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Abstract The symmetric inverse monoid In is the set of all partial permutations of an n-element set.
The largest possible size of a 2-generated subsemigroup of In is determined. Examples of semigroups
with these sizes are given. Consequently, if M(n) denotes this maximum, it is shown that M(n)/|In| → 1
as n → ∞. Furthermore, we deduce the known fact that In embeds as a local submonoid of an inverse
2-generated subsemigroup of In+1.
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1. Introduction and the statements of the main theorems

The topic of embedding a semigroup into a 2-generated semigroup is classical. Sierpiński
[11] and Banach [1] proved that every countable semigroup, being isomorphic to a semi-
group of mappings on N, can be embedded in a 2-generated subsemigroup of the monoid
of all mappings from N to N. Evans [2] and Neumann [8] followed with their own proofs,
involving presentations and wreath products, respectively. As a consequence of Neu-
mann’s proof it follows that any finite semigroup can be embedded in a finite 2-generator
semigroup. A more elementary method can be used to prove the same result. If Tn denotes
the monoid of all mappings from an n-element set to itself, then the semigroup theoretic
analogue of Cayley’s theorem for groups states that every semigroup with n−1 elements
embeds in a subsemigroup of Tn. In [7] it is shown that Tn embeds in a 2-generator
subsemigroup of Tn+1. Thus, Neumann’s result is obtained.
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The topic of this paper is, however, not semigroups in general but a special class
of semigroups called inverse semigroups. Ash [3] proved that every countable inverse
semigroup S can be embedded in a 4-generator inverse semigroup T , that is, a 4-generator
subsemigroup that happens to be an inverse semigroup itself. A partial permutation of a
set X is just an injective mapping with domain contained in or equal to X. Ash’s result
can be obtained by proving that any countable collection of partial permutations on N can
be generated by two such partial permutations and their inverses; see [4, Proposition 4.2].
It is also shown in [3] that if S happens to be finite, then S embeds in a finite T . A different
proof of this is given in [7]. Again analogous to Cayley’s theorem, every inverse semigroup
embeds in the symmetric inverse monoid In, the monoid of all partial permutations of
an n-element set. The result then follows from the fact that In embeds in a 2-generator
inverse subsemigroup of In+2 [7].

Recently, Holzer and König [5] attempted to answer the question: what is the largest
possible size of a 2-generated subsemigroup of Tn? Their paper connects the standard
study of 2-generated semigroups to theoretical computer science. Amongst other things,
Holzer and König show that when n is prime the largest 2-generated subsemigroup of Tn

lies in a class of explicitly defined semigroups. The precise semigroup in this class, with
largest size, is, as yet, unknown except for small values of n. Answering the question when
n is not a prime seems to be a rather difficult problem. After attempting to find such
an answer, without success, we followed Pólya’s advice [10], and considered a seemingly
more straightforward question. The outcome of this consideration is the topic of this
paper. The intention is to prove the following theorems.

Theorem 1.1. If n � 10 is even, then the largest size of a 2-generated subsemigroup
of In is

e(n) = ε(n) + 1
36 (n6 + 3n5 + 13n4 − 411n3 + 1390n2 − 1320n + 36)(n − 3)! +

n−4∑
r=0

(
n

r

)2

r!,

where ε(n) = 3(n − 3), if 3 �n, and ε(n) = 2(n − 3), if 3|n. Moreover, there are inverse
subsemigroups of In generated by two elements with size e(n).

Theorem 1.2. If n � 7 is odd, then the largest size of a 2-generated subsemigroup of
In is

o(n) = 2n − 4 + 1
4 (n4 + 2n3 − 23n2 + 36n − 12)(n − 2)! +

n−3∑
r=0

(
n

r

)2

r!.

Moreover, there are inverse subsemigroups of In generated by two elements with size o(n).

These theorems are proved in §§ 3 and 4. The cases when n < 10 is even and when
n < 7 is odd are considered in § 5. The semigroup In is itself 2-generated when n < 3.
A corollary of the construction, in § 4, of subsemigroups with sizes o(n) and e(n), is
a slight improvement of the main theorem of [7]. That is, In can be embedded, as a
local submonoid, in an inverse 2-generated subsemigroup of In+1. It is stated in the
acknowledgements of [7] that this result was obtained by the referee of the paper. For
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undefined terms in, and further information about, semigroup theory, the reader should
consult [6].

