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Abstract

Let f be a transcendental meromorphic function with at least one direct tract. In this note, we investigate
the structure of the escaping set which is in the same direct tract. We also give a theorem about the slow
escaping set.
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1. Introduction

There are many results on the dynamical system of transcendental entire functions (see,
for example, [12]). The structures of the Fatou set and the Julia set are the main focus.
Some of the results about entire functions have been carried over to meromorphic
functions with finitely many poles. The dynamical systems for meromorphic functions
with finitely many poles and entire functions have some similarities (see [6–10, 15–
17]). Recently, Bergweiler et al. [2] discussed the more general class of meromorphic
functions with direct tracts. This note will continue their work.

The paper consists of five sections. In Section 2, we collect together a number of
results that will be used later and establish some notation and definitions. Section 3
provides the main results of this paper. In Section 4, the proofs are given. In Section 5,
we give a result which is a generalisation of a result of Rippon and Stallard [10].

2. Wiman–Valiron–BRS theory

Based on the analysis of the definition of direct tracts, Bergweiler et al. [2] used
subharmonic function theory to extend the Wiman–Valiron theory from its original
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setting of entire functions. (We call it the Wiman–Valiron–BRS theory.) They used
this general approach in their discussion of complex dynamical systems.

In order to introduce this theory, we begin with the following definition.

Definition 2.1. Let D be an unbounded domain in C whose boundary consists of
piecewise smooth curves. Suppose that the complement of D is unbounded. Let f
be a complex-valued function whose domain of definition contains the closure D of D.
Then D is called a direct tract of f if f is holomorphic in D and continuous in D and if
there exists R > 0 such that | f (z)| = R for z ∈ ∂D, the boundary of D, while | f (z)| > R
for z ∈ D. If, in addition, the restriction f : D→ {z ∈ C : |z| > R} is a universal covering,
then D is called a logarithmic tract of f .

There are two conditions which can be used to determine the existence of direct
tracts and logarithmic tracts.

Proposition 2.2 [14]. Let f be a transcendental meromorphic function in the class B
and suppose that there exists an N ∈ N such that the poles of f have multiplicity at most
N. If δ(∞, f ) > 0 or, more generally, if m(r, f ) is unbounded, then f has a logarithmic
singularity over infinity.

Proposition 2.3 [13]. Let f be a transcendental meromorphic function. Suppose that
there exist R > 0 and N ∈ N such that for each component U of f −1(Ĉ \ D(0,R)) which
contains a pole, the map f : U → Ĉ \ D(0,R) is a proper map of degree at most N. If
the deficiency δ(∞, f ) > 0 or, more generally, if m(r, f )/log r is unbounded, then f has
a direct singularity over infinity.

Remark 2.4. The deficiency, δ(a, f ), was introduced by Nevanlinna in the value
distribution theory of meromorphic functions: for a ∈ Ĉ, define

δ(a, f ) = lim inf
r→∞

m(r, 1/( f − a))
T (r, f )

= 1 − lim sup
r→∞

N(r, 1/( f − a))
T (r, f )

.

Remark 2.5. Bergweiler et al. [2, Section 8] give many examples of meromorphic
functions with direct tracts and logarithmic tracts.

Note that if f ,D,R are as in the above definition, then the function v : C→ [0,∞)
defined by

v(z) =

log
| f (z)|

R
if z ∈ D,

0 if z < D

is subharmonic. Then
B(r, v) = max

|z|=r
v(z)

is increasing, convex in log r and tends to∞ as r tends to∞ (see [5, Section 2]). Hence,

a(r, v) =
dB(r, v)
d log r

= rB′(r, v)
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exists except, perhaps, for a countable set of r-values and a(r, v) is nondecreasing. We
also put

MD(r) = max
|z|=r,z∈D

| f (z)| = exp B(r, v)

and write Mn
D(r) to denote the nth iteration of MD(r) with respect to the variable r.

Since B(r, v)→∞, we see that MD(ρ) > ρ for sufficiently large ρ > R. Thus, for r > R,
Mn

D(r)→∞ for n→∞. For these r, define

A( f ,D, r) = {z ∈ D : f n(z) ∈ D ∀n ∈ N and | f n(z)| ≥ Mn
D(r)}. (2.1)

We next introduce the key result of the Wiman–Valiron–BRS theory.

