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Smoothing of Limit Linear Series of
Rank One on Saturated Metrized
Complexes of Algebraic Curves

Ye Luo andMadhusudan Manjunath

Abstract. We investigate the smoothing problem of limit linear series of rank one on an enrich-
ment of the notions of nodal curves and metrized complexes called saturated metrized complexes.
We give a ûnitely veriûable full criterion for smoothability of a limit linear series of rank one on satu-
ratedmetrized complexes, characterize the space of all such smoothings, and extend the criterion to
metrized complexes. As applications,we prove that all limit linear series of rank one are smoothable
on saturated metrized complexes corresponding to curves of compact-type, and we prove an ana-
logue for saturatedmetrized complexes of a theoremofHarris andMumford on the characterization
of nodal curves contained in a given gonality stratum. In addition,we give a full combinatorial crite-
rion for smoothable limit linear series of rank one on saturatedmetrized complexes corresponding
to nodal curves whose dual graphs aremade of separate loops.

1 Introduction

A saturated metrized complex is an object that encodes information about a degen-
erating family of smooth curves. Roughly speaking, a saturatedmetrized complex C
over a ûeld κ consists of ametric graph and an algebraic curve over κ associated with
each point of the metric graph (Deûnition 2.1). A limit linear series of rank r on C
consists of a linear series of rank r on each associated algebraic curve of C satisfying
certain compatibility conditions. _e main purpose of this paper is to provide a full
criterion for li�ing a limit linear series of rank one to a linear series of the same rank
on a smooth curve C.

1.1 Context and Motivation

Degeneration to singular curves has been one of themost important tools in the the-
ory of smooth algebraic curves. Fundamental results on algebraic curves such as the
Brill–Noether _eorem and Gieseker–Petri _eorem were established via degenera-
tion to singular curves [16, 22, 23][25, Chapter 5]. While degeneration to irreducible
curves such as cuspidal curves and nodal curves was considered by Castelnuovo [12]
and several researchers, Eisenbud andHarris [16] subsequently developed a theory of
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degeneration of linear series to certain reducible curves called limit linear series. A
limit linear series is usually denoted by limit gr

d , where the integers d and r are called
the degree and rank of the limit linear series, respectively. _e theory of limit linear
series has numerous applications, for instance, a proof of non-unirationality of M23
[17], a detailed study of themonodromy ofWeierstrass points [18], and a proof of ir-
reducibility of certain families of special linear series of curves [19]. However, until
recently the notion of limit linear series was largely restricted to curves of compact-
type, i.e., nodal curves whose dual graph is a tree. We refer to Osserman’s survey for
amore recent treatment of limit linear series on curves of compact type [30].

Recently, Amini and Baker [3] deûned a notion of limit linear series on nodal
curves in general. In fact, instead of working with nodal curves per se, they con-
sidered an enrichment of nodal curves calledmetrized complexes (nodal curveswith
ametric assigned to the corresponding dual graph) and formulated a notion of limit
linear series on ametrized complex. _ey show that on ametrized complex associated
with a curve of compact-type, their notion of limit linear series coincides with that of
Eisenbud and Harris. Independently, Ossermann [31] has generalized the notion of
limit linear series of Eisenbud–Harris to curves of non-compact type.

_e notions of limit linear series of Eisenbud and Harris, Amini and Baker and
Osserman satisfy two key properties.
(1) For any family of smooth curves degenerating to a curve of compact type (amet-

rized complex or a nodal curve), any family of linear series on each smooth curve
in the family degenerates to a limit linear series on the curve of compact type
(a metrized complex or a nodal curve respectively). _is property is called the
specialization property.

(2) _e limit linear series is formulated in terms of linear series on each irreducible
component andwith relations between the linear series on each irreducible com-
ponent that depend on the dual graph (see Deûnition 2.5 for a precise deûnition).

