avoid violating the
assumption of separation of scales. Consequently, the highest introduced frequency is
20 kHz (ωrL/u∞ = 0.2). The simulation is run for 50 ms (tu∞/L = 30 973) with a time
step of 20 ns. Figure 14(a) shows the wall pressure history at the base-flow separation
point, which also has an intermittent behaviour. Spectral analysis is performed for the
pressure signal between tu∞/L = 6195 and 30 973 with Welch’s method (Welch 1967) to
calculate the power spectral density (PSD) shown in figure 14(b). The signal is divided
into three segments with 50% overlap. A Hann window is used for weighting the data.
The frequency-premultiplied PSD peaks at fLsep/u∞ = 0.015. This also suggests that the
forcing profile is insignificant for modal resonance, which amplifies the low-frequency
component of any upstream disturbances and results in a back-and-forth shock motion.

Additional RANS simulations are performed for the 3-D optimal responses at βL = 0.7
and 1.2 and other values of βL for the lowRe case at α = 23°. The forcing amplitude
is set to 0.01ρ∞u2∞/L. Figure 15 presents the contours of Cf at four instants with
nearly equal intervals in one cycle at ωrL/u∞ = 7.5 × 10−3 and βL = 1.2. Note that the
contours are extended to two periods in the spanwise direction. As expected, the saturated
flow resembles that in § 4.2 featuring corrugated separation and reattachment lines and
counterrotating streamwise vortices along the ramp. However, these vortices are not
fixed in the spanwise direction but undergo a spanwise meandering motion (see the
supplementary movie), which is reminiscent of the numerical results of Priebe et al. (2016)
and Pasquariello et al. (2017). The contour of spanwise velocity on an x–y plane through
z/L = 4.5 at tu∞/L = 1229 further confirms the excitation of the bubble mode identified by
the GSA (see figure 16).

5. Conclusions

The low-frequency, large-scale motions in STBLIs over a compression corner are
examined using GSA and resolvent analysis based on the assumption of separation of
scales.

The GSA reveals that the 2-D base flow becomes unstable to 3-D perturbations
as the ramp angle is beyond a critical value. Only a stationary unstable mode is
identified, whose spanwise wavelength scales with the bubble size. At large spanwise
wavenumbers, this mode is mostly confined to the separation bubble and the reattached
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Figure 15. Contours of the skin friction coefficient at tu∞/L = (a) 1229, (b) 1413, (c) 1659 and (d) 1844
superimposed with the separation and reattachment lines in black for the lowRe case at α = 23°.
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Figure 16. (a) Spanwise velocity contour on an x–y plane through z/L = 4.5 at tu∞/L = 1229 and (b) real part
of w′ of the bubble mode at βL = 1.2 obtained from the GSA for the lowRe case at α = 23°. The dashed lines
in (b) indicate the isoline of ū/u∞ = 0.99 and the dividing streamline.

boundary layer. At small spanwise wavenumbers, this mode manifests itself as a coupling
between the separation shock and the separated shear layer. The GSA predictions are
confirmed by a 3-D numerical simulation, where no supercritical Hopf bifurcation
that leads to unsteadiness is found. The saturated flow exhibits a spanwise alternating
expansion/contraction of the separation bubble and counterrotating streamwise vortices
downstream of the corrugated reattachment line. For globally stable flows, the resolvent
analysis identifies 2-D and 3-D local maxima in optimal gain due to modal resonance
between external disturbances and the leading global mode, while the Görtler instability
makes no evident contribution. A numerical simulation reveals that the 2-D optimal
response is in the form of a large-scale, back-and-forth shock motion accompanied by
a breathing bubble. The 3-D optimal responses all exhibit counterrotating streamwise
vortices that meander in the spanwise direction with a range of frequencies and spanwise
wavenumbers.