2. Preliminaries

Before beginning the proofs of Theorems 1.1 and 1.2, a few observations and definitions
are required. If X is a subset of a semigroup S, then denote by 〈X〉 the subsemigroup
generated by X, that is, the semigroup where every element can be given as a product
of elements from X. The domain of α ∈ In is the set dom(α) = {x : xα is defined} and
the image of α ∈ In is the set im(α) = {xα : x ∈ dom(α)}. The rank of α is simply the
size of its image, denoted by rank(α). If α is a permutation of its image, then 〈α〉 is a
cyclic group. Thus, it is possible to refer to the order of α, which is denoted by |α|.

There are
(
n
r

)
possible domains and

(
n
r

)
possible images of elements in In with rank r.

Moreover, there are r! partial permutations with a fixed image and kernel of rank r. It
follows that the number of elements of rank r in In is

(
n
r

)2
r!. Summing over all r gives

|In| =
n∑

r=0

(
n

r

)2

r!.

The same line of thought can be used to find an upper bound for the size of any sub-
semigroup U of In. If the elements with rank r in U admit d(r) distinct domains and
i(r) distinct images, then, as above, there are at most d(r)i(r)r! elements with rank r

in U . So, summing over all r yields

|U | �
n∑

r=0

d(r)i(r)r!. (2.1)

The forms of e(n) and o(n) given in Theorems 1.1 and 1.2 arose as simplifications of
the slightly longer expressions:

e(n) = ε(n) + (n − 3)2(n − 1)!

+
[(

n

2

)
− 3

]2

(n − 2)! +
[(

n

3

)
− 1

]2

(n − 3)! +
n−4∑
r=0

(
n

r

)2

r! (2.2)

and

o(n) = 2n − 4 + (n − 2)2(n − 1)! +
[(

n

2

)
− 1

]2

(n − 2)! +
n−3∑
r=0

(
n

r

)2

r!. (2.3)

These lengthier versions of e(n) and o(n) also make their relationship with |In| more
apparent.

3. Not larger than e(n) or o(n)

In this section, we prove that any 2-generated subsemigroup of In has size at most e(n)
in the even case and at most o(n) in the odd case. At several points in this section, an
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upper bound on the order of any element of the symmetric group of degree m � n is
required. The largest order of an element in Sm is known as Landau’s function λ(m),
and it is the greatest least common divisor of any partition of m. Several tight bounds
are known for Landau’s function. However, for our purposes it will suffice to note that,
if m � 4, and α ∈ Sm, then by induction on m we obtain

|α| � (m − 1)!. (3.1)

Let us begin in earnest by proving that any pair of non-permutations in In generates a
semigroup with size less than e(n).

Lemma 3.1. If α, β ∈ In \ Sn and n � 5, then |〈α, β〉| � e(n) < o(n).

Proof. By (2.2) and (2.3),

o(n) − e(n) � 1
3 (n − 3)!(13n3 − 54n2 + 47n + 15) − n + 5 � (n − 3)! − n + 5 > 0,

when n � 5. Therefore, e(n) < o(n) for all n � 5.
If a and b are elements missing from the images of α and β, then any element in 〈α, β〉

is missing either a or b from its image. Likewise, if c �∈ dom(α) and d �∈ dom(β), then
either c �∈ dom(µ) or d �∈ dom(µ) for all µ ∈ 〈α, β〉. Thus, it is not possible to choose
all the elements missing from im(µ) or dom(µ) from the complement of {a, b} or {c, d},
respectively. It follows that the number of distinct domains, and images, that elements
of 〈α, β〉 with rank r admit is at most(

n

r

)
−

(
n − 2
r − 2

)
.

Inequality (2.1) tells us that

|〈α, β〉| �
n−1∑
r=0

[(
n

r

)
−

(
n − 2
r − 2

)]2

r!. (3.2)

Now, the proof is completed by showing that the coefficients of each of the terms r! in (3.2)
are not greater than the corresponding coefficients in (2.2). When r = 0, 1, . . . , n− 4 this
is obvious. Simplify the remaining terms in (3.2) to obtain

4(n − 1)! +
[(

n

2

)
−

(
n − 2

2

)]2

(n − 2)! +
[(

n

3

)
−

(
n − 2

3

)]2

(n − 3)!.