However, even in the case of curves of compact type, the converse of Property (1)
does not hold in general. In other words, not every limit gr

d arises as a limit of linear
series. A limit linear series is said to be smoothable if it arises as a limit of linear series
(see Deûnition 3.8 for a precise deûnition of smoothability). Eisenbud and Harris
also considered a reûnement of the notion of limit linear series called reûned limit
linear series. _ey showed that every reûned limit g1

d is smoothable. For r ≥ 2, they
constructed a moduli space of limit gr

d and showed that any limit gr
d in irreducible

components of the expected dimension in themoduli space of limit gr
d is smoothable,

which they call the regeneration theorem [16,_eorem 3.4].

1.2 Smoothing Criterion for Limit Linear Series of Rank One on Saturated Met-
rized Complexes

In this paper,we consider a reûnement of the notion of ametrized complex called sat-
uratedmetrized complexes (Deûnition 2.1) and undertake a detailed study of smootha-
bility of limit g1

d on saturatedmetrized complexes of algebraic curves. Roughly speak-
ing, a saturated metrized complex can be considered as a metric graph Γ with an al-
gebraic curve associated with each point of Γ. On the other hand, for a metrized
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complex, only the points in a ûnite subset A of Γ are associated with algebraic curves.
_erefore, a saturatedmetrized complex can be derived from ametrized complex by
inserting curves at the points in Γ∖A (the process is called a saturation of themetrized
complex). Conversely, ametrized complex can be derived from a saturatedmetrized
complex by ignoring the curves associated with the points in Γ ∖ A.

_e main goal in this paper is to provide a full smoothing criterion for limit g1
d

on saturatedmetrized complexes. We brie�y explain our approach ûrst and state the
criterion in _eorem 1.1.

In a recent work Amini, Baker, Brugallé, and Rabinoò [4, 5] showed that har-
monicmorphisms betweenmetrized complexes can essentially be li�ed to ûnitemor-
phisms between curves. Let K be an algebraically closed ûeld of characteristic 0 that
is complete with respect to a non-archimedean valuation of value group R. Let the
corresponding residue ûeld be κ. Suppose that X is a smooth proper curve over
K. Let Σ be a skeleton of the Berkovich analytiûcation Xan of X. Let C(Σ) be the
saturated metrized complex over the residue ûeld κ associated with Σ (see Appen-
dix A.1 for a precise construction). A base point free g1

d on X induces a morphism
ϕ∶X → P1 of degree d. By the functoriality of analytiûcation, we have an induced
map ϕan∶Xan → P1

Berk, where P1
Berk is the Berkovich projective line. _e retraction

from Xan to the skeleton Σ induces a pseudo-harmonicmorphism Cϕ (see §3.1 for a
precise deûnition) from the saturatedmetrized complex C(Σ) to a saturatedmetrized
complex C(T) of genus zerowhere the underlying metric tree T of C(T) is a skeleton
of P1

Berk. On the other hand, by [5,_eoremA] there is a harmonicmorphism Cϕmod

from amodiûcation C(Σmod) of C(Σ) to C(T) which is compatible with ϕan . More
precisely, we have the following commutative diagram.

X

Xan

C(Σmod) C(Σ)

P1

P1
Berk

C(T)

ϕ

ϕan

Cϕmod

Cϕ

Recall thatwe can represent a g1
d on X by (D,H)where D is an eòective divisor of

degree d and H is a two-dimensional linear subspace of H0(X ,L(D)). _e special-
ization (D,H) of (D,H) to C(Σ) represents a limit g1

d on C(Σ) that is smoothable.
On the other hand, the li�ing theorem [5,_eorem B] guarantees that any harmonic
morphism onto a genus-0 (saturated) metrized complex can be li�ed to a ûnitemor-
phism onto a projective line. _erefore, to investigate whether a limit g1

d represented
by (D,H)on a saturatedmetrized complex is smoothable,wemust characterizewhen
there exist a genus-0 saturatedmetrized complex C(T) and amodiûcation C(Σmod)
of C(Σ) such that there is a harmonicmorphism Cϕmod∶C(Σmod) → C(T) which is
“compatible” with the data (D,H).
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An important aspect is that, starting from a smoothable limit g1
d represented

by (D,H) on C(Σ), there generally exist diòerent choices of C(Σ)mod, C(T), and
Cϕmod∶C(Σmod) Ð→ C(T) in the above commutative diagram. _erefore, to give
a full smoothing criterion, the main challenge is to determine all possible C(Σmod),
C(T), and Cϕmod that are compatible with the data (D,H).