This study suggests that the low-frequency shock motion in STBLIs is caused by the
excitation of an intrinsic mode by extrinsic disturbances in line with the mathematical
models of Plotkin (1975) and Touber & Sandham (2011), while the streamwise vortices
are due to either global instability or modal resonance.
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Figure 17. (a) Distributions of the skin friction coefficient and (b) eigenvalue spectra at βL = 0.36 obtained
with the coarse and fine meshes at Reδ = 132 840 and α = 25°.
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Appendix A. Verification of the RANS simulations and stability analysis

Figure 17 compares the distributions of Cf and the eigenvalue spectra at βL = 0.36
obtained with two meshes including 500 × 200 (coarse) and 700 × 300 (fine) at
Reδ = 132 840 and α = 25°. The coarse mesh is sufficient for both base-flow computation
and stability analysis. Figure 18 shows the time history of the Euclidean norm of the
density residual in the base-flow simulation at Reδ = 132 840 and α = 25°. The density
residual is normalized by its value in the first iteration. In figure 19, the effect of the size of
the computational domain is examined. As long as the far-field and outflow boundaries are
far enough away from the separation bubble, the stability analysis results are unchanged.

For the 3-D RANS simulation of the highRe case at α = 25° without external
disturbances, two additional simulations are considered: the number of grid cells in the
spanwise direction is doubled, and the time step is halved. To save computational cost, the
second simulation starts from a baseline flow field in the linear stage, and both simulations
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Figure 21. (a) Skin friction coefficient and (b) wall pressure distributions predicted by the S–A and k–ω

models at Reδ = 132 840 and α = 25°. The horizontal dashed line indicates zero skin friction.

are run for 30 ms (tu∞/L = 18 584). The time histories of σw at x/L = 2.65 are compared
in figure 20. The flow evolution remains unchanged.

Appendix B. Effect of RANS modelling

A new base flow is computed using Wilcox’s k–ω model (Wilcox 2008) with a
stress-limiter coefficient of 0.9 at Reδ = 132 840 and α = 25°. The resulting distribution
of Cf is compared with that predicted by the S–A model in figure 21. Good agreement
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Figure 23. (a,b,d,e) Real parts of u′ and w′ of the leading mode at βL = 0.36 and (c, f ) real part of u′ of
the leading mode at βL = 0 predicted by different RANS models with the frozen eddy-viscosity approach at
Reδ = 132 840 and α = 25°. The dashed lines indicate the isoline of ū/u∞ = 0.99 and the dividing streamline.

is obtained, except that the k–ω model predicts an elevated skin friction on the ramp.
The frozen eddy-viscosity approach (cf. Carini et al. 2017) is adopted in the GSA. In
other words, the GSA solver for laminar flow (Hao et al. 2021) is used with the effective
viscosity equal to the sum of the molecular and eddy viscosities. As a comparison,
GSA is also performed on the base flow predicted by the S–A model using the frozen
eddy-viscosity approach. For both cases, only a stationary unstable mode is captured. The
growth rate curves as a function of βL are compared in figure 22. When the eddy viscosity
is frozen, the modal coalescence phenomenon is absent, and the 2-D mode becomes
globally unstable. This suggests that the 2-D unstable mode is likely an artefact of the
frozen eddy-viscosity approach. Nonetheless, the obtained shapes of the leading mode at
βL = 0 and 0.36 in figure 23 clearly exhibit the same features as those in figure 3, which
indicates that the dynamics revealed in this study is insensitive to RANS modelling.
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Figure 24. Normalized optimal gains at ωrL/u∞ = 10−4 as a function of βL with different forcing locations
at Reδ = 63 560 and α = 23°.

Appendix C. Effect of the forcing location

Figure 24 compares the optimal-gain curves at ωrL/u∞ = 10−4 obtained with different
forcing locations. In the baseline case, the forcing is localized 10δ upstream of the
corner. As a comparison, the forcing is implemented in the entire domain. Note
that the optimal gains are normalized using their respective maximum values. The
good agreement indicates that the current resolvent analysis results are independent
of the forcing location. The STBLIs under consideration preferably amplify upstream
disturbances, while downstream disturbances are much less effective in causing large
energy amplification.
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