Comparing these coefficients with those in (2.2), 4 � (n − 3)2,
(
n−2

2

)
� 3 and

(
n−2

3

)
� 1

when n � 5, and the result follows. �

If α, β ∈ Sn, then |〈α, β〉| � n! < e(n) when n � 4. Therefore, it remains to prove that
any permutation together with any non-permutation in In generate a subsemigroup with
size less than e(n) in the even case and less than o(n) in the odd case. The next simple
lemma is used in the proof of both cases. Denote by αi the cycle of α ∈ Sn containing
the number i.
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Lemma 3.2. If α ∈ Sn and β ∈ In \ Sn with a �∈ dom(β) and b �∈ im(β), then

|〈α, β〉| � |α| +
s∑

r=0

[(
n

r

)
−

(
n − t

n − r

)]2

r!,

where s = rank(β) and t = max{|αa|, |αb|}.

Proof. Any element µ �= αi, for any i, of 〈α, β〉 can be written as αiβωβαj , or αiβαj ,
for some i, j and ω ∈ 〈α, β〉. Thus, aα−i �∈ dom(µ) and bαj �∈ im(µ). In other words,
there is an element in αa that is not in dom(µ) and an element in αb that is not in im(µ).
So, as in the proof of Lemma 3.1, the number of distinct domains that elements of 〈α, β〉
with rank r admit is at most(

n

r

)
−

(
n − |αa|
n − r

)
�

(
n

r

)
−

(
n − t

n − r

)
.

Likewise, the number of distinct images that elements of 〈α, β〉 with rank r admit is at
most (

n

r

)
−

(
n − |αb|
n − r

)
�

(
n

r

)
−

(
n − t

n − r

)
.

The inequality in the lemma now follows from (2.1) and the fact that, for all µ ∈ 〈α, β〉,
rank(µ) � s or rank(µ) = n. �

Using Lemma 3.2 it is now possible to prove the main result of this section in the case
where n is even.

Lemma 3.3. If n � 10 is even, α ∈ Sn and β ∈ In \ Sn, then |〈α, β〉| � e(n).

Proof. Let a �∈ dom(β) and b �∈ im(β). Assume without loss of generality that |αa| �
|αb|. If |αb| = n − 3, then the inequality |〈α, β〉| � e(n) follows directly from Lemma 3.2.
When |αb| � n − 4, it suffices to prove that

|α| +
n−1∑

r=n−3

[(
n

r

)
−

(
4

n − r

)]2

r! < ε(n) +
n−1∑

r=n−3

[(
n

r

)
−

(
3

n − r

)]2

r!.

This is equivalent to proving that

(n − 1)! = (n − 1)(n − 2)(n − 3)! � ε(n) + (6n3 − 25n2 + 6n + 25)(n − 3)!,

since |α| � (n − 1)! by (3.1). To prove the second inequality it is sufficient to show that
(n − 1)(n − 2) < 6n3 − 25n2 + 6n + 25 for n � 10, since ε(n) > 0 when n � 4. It
is possible to do this using elementary calculus. Indeed, take the real-valued functions
f(x) = x2 − 3x+2 = (x− 1)(x− 2) and g(x) = 6x3 − 25x2 +6x+25. Then f(10) = 72 <

3585 = g(10). Moreover, if x � 3, then f ′(x) < 2x < 2x(9x−25) < 18x2−50x+6 = g′(x).
It remains to consider what happens when |αb| = n − 2, n − 1 or n. Note that in this

case, since n is even, |α| � n. If N is the number of elements of 〈α, β〉 of rank n − 1, we
prove that

N � |α|2(n − 2)! � n2(n − 2)!. (3.3)
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If rank(β) < n−1, then there are no elements of rank n−1 and (3.3) is satisfied. Assume
that rank(β) = n − 1. There are two cases to consider.