In this paper, the key to addressing this challenge is to ûrst reorganize the infor-
mation in (D,H) and associatewith it a combinatorial object called a global diagram
on Γ. A global diagram consists of a “piecewise-constant diòerential form” deûned
on Γ and a partition of the set of tangent directions at every point in Γ. It turns out
that the failure of exactness of this diòerential form is an obstruction to smoothing
(D,H). We say that (D,H) is solvable if this diòerential form is exact. Hence, by
integration of the exact diòerential form for a solvable (D,H), we derive a rational
function ρ on Γ with everywhere nonzero slopes. _e bifurcation tree B associated
with ρ is a metric tree whose points correspond to superlevel components of Γ at all
values of ρ. Moreover, there is a canonical projection πB from Γ to B. By properly
gluing the bifurcation tree B along its branches, we can derive a metric tree that is
called a partition tree with respect to B. (See §4 for precise deûnitions of bifurcation
trees and partition trees.) We denote by Λ(1)

D,H the space of all such partition trees
with respect to B. One observation is that in the above commutative diagram, the
underlying metric tree T of C(T) can only possibly be a partition tree.

More smoothing obstructions arise from the compatibility between πB and the
data in (D,H). We organize these obstructions into three additional levels and as-
sociate a subspace (denoted by Λ(2)

D,H, Λ
(3)
D,H, and Λ(4)

D,H, respectively) of Λ
(1)
D,H with

each of these three additional levels (Section 5). In particular,

Λ(1)
D,H ⊇ Λ(2)

D,H ⊇ Λ(3)
D,H ⊇ Λ(4)

D,H .

We will show that any genus zero saturatedmetrized complex C(T) that can arise in
the above commutative diagrammust have an underlyingmetric tree T in Λ(4)

D,H, and
conversely we can build such a C(T) from any metric tree T in Λ(4)

D,H. See Figure 11
for an example of Λ(1)

D,H, Λ
(2)
D,H, Λ

(3)
D,H, and Λ(4)

D,H.
In summary, we have the following theorem as the smoothing criterion.

_eorem 1.1 (Smoothing Criterion) A pre-limit g1
d (or a limit g1

d ) represented by
(D,H) on a saturatedmetrized complex is smoothable if and only if the space ofmetric
trees Λ(4)

D,H associated with (D,H) is nonempty.

One feature that distinguishes the study of smoothability of limit g1
d in comparison

with the li�ing of harmonicmorphisms of [4,5] is the appearance of the space of trees
Λ(1)

D,H, Λ
(2)
D,H, Λ

(3)
D,H, and Λ(4)

D,H. _ese spaces are naturally endowed with a partial
order (see Appendix B) and lead to several directions for future work. For exam-
ple, they are essentially spaces of phylogenetic trees and seem to be related to similar
spaces occurring in other contexts such as the space of trees [9] and in the context of
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dynamics [15]. Another direction of investigation is that thework of Abramovich, Ca-
poraso, and Payne [1] suggests thatΛ(4)

D,H can be interpreted in terms of the Berkovich
analytiûcation of themoduli space of all smoothings of the underlying limit g1

d .
Furthermore, the above criterion is an eòective characterization of smoothable

limit g1
d , since it is not only a full criterion but also ûnitely veriûable given the data

(D,H) (for ûnite veriûcations, see §2.7 and an equivalent formof the smoothing cri-
terion in _eorem 2.6).