Theorem 2.6 [2]. Let D be a direct tract of f and let τ > 1
2 . Let v(z) be defined

as before and let zr be a point satisfying |zr | = r and v(zr) = B(r, v). Then there
exists a set F ⊂ [1,+∞) of finite logarithmic measure such that if r ∈ [1,+∞)\F, then
D(zr, r/a(r, v)τ) ⊂ D,

f (z) ∼
( z
zr

)a(r,v)
f (zr), z ∈ D

(
zr,

r
a(r, v)τ

)
and

| f (z)| ∼ MD(|z|), z ∈ D
(
zr,

r
a(r, v)τ

)
as r→∞, r < F and, if k ∈ N, then

f (k)(z) ∼
(a(r, v)

z

)k( z
zr

)a(r,v)
f (zr), z ∈ D

(
zr,

r
a(r, v)τ

)
.

Remark 2.7. We call F ⊂ [1,∞) a set of finite logarithmic measure if
∫

F dt/t <∞.

Remark 2.8. Recently, Bergweiler [1] estimated the radius in the above Wiman–
Valiron–BRS-type theory.

Theorem 2.9 [2]. For each β > 1, there exists α > 0 such that if f ,D, v, zr and F are as
in Theorem 2.6 and if r < F is sufficiently large, then{

z ∈ C :
| f (zr)|
β
≤ |z| ≤ β| f (zr)|

}
⊂ f

(
D
(
zr,

αr
a(r, v)

))
.

Remark 2.10. Bergweiler et al. [2] used the above two theorems to prove the existence
of escaping points of meromorphic functions with direct tracts. Eremenko [4] earlier
proved the existence of escaping points for entire functions by using Wiman–Valiron
theory. The corresponding results for meromorphic functions with poles are due to
Domı́nguez [3], who used the Ahlfors five islands theorem.
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3. Statement of the theorems

The importance of the escaping set I( f ), which was first studied by Eremenko [4]
in transcendental dynamics, has increased significantly in recent years (see, for
example, [1, 2, 6–10, 12]).

In order to describe the escaping speed, we introduce the following definitions
(see [10]).

Definition 3.1. Let f be a transcendental meromorphic function. The escaping speed
is classified into various bands as follows:

(1) fast escaping set

Z( f ) =

{
z ∈ I( f ) : lim sup

n→∞

1
n

log log | f n(z)| = +∞

}
;

(2) slow escaping set

L( f ) =

{
z ∈ I( f ) : lim sup

n→∞

1
n

log | f n(z)| < +∞

}
;

(3) moderately slow escaping set

M( f ) =

{
z ∈ I( f ) : lim sup

n→∞

1
n

log log | f n(z)| < +∞

}
;

(4) escaping set with special speed: for a positive sequence a = (an) such that
an →∞ as n→∞, we define

Ia( f ) = {z ∈ I( f ) : | f n(z)| = O(an), n→∞}.

We have the following result.

L( f ) ⊂ M( f ) ⊂ I( f ) \ Z( f ).

Remark 3.2. Rippon and Stallard [10] proved that the sets of type (2)–(4) are
nonempty and investigated in detail the structures of these sets. Rippon and
Stallard [11] studied the fast escaping set of entire functions.

A natural question to ask is whether we can investigate the escaping speed for
functions with at least one direct tract. Bergweiler et al. [2] considered this problem
and Rippon and Stallard [10, 11] did further work.

We introduce the level sets of the fast escaping set, A( f ,D), corresponding to the
direct tract D.

Definition 3.3. Let f be a transcendental function meromorphic in the plane which
has a direct tract D. Given R as in (2.1), define

A( f ,D) = {z ∈ C : ∃K ∈ N such that f K(z) ∈ A( f ,D,R)}
= {z ∈ C : ∃K ∈ N such that f n+K(z) ∈ D ∀n ∈ N

and | f n+K(z)| ≥ Mn
D(R)}.
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Definition 3.4. Let f (z) be a transcendental meromorphic function with a direct
tract D. Let L ∈ Z, R > 0 be such that MD(r) > r for r ≥ R. The Lth level of A( f ,D)
(with respect to R) is the set

AL
R( f ,D) = {z : f n(z) ∈ D, | f n(z)| ≥ Mn+L

D (R), n ∈ N, n + L ≥ 0}.