First, if bαi �= a, for all i, then any product of αs and βs, containing more than 1
occurrence of β, has rank at most n − 2. Consequently, there are at most |α|2 � n2

elements of rank n − 1.
Second, if there exists i ∈ Z such that bαi = a, then dom(αiβ) = im(αiβ) and the

unique element not in this set is b. Note that since αiβ is a permutation of its domain,
which has size n − 1, |αiβ| � (n − 2)! by (3.1). As in the previous case, we will prove
that every element of 〈α, β〉 with rank n − 1 has the form αj(αiβ)kαl for some j, k, l.
To this end observe that if xαk = x, for some k and some x in αb, then yαk = y for all
y in αb. Moreover, since |αb| = n − 2, n − 1 or n, and n is even, it follows that αk is
the identity permutation 1n. Taking the contrapositive, if αk �= 1n, then yαk �= y for all
y in αb. In particular, bαk �= b. Therefore, every element of the form ω1(αiβ)αk(αiβ)ω2,
ω1, ω2 ∈ 〈α, β〉 and αk �= 1n, has rank at most n−2. It follows from this that if βαkβ is a
factor of an element in 〈α, αiβ〉 = 〈α, β〉 with rank n−1, then k = i. Thus, any element of
rank n−1 has the form αj(αiβ)kαl and there are at most |α|2|αiβ| � n2(n − 2)! elements
of this type. Hence,

h(n) = n + n2(n − 2)! +
n−2∑
r=0

(
n

r

)2

r! � |〈α, β〉|.

To complete the proof we show that

e(n) − h(n) = ε(n) − n + (n4 − 40
3 n3 + 41n2 − 110

3 n + 1)(n − 3)! > 0,

when n � 10.
Now, ε(n) − n > n − 6 > 0 when n � 7 and so it suffices to prove that

n4 − 40
3 n3 + 41n2 − 110

3 n + 1 > 0

when n � 10. As above, take the real-valued function

k(x) = x4 − 40
3 x3 + 41x2 − 110

3 x + 1.

Then k(10) = 401 and

k′(x) = 4x3 − 40x2 + 82x − 110
3 > 4x3 − 40x2 + 80x − 40 = 4x(x2 − 10x + 20) − 40.

Now, x(x − 10) � 0 > −19 when x � 10. Thus, x2 − 10x + 20 > 1 and so k′(x) > 0 when
x � 10. �

Finally, and again using Lemma 3.2, it is possible to prove the main result in the case
that n is odd.

Lemma 3.4. If n � 7 is odd, α ∈ Sn and β ∈ In \ Sn, then |〈α, β〉| � o(n).
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Proof. Let a �∈ dom(β) and b �∈ im(β). Assume without loss of generality that |αa| �
|αb|. If |αb| = n − 2, then the inequality |〈α, β〉| � o(n) follows directly from Lemma 3.2.
If |αb| � n − 3, then, by Lemma 3.2, it suffices to prove that

|α| +
n−1∑

r=n−2

[(
n

r

)
−

(
3

n − r

)]2

r! < 2n − 4 + 1
4 (n4 + 2n3 − 23n2 + 36n − 12)(n − 2)!

or, equivalently, to prove that

(n − 1)! � 2n − 4 + (4n2 − 9n − 3)(n − 2)!,

since |α| < (n − 1)!. When n � 3, 2n(2n − 5) > 2 and so 4n2 − 9n − 3 > n − 1 and the
result follows in this case.

Now, assume that the length of |αb| is n − 1 or n. As in the proof of Lemma 3.3, if N

denotes the number of elements of 〈α, β〉 with rank n − 1, then

N � |α|2(n − 2)! � n2(n − 2)!.

Therefore,

|〈α, β〉| � n + n2(n − 2)! +
n−2∑
r=0

(
n

r

)2

r!.

Now, 2n − 4 > n when n � 5 and the coefficients of r!, r �= n − 2, in the two sums
are equal. So, we need only verify that the coefficient of (n − 2)! in o(n), as shown in
Theorem 1.2, is greater than that in the last sum. In other words, we must prove that

1
4 (n4 + 2n3 − 23n2 + 36n − 12) −

[
n2 +

(
n

2

)2]

= 1
4 (n4 + 2n3 − 23n2 + 36n − 12) − 1

4 (n4 − 2n3 + 5n2)

= 1
4 (4n3 − 28n2 + 36n − 12) > 0.

But 0 < 4n(n−6)(n−1)−12 when n � 7 and 4n(n−6)(n−1)−12 = 4n(n2−7n+6)−12 <

4n(n2 − 7n + 9) − 12 = 4n3 − 28n2 + 36n − 12, as required. It follows that |〈α, β〉| � o(n)
for n � 7. �

4. Realizing e(n) and o(n)

In this section, we complete the proofs of Theorems 1.1 and 1.2 by proving that there are
2-generated subsemigroups of In with size e(n) and o(n). This necessitates two examples
to cover the cases when n is odd and when n is even.