We also expect the global diagram technique employed in setting up the smooth-
ing criterion to be a useful tool for characterizing the gonality stratum and for study-
ing moduli spaces ofmetrized complexes (and tropical curves) with a given gonality.
_ese topicswill be pursued in the future. Wewould like tomention thatOmidAmini
has independently obtained a smoothing theorem on limit g1

d for limit linear series
in the framework developed in an upcoming paper [2], which is a reûnement of [3].
Cartwright has also recently studied the problem of smoothing divisors of rank two
and higher [10]. Cartwright considered li�ing of rank two divisors on tropical curves
(and metrized complexes). Given a matroid and an inûnite ûeld κ, he constructed a
graph (and ametrized complex) and a divisor of rank two, called amatroid divisor, on
it and showed that the problem of li�ing thematroid divisor to a smooth curve over
κ[[t]] is equivalent to realizabilityof theunderlyingmatroidover κ. _ese results show
that the li�ing problem for higher rank divisors (rank two and higher) is sensitive to
the underlying ûeld and is evidence for the diõculty in generalizing our smooth cri-
terion for higher rank divisors. In addition, Cartwright, Jensen, and Payne [11] and
Jensen and Ranganathan [27] have proved higher rank li�ing theorems for divisors
on tropical curves which are general and special chain of loops respectively.

1.3 Applications

We present four concrete applications of the smoothing criterion.

1.3.1 Application 1: Saturated Metrized Complexes of Compact Type

In Section 7.1, we prove a version of the smoothing theorem of Eisenbud and Harris
[16] for curves of compact type in the setting of saturated metrized complexes with
underlying metric graphs being trees (we call them saturatedmetrized complexes of
compact type) as follows: on a saturated metrized complex of compact type, every
diagrammatic pre-limit linear series of rank onemust be smoothable.

1.3.2 Application 2: Saturated Metrized Complexes with Genus-g
Underlying Metric Graphs Containing g Separate Loops

In Section 7.2, we follow the same philosophy in the proof of the above Eisenbud–
Harris _eorem and generalize it to a full combinatorial characterization of smooth-
able limit g1

d on a saturatedmetrized complex whose underlying metric graph Γ con-
tains g separate loops. Note that the case for metric graphs made of chains of loops
that are used for tropical proofs of the Brill–Noether_eorem [14] andGieseker–Petri
_eorem [26] falls into this category.
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1.3.3 Application 3: Saturated Metrized Complexes of Harris–Mumford Type

Harris and Mumford [24, _eorem 5] considered speciûc families of nodal curves
and proved a smoothing theorem for limit g1

d for curves in these families. Using this,
they obtained a partial characterization of the gonality stratum. We refer to satu-
ratedmetrized complexes corresponding to these families of nodal curves as Harris–
Mumford saturatedmetrized complexes and discuss them in detail in Section 7.3. _e
setting of _eorem 5 of [24] is slightly diòerent from ours since they worked with
nodal curves rather than saturated metrized complexes. In particular, the Harris–
Mumford types of saturated metrized complexes have �ower-like underlying metric
trees (see Figure 9). In _eorem 7.6 we prove an analogue of [24, _eorem 5], while
_eorem 1.1 can actually be considered as a generalization of [24, _eorem 5] in the
above sense.

1.3.4 Application 4: Extending the Smoothing Criterion to Metrized
Complexes

_eorem1.1 also suggests the following approach to an analogous smoothing criterion
for limit g1

d on metrized complexes: a limit g1
d on ametrized complex is smoothable

if and only if this limit g1
d can be extended to a smoothable limit g1

d on a saturated
metrized complex that is a saturation of the original metrized complex. We havemore
detailed discussions and give a concrete example in Section 7.4 to show that even in
the setting ofmetrized complexes, the smoothing criterion is still ûnitely veriûable.

1.4 Outline of the Rest of the Paper

_e rest of the paper is organized as follows. In Section 2, we explain some no-
tions and terminologies essential to the paper. In Section 3, we study the relation
between smoothable limit g1

d and harmonicmorphisms between saturatedmetrized
complexes. In Section 4, we discuss the notions of bifurcation trees and partition
trees. In Section 5, we study properties of the spaces Λ(1)

D,H, Λ
(2)
D,H, Λ

(3)
D,H, and Λ(4)

D,H
that arise from diòerent levels of obstructions of the limit g1

d from being smoothable.
In Section 6, we prove the smoothing criterion. Section 7 is devoted to examples and
applications of our smoothing criterion.