Put

AR( f ,D) = A0
R( f ,D) = {z : f n(z) ∈ D, | f n(z)| ≥ Mn

D(R), n ∈ N}.

For any n ≥ 0, Mn+1
D (R) > Mn

D(R) and, for all L ∈ Z, AL
R( f ,D) ⊂ AL−1

R ( f ,D). Hence,

A−L
R ( f ,D) ⊂ A−(L+1)

R ( f ,D), L ∈ N.

Note that the n in the definition should satisfy n ≥ L when z ∈ A−L
R ( f ,D).

We will use the idea of the level sets introduced by Rippon and Stallard [11] to
handle the fast escaping set A( f ,D) for functions with direct tracts. We now state the
main theorems of this paper.

Theorem 3.5. Let f (z) be a transcendental meromorphic function with a direct tract D
and let R > 0 be such that MD(r) > r when r ≥ R. Then A( f ,D) =

⋃
L∈N A−L

R ( f ,D) and:

(a) A( f ,D) is completely invariant under f ;
(b) A( f ,D) is independent of R;
(c) A( f ,D) ⊂ Z( f ) = {z ∈ I( f ) : (1/n) log log | f n(z)| → ∞ as n→∞}.

Remark 3.6. Parts (a) and (c) in Theorem 3.5 are due to Bergweiler et al. [2]. We give
another proof here.

Theorem 3.7. Let f (z) be a transcendental meromorphic function with a direct tract D
and let R > 0 be such that MD(r) > r for r ≥ R. Then, for each L ∈ Z, each component
of AL

R( f , D) is closed and unbounded; in particular, each component of A( f , D) is
unbounded.

Remark 3.8. Bergweiler et al. [2] proved that every component of AL
R( f , D) is an

unbounded compact set.

Theorem 3.9. Let f (z) be a transcendental meromorphic function with a direct tract D.
For ε ∈ (0, 1) and r > 0, set h(r) = εMD(r). Then

A( f ,D) = {z : ∃ L ∈ N such that for each n ∈ N, we have | f n+L(z)| ≥ hn(R)},

where R > 0 is sufficiently large so that h(r) > r for r ≥ R.
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4. The proofs of Theorems 3.5–3.9

Lemma 4.1. If |z| < Mm
D(r) for some m ∈ N, then

| f n(z)| < Mn+m
D (r) for n ∈ N and

log MD(r)
log r

→∞ as r→∞. (4.1)

Remark 4.2. We prove this in the same way as the similar result in [11].

Proof of Theorem 3.5. It follows from (4.1) that, if k > 1, then

MD(kr)
MD(r)

→∞ as r→∞. (4.2)

Now let R > 0 be such that MD(r, f ) > r for r ≥ R. We have

Mn
D(R)→∞ as n→∞. (4.3)

By Definition 3.4,

AL
R( f ,D) ⊂ {z : |z| ≥ ML

D(R)} for L ≥ 0; (4.4)

f (AL
R( f ,D)) ⊂ AL+1

R ( f ,D) ⊂ AL
R( f ,D) for L ∈ Z. (4.5)

(a) The complete invariance of A( f ,D) under f follows directly from (4.4) and (4.5).
(b) Take R′ > R. Clearly, AL

R′( f ,D) ⊂ AL
R( f ,D) for L ∈ Z and so⋃

L∈Z

A−L
R′ ( f ,D) ⊂

⋃
L∈Z

A−L
R ( f ,D).

Now note that, by (4.3), there exists m ∈ N such that Mm
D(R) > R′ and so⋃

L∈Z

A−L
R′ ( f ,D) ⊃

⋃
L∈Z

A−L
Mm

D(R)( f ,D) =
⋃
L∈Z

Am−L
R ( f ,D) ⊃

⋃
L∈Z

A−L
R ( f ,D).

Together with (4.4), these relations show that A( f ,D) is independent of R.
(c) From (4.1) and (4.3), log Mn+1

D (R)/ log Mn
D(R)→∞ as n→∞. Thus, for each

C > e, there exists N ∈ N such that log Mn+1
D (R) > C log Mn

D(R) for all n ≥ N and
log MN

D(R) ≥ 1. So, for n > 2(N + L) and L ∈ N,

log Mn−L
D (R) > Cn/2

and hence, if z ∈ A−L
R ( f ,D), then

1
n

log log | f n(z)| ≥
1
n

log log Mn−L
D (R) >

1
2

log C.