The proof of the following elementary result, reportedly first proved in [9], will be
required to prove that our two examples are 2-generated.

Lemma 4.1. If n �= 4 and α is any nonidentity permutation of degree n, or n = 4 and
α �= (1 2)(3 4), (1 3)(2 4) or (1 4)(2 3), then there exists β ∈ Sn such that 〈α, β〉 = Sn.
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The first of our examples, O(n), is defined to be

(i) all powers of the permutation α = (1 2 · · · n − 2)(n − 1 n),

(ii) all elements µ ∈ In, where there exist d, i ∈ {1, 2, . . . , n − 2} such that d �∈ dom(µ)
and i �∈ im(µ).

If µ ∈ O(n), then µ−1 : xµ �→ x, x ∈ im(µ), is the unique inverse of µ in In. But there
exist i, d ∈ {1, 2, . . . , n−2} such that d �∈ dom(µ) = im(µ−1) and i �∈ im(µ) = dom(µ−1).
This implies that µ−1 ∈ O(n) and so O(n) is an inverse subsemigroup of In. The next
lemma shows that O(n) has the desired size and number of generators.

Lemma 4.2. If n � 5 is odd, then |O(n)| = o(n) and O(n) is 2-generated.

Proof. The first conclusion, that |O(n)| = o(n), follows immediately by (2.3), and
since n is odd. Since n − 2 is odd, αn−2 = (n − 1 n). Thus, if

β =

(
1 2 3 · · · n − 1 n

− 3 4 · · · n 2

)
,

then together αn−2 and β generate all permutations on {2, 3, . . . , n}. So, βn−1 = 1{2,...,n},
the partial identity with domain {2, . . . , n}. If m = 0, 1, . . . , n − 3, then

α−mβn−1αm = 1{1,2,...,n}\{m+1}

and so
1{m+2,...,n} = βn−1(α−1βn−1α)(α−2βn−1α2) · · · (α−mβn−1αm).

The partial identity 1{n} is produced by taking the composition 1{n−1,n}π1{n−1,n} where
π ∈ 〈αn−2, β〉 is the permutation on {2, 3, . . . , n} that swaps n − 2 and n − 1. Likewise,
the empty mapping is produced by taking the composition 1{n}σ1{n}, where σ is the
permutation that swaps n and n − 1.

Let µ ∈ O(n) be arbitrary with d, i ∈ {1, 2, . . . , n − 2} such that d �∈ dom(µ) and
i �∈ im(µ). If rank(µ) = n or 0, then µ is a power of α or the empty mapping. Either way
µ ∈ 〈α, β〉.

Assume that rank(µ) = n − m for some m ∈ {1, 2, . . . , n − 1}. Then 1 �∈ dom(µ)α−d+1

and 1 �∈ im(µ)α−i+1. It follows that 1 is in neither the domain nor the image of
αd−1µα−i+1. Therefore, there exists a (partial) permutation µ̂ ∈ 〈α, β〉 of {2, 3, . . . , n}
such that µ̂|dom(µ)α−d+1 = αd−1µα−i+1.

Then let ν be any permutation of {2, 3, . . . , n} such that

{m + 1, . . . , n}ν = dom(µ)α−d+1.

Of course, ν ∈ 〈α, β〉. With this definition

α−d+1ν−11{m+1,...,n}ναd−1 = α−d+11dom(µ)α−d+1αd−1 = 1dom(µ).

So, to conclude, if x ∈ dom(µ), then

(x)1dom(µ)α
−d+1µ̂αi−1 = (xα−d+1)µ̂αi−1 = (xα−d+1)αd−1µα−i+1αi−1 = xµ,

and 1dom(µ)α
−d+1µ̂αi−1 is undefined on the complement of dom(µ). Thus, µ ∈ 〈α, β〉. �
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Table 1. Maximum size of a 2-generated subsemigroup of In, n even

n M(n)

4 141∗

6 8 509∗

8 1 079 625∗

10 200 798 485
12 48 777 044 515
14 15 243 109 621 301

The second of the required semigroups, E(n), is defined to be

(i) all powers of the permutation α = (1 2 · · · n − 3)(n − 2 n − 1), or (1 2 · · · n −
3)(n − 2 n − 1 n), when 3|n or 3�n, respectively,

(ii) all elements µ ∈ In with d, i ∈ {1, 2, . . . , n−3} satisfying d �∈ dom(µ) and i �∈ im(µ).