2 Some Notions and Terminologies Related to the Smoothing
Criterion

In this section, we ûrst present the basic notions and terminologies, and then state an
alternative version of the smoothing criterion that is directly veriûable.

Let K be an algebraically closed ûeld of characteristic 0 complete with respect to
a non-trivial non-archimedean absolute value. We assume that the value group of K
is the group of real numbers (R,+). Let R be the valuation ring of K, and κ be the
residue ûeld of K that we also assume to be algebraically closed and of characteristic
0. (On the other hand, starting from κ,we can also construct such a ûeldKwith value
groupR and residue ûeld κ using generalizedPuiseux series [29].) For an algebraically
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closed ûeld K, we let K∞ = K ∪ {∞} be the projective line P1
K with coordinates. _e

above notations and assumptions will be applied throughout this paper.

2.1 Saturated Metrized Complexes

Deûnition 2.1 A saturated metrized complex C over an algebraically closed ûeld κ
consists of the following data.
(i) Ametric graph Γ.
(ii) A smooth complete irreducible algebraic curve Cp over κ associated with each

point p ∈ Γ such that Cp is a projective line except for points in a ûnite subset of
Γ. (For simplicity, we also use Cp to represent the set of closed points of Cp .)

(iii) For every point p ∈ Γ, an injection redp ∶TanΓ(p)→ Cp called the reductionmap
at p where TanΓ(p) is the set of tangent directions on Γ incident to p, redp(t) is
called themarked point in Cp associatedwith the tangent direction t ∈ TanΓ(p),
and Ap = Im(redp) is the set of marked points of Cp . For convenience, we
let Red∶∐p∈Γ TanΓ(p) → ∐p∈Γ Cp be deûned as Red(t) = redp(t) when t ∈
TanΓ(p).

_e genus g(C) of C is deûned as g(Γ) +∑p∈Γ g(Cp), where g(Γ) is the genus (the
ûrst Betti number) of themetric graph Γ and g(Cp) is the genus of the algebraic curve
Cp . _e genus of a saturated metrized complex is ûnite since Cp has genus zero for
all but a ûnite number of points p ∈ Γ.

Remark 2.2 _e notion of saturatedmetrized complex follows the same philosophy
as that of metrized complex in [3], except there, only the points in a ûnite vertex set
A of Γ are associated with curves. Hence, by ignoring the curves associated with the
points in Γ ∖ A for a vertex set A of Γ, we can derive a metrized complex C′ from a
saturatedmetrized complex C. We say that C′ is the restriction of C to A. Conversely,
given a metrized complex C′ and a saturated metrized complex C, we say that C is a
saturation of C′ if C′ is a restriction of C and they have the same genus (the newly
inserted curves in C are all projective lines).

Remark 2.3 Saturatedmetrized complexes appear as the inverse image of a skeleton
in themap from theHuber adic space to the Berkovich analytiûcation of a curve [20],
and are closely related to “exploded tropicalizations” [32].

2.2 Divisor Theory on a Saturated Metrized Complex

Here we give a natural extension of the divisor theory on metrized complexes in [3]
to a divisor theory on saturatedmetrized complexes. _is divisor theory on metrized
complexes introduced in [3] combines the conventional divisor theory on algebraic
curves and an analogous divisor theory on metric graphs [21,28].