This gives (c), since we can choose C to be arbitrarily large. �
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Proof of Theorem 3.7. Let z0 ∈ AL
R( f ,D) for some L ∈ Z. Then, for all n ∈ N with

n + L ≥ 0,
f n(z0) ∈ {z : |z| ≥ Mn+L

D (R)} = En.

Now let Ln denote the component of f −n(En) that contains z0. Since f n is analytic, Ln

is closed and also unbounded. Furthermore,

Ln+1 ⊂ Ln for n ∈ N, n + L ≥ 0.

In fact, f n+1(z) ∈ En+1 implies that f n(z) ∈ En, so Ln+1 ⊂ f −n(En). Then

K =
⋂

n∈N,n+L≥0

(Ln ∪ {∞})

is a closed connected subset of Ĉwhich contains z0 and∞. Now let Γ be the component
of K\{∞} which contains z0. Then Γ is closed in C and unbounded. Finally, we note
that f n(z) ∈ En. Indeed, if z ∈ Γ, then

| f n(z)| ≥ Mn+L
D (R) for n ∈ N, n + L ≥ 0.

This completes the proof. �

Proof of Theorem 3.9. By assumption,

hn(r)→∞ as n→∞ for r > R. (4.6)

Moreover, by (4.2), there exists R′ ≥ R such that for r ≥ R′,

h(r) = εMD(r) ≥
1
ε

MD(εr) ≥ r. (4.7)

From (4.6),
hn(r) ≥ Mn

D(εr) for n ∈ N.

Also, (4.6) implies that there exists M ∈ N such that hM(r) ≥ R′/ε and, by (4.7),

hn+M(R) ≥ hn
(R′

ε

)
≥ Mn

D(R′) for n ∈ N.

If there exists L ∈ N such that | f n+L(z)| ≥ hn(R) for n ∈ N, then

| f n+M+L(z)| ≥ hn+M(R) ≥ Mn
D(R′) ≥ Mn

D(R) for n ∈ N.

Thus, z ∈ A( f ,D). �

5. The slow escaping set

In this section, we will prove the following result to illustrate the slow escaping
speed.
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Theorem 5.1. Let
f (z) = kz + k + (1 − k) log k − ez,

where k > 1 is a constant. Then f has an invariant Baker domain U such that
U\{z0} ⊂ L( f ), where z0 ∈ ∂U is a fixed point of f , and a bounded wandering domain
V such that V ⊂ L( f ).

Proof. By a similar argument as in [10], we find the following properties of f :

(1) f has an invariant Baker domain U contained in {z : Re z < 0} such that the map
f : U → U is univalent and ∂U is a Jordan curve through∞;

(2) f has a bounded Fatou component V0 containing the super-attracting fixed point
log k;

(3) f has bounded Fatou components of the form Vl = {z + 2πli : z ∈ V0} for l ∈ Z
such that f (Vl) = Vl+1 for l ∈ Z.

In particular, V = V1 is a bounded wandering domain and V ⊂ L( f ). Moreover, ∂U
meets the real axis at a repelling fixed point z0 of f . Since(k + 1

2

)n
|z| ≤ | f n(z)| ≤ (k + 1)n|z| for z ∈ U ∩ {z : |z| ≥ k[(k + 1) + log k]},

it follows that
U ∩ {z : |z| ≥ k[(k + 1) + log k]} ⊂ L( f ).

Since f is univalent on U, U is conjugate, via a Riemann map, to a Möbius
transformation of the unit disc onto itself. Since ∂U is a Jordan curve, the Riemann
map extends to a homeomorphism on the closed unit disc, so the conjugate Möbius
transformation fixes two boundary points, one repelling and one attracting. The latter
attracts all points of C except the repelling fixed point. It follows that U\{z0} ⊂ I( f ).
Hence, U\{z0} ⊂ L( f ). �

Remark 5.2. The case k = 2 of the theorem was proved by Rippon and Stallard [10].

Remark 5.3. The function f is a transcendental entire function, so it has at least one
direct tract.
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