It is possible to verify that E(n) is an inverse subsemigroup of In in the same way that
O(n) was shown to be.

Lemma 4.3. If n � 6 is even, then |E(n)| = e(n) and E(n) is 2-generated.

Proof. As in the proof of Lemma 4.2, the first conclusion, that |E(n)| = e(n), follows
immediately by (2.2), and since n is even. If 3|n, then αn−3 = (n − 2 n − 1), and if
3 � n, then αn−3 = (n − 2 n − 1 n). In either case, Lemma 4.1 guarantees that it is
possible to find a permutation β of {2, 3, . . . , n} such that together αn−3 and β generate
all permutations of {2, 3, . . . , n}. For example, if 3|n, then β can be(

1 2 3 · · · n − 1 n

− 3 4 · · · n 2

)
,

and if 3�n, then β can be(
1 2 3 · · · n − 2 n − 1 n

− 3 4 · · · 2 n n − 1

)
.

The rest of the proof is, more or less, identical to that of Lemma 4.2 and, for brevity, it
is omitted. �

5. Small values, asymptotics and embedding In in In+1

As the title suggests, in this section some small values of the maximum size M(n) of
a 2-generated subsemigroup of In are given. When n � 7 and odd, or n � 10 and
even, M(n) is precisely o(n) or e(n), respectively. The asymptotic behaviour of the ratio
M(n)/|In| is also studied. The first few values of M(n) are given in Tables 1 and 2. The
values marked with an asterisk were not obtained by applying Theorems 1.1 and 1.2; all
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Table 2. Maximum size of a 2-generated subsemigroup of In, n odd

n M(n)

3 31∗

5 934∗

7 103 692
9 15 561 168

11 3 180 734 980
13 860 918 107 056
15 299 336 064 843 732

the other values were. The values when n = 3 or 4 were obtained by computation. The
remaining values, when n = 5, 6, or 8, were obtained using Lemma 3.1 and arguments
analogous to those used in the proof of Lemmas 3.3 and 3.4. The largest 2-generated
subsemigroups of In in these cases are not always the same as the semigroups O(n)
and E(n). The following two examples describe 2-generated semigroups with the largest
possible size when n = 3, 4, 5, 6 and 8.

Example 5.1. If n = 3, then the partial permutations

α =

(
1 2 3
3 1 2

)
and β =

(
1 2 3
− 1 3

)

generate an inverse subsemigroup of In with size 31. Moreover, this semigroup consists
of all partial permutations of {1, 2, 3} with rank at most 2 and the powers of α. The
semigroup O(5) has size 934.

Example 5.2. When n = 4, 6 or 8, the semigroups with the largest possible size are
found by taking a cycle α of order n in Sn together with a group element β of rank n− 1
with maximum possible order, that is, 3, 6 or 12, respectively. The semigroup 〈α, β〉
contains all the elements of rank at most n − 2, n2|β| elements of rank n − 1 and the
n powers of α.

The paper is concluded by making some easy observations.

Lemma 5.3. The sequence M(n)/|In| tends to 1 as n → ∞.

Proof. The sequence o(n)/|In| tends to 1 as n → ∞. Thus, since o(n) � e(n+1), the
result follows. �

From the definition of the semigroups O(n) and E(n), we deduce the following results.
As mentioned in § 1, this is already known (see [7]).

Theorem 5.4. The inverse semigroup In, n � 4, can be embedded, as a local sub-
monoid, in an inverse 2-generated subsemigroup of In+1.
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Proof. It is well known that the symmetric inverse monoid on the set {2, 3, . . . , n} is
generated by the permutations (2 3), (2 3 · · · n) and the idempotent(

1 2 3 · · · n − 1 n

− − 3 · · · n − 1 n

)

(see, for example, [6, Exercise 5.11.6]).
From the definition of O(n) and E(n) it is clear that these three partial permutations

are elements of both of these monoids. �
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