Let C be a saturated metrized complex with underlying metric graph Γ and alge-
braic curve Cp at point p. A pseudo-divisor D on a saturated metrized complex C is
the data (DΓ , {Dp}p∈Γ), where DΓ is a divisor on Γ and Dp is a divisor on the curve
Cp satisfying the relation DΓ(p) = deg(Dp) for every point p ∈ Γ. We also say that
DΓ is the tropical part of D and Dp is the Cp-part of D. We say that a point u ∈ Cq
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is a supporting point of D if Dq(u) /= 0. _e degree of D is deûned to be the degree
of DΓ . If in addition Dp = 0 for all but ûnitely many points p ∈ Γ, then we call D a
divisor on C. We sayD is eòective if Dp is eòective for all points p ∈ Γ.

Note that for any pseudo-divisorD on a saturatedmetrized complex, Dp will have
degree 0 for all but ûnitely many points p ∈ Γ. However, Dp can be non-zero for
inûnitely many points in Γ, which is unconventional from the viewpoint of divisor
theory. _e notion of divisors on a saturatedmetrized complex rectiûes this aspect.

Remark 2.4 All divisors on C form a group isomorphic to⊕p∈Γ Div(Cp) (the free
abelian group on ∐p∈Γ Cp). _erefore, we also write a divisor D on C formally as
D = ∑p∈Γ Dp , where Dp is the Cp-part ofD.

A pseudo-rational functionis f = ( fΓ , { fp}p∈Γ),where fΓ is a tropical rational func-
tion (piecewise-linear function with integer slopes) on Γ and fp is a rational function
on the algebraic curve Cp . We also say that fΓ is the tropical part of f and fp is the
Cp-part of f. We say that f is nonzero if fp is nonzero for all p ∈ Γ. _e principal
pseudo-divisor div(f) associatedwith a nonzero pseudo-rational function f is deûned
as (div( fΓ), {div( fp)+ divp( fΓ)}p∈Γ) where divp( fΓ) = ∑t∈TanΓ(p) slt( fΓ)(redp(t))
and slt( fΓ) is the outgoing slope of the function fΓ along the tangent direction t. A
rational function is a pseudo-rational function whose associated principal pseudo-
divisor is a divisor. DivisorsD1 andD2 are linearly equivalent if they diòer by a prin-
cipal divisor.
As in the case of principal divisors on an algebraic curve or on ametric graph, the

set of the principal divisors on a saturatedmetrized complex forms an abelian group
under addition.

2.3 Limit Linear Series on a Saturated Metrized Complex

Deûnition 2.5 Let C be a a saturatedmetrized complex. A pre-limit linear series of
rank r and degree d (also known as a pre-limit gr

d ) on C is represented by the data
(D,H) where D = (DΓ , {Dp}p∈Γ) is an eòective divisor of degree d on C and H =
{Hp}p∈Γ , where Hp is an (r + 1)-dimensional subspace of the function ûeld of Cp .
A limit linear series of rank r and degree d (also known as a limit gr

d ) on C is a
pre-limit gr

d represented by (D,H) with H = {Hp}p∈Γ that satisûes the following
additional condition: for every eòective divisor E = (EΓ , {Ep}p∈Γ) on C of degree r
such that the support of Ep does not intersect the set Ap of marked points of Cp for
every p ∈ Γ, there exists a rational function f = ( fΓ , { fp}p∈Γ) such that fp ∈ Hp for all
points p ∈ Γ andD − E + div(f) ≥ 0.

Our deûnition of limit linear series is a slight modiûcation of the notion of crude
limit linear series in [3, §5.3]. For instance, we impose the additional restriction that
the support of Ep does not intersect the set Ap . _is restriction is justiûed by _eo-
rem 3.7, which states that a specialization of linear series is a limit linear series.

_roughout this paper, unless otherwise speciûed, we let D = (DΓ , {Dp}p∈Γ) and
H = {Hp}p∈Γ for convenience. Whenwe say F = { fp}p∈Γ is an element ofH, itmeans
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fp ∈ Hp for all p ∈ Γ. In addition, wemay also consider F as a function from∐p∈Γ Cp
to κ which sends u ∈ Cp to fp(u).

We say a pre-limit gr
d (respectively, a limit gr

d ) represented by (D,H) is reûned if
(D,H) has the following additional properties.
● _e constant function is contained in Hp for every point p ∈ Γ.
● For every point p, the support of Dp is disjoint from the set Ap of marked points

of Cp .
_e two conditions are justiûed by Lemma 3.11, stating that a smoothable pre-limit

gr
d must be reûned.

2.4 Alternative Version of the Smoothing Criterion

We have the following equivalent version of the smoothing criterion in _eorem 1.1.
_is version is ûnitely veriûable (see §2.7).

_eorem 2.6 (Smoothing Criterion,Version II) A pre-limit g1
d (or a limit g1

d ) repre-
sented by (D,H) on a saturatedmetrized complex is smoothable if and only if (D,H)
is diagrammatic, is solvable, and satisûes the intrinsic global compatibility conditions.

We primarily employ this version in the rest of the paper, in particular in Section 7.
_e equivalence of these two versions of the smoothing criterion follows from Propo-
sition 5.6. In the rest of this section, we explain the terms diagrammatic, solvable, and
intrinsic global compatibility conditions that appear in the smoothing criterion. In
Section 7.4, we extend this smoothing criterion on saturated metrized complexes to
the case for metrized complexes in a natural way.

2.5 Diagrams Induced by (D,H) and Solvability

For a pre-limit g1
d represented by (D,H) to be reûned, we extract the information in

the space Hp and associate a combinatorial object called a local diagram with a point
p ∈ Γ. A global diagram is formed by assembling the local diagrams at all points in Γ
in a “continuous” way.
First let us give amore precise description of local and global diagrams on ametric

graph Γ.

Deûnition 2.7 (i) A local diagram at a point p of Γ is made of following data.
(a) A nonzero integer m(p, t) called themultiplicity associatedwith each tangent di-

rection t ∈ TanΓ(p), where TanΓ(p) is the set of tangent directions emanating
from p. We refer to those tangent directions with negative multiplicities as in-
coming tangent directions and denote the set they form by InΓ(p). Similarly, we
refer to those tangent directions with positive multiplicities as outgoing tangent
directions and denote the set they form by OutΓ(p).

(b) _e elements in TanΓ(p) are partitioned into equivalence classes with one of the
equivalence classes being exactly In(p). We refer to this partition of TanΓ(p) as
the local partition at p and refer to the tangent directions that belong to the same
equivalence class as locally equivalent.
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(ii) An open neighborhood of a point p ∈ Γ is called a simple neighborhood if
it is simply connected and every point in the neighborhood, except possibly p, has
valence two. For a simple neighborhoodU of a point p ∈ Γ, a local diagram at a point
p induces a local diagram at any point q in U ∖ {p} as follows. Suppose that q lies
along the tangent direction t ∈ TanΓ(p). Assign the integer −m(p, t) to the tangent
direction at q corresponding to the edge joining p and q and assign the integerm(p, t)
to the other tangent direction at q. Assign the two tangent directions at q to diòerent
equivalence classes.

(iii) A global diagram on a metric graph Γ is a collection of local diagrams at all
the points in Γ such that the local diagrams satisfy the following continuity property:
for every point p, there is a simple neighborhood U of p such that for every point
q ∈ U ∖{p} the local diagram induced by p at q coincideswith the local diagram at q.

(iv) A global diagramon Γ is called solvable if there exists a tropical rational func-
tion ρ on Γ such that the outgoing slope slt(ρ) of ρ along the tangent direction t ∈
TanΓ(p) for any point p ∈ Γ coincideswith themultiplicity. Formally, this means that
the diòerential equation slt(ρ) = m(p, t) is satisûed. _is equation is referred to as
the characteristic equation of the global diagram.

Remark 2.8 Recall that a vertex set of Γ (the set of all points of valence at least three)
induces an edge-weighted graph called amodel of Γ (see [6]). Since Γ is compact, the
multiplicity aspect of a global diagram can be represented in terms of the following
data: amodel for Γ, an orientation of each edge of themodel, and a non-zero integer
associated with each edge called themultiplicity of that edge. In other words, a global
diagram induces a piecewise-constant integer-valued diòerential form on Γ and this
diòerential form is exact if the global diagram is solvable.

When a global diagram is solvable, the solution of the characteristic equation is
unique up to a translation by a constant. Since m(p, t) is nowhere zero for all p and
t ∈ TanΓ(p), the solution must have everywhere nonzero slopes.

For a two-dimensional linear space Hp of rational functions on Cp that contains
the constant functions, we can naturally associate a local diagram deûned with each
point of Γ. _e details of such a procedure are presented in the following construc-
tion. _is construction translates the algebraic data encoded in H to combinatorial
data on Γ. Furthermore, the two aspects of the deûnition of local diagrams, mul-
tiplicity and local partition, are both motivated from the notion of harmonic mor-
phisms (§3.1).

Construction of Local Diagrams From H In the following, given a reûned pre-
limit g1

d represented by (D,H), we associate a local diagram with every point on
the metric graph using the data H. From the deûnition of a reûned pre-limit g1

d ,
we know that the two-dimensional linear space Hp of rational functions on Cp has
a basis {1, fp} where fp is a nonconstant rational function on Cp . Let f p ∶Cp → κ∞
be the function on Cp extending fp to its poles. We construct the local diagram at
p as follows: for a tangent direction t of Cp , we let the multiplicity m(p, t) be the
ramiûcation index of f p at themarked point corresponding to the tangent direction t
with sign “−” if redp(t) is a pole of fp and sign “+” otherwise. _e local partition at p
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Figure 1: A local diagram (right) at p derived from Hp on the curve Cp (le�) of genus 1.

is deûned by declaring that two tangent directions are locally equivalent if and only if
their marked points are in the same level set of fp . Hence InΓ(p) is the set of tangent
directionswhose correspondingmarked points are the poles of fp and the elements of
InΓ(p) are all locally equivalent. In this way, we construct a local diagram at p from
fp . Moreover, since diòerent choices of nonconstant functions fp in Hp aòord the
same local diagram at p, we also say that this local diagram at p is induced by Hp .
Compatibility Between D and H For a nonconstant function fp ∈ Hp , we say
that D+fp and D

−
fp are the eòective and non-eòective parts of div( fp), respectively, if

div( fp) = D+fp −D
−
fp and both D

+
fp and D

−
fp are eòectivewith no overlapping support-

ing points. Note that by the construction of the local diagrams from fp , the marked
point associated with an incoming tangent direction in InΓ(p) is a pole of fp and we
must have D−fp +Σt∈InΓ(p)m(p, t)(redp(t)) ⩾ 0 (note that m(p, t) < 0 for t ∈ InΓ(p)).
By comparing Dp with D−fp + Σt∈InΓ(p)m(p, t)(redp(t)), we introduce the compat-
ibility between Dp and Hp . More precisely, we say that Hp is compatible with Dp
or D if Dp ⩾ D−fp + Σt∈InΓ(p)m(p, t)(redp(t)). We say that a supporting point of
Dp − Σt∈InΓ(p)m(p, t)(redp(t)) − D−fp is a base point of (D,H) when Dp is compat-
ible with Hp . In this sense, a supporting point of Dp is either a base point of (D,H)
or a pole of a nonconstant rational function in Hp . We say D andH are compatible
if Dp and Hp are compatible for all p ∈ Γ. Note that the total number of base points
must be ûnite when D andH are compatible.

Example 2.9 Figure 1 illustrates the construction of a local diagram at p ∈ Γ using
a two-dimensional linear space Hp of rational functions on a genus-1 curve Cp . We
suppose that each Hp contains a constant function. Consider a nonconstant rational
function fp ∈ Hp . Suppose fp has degree 3 and the poles of fp are u1, u2, and u3 with
all ramiûcation indices being 1, and points u1 and u2 are marked points with associ-
ated tangent directions tu1 and tu2 . _en tu1 and tu2 are incoming tangent directionswith
m(p, tu1 ) = m(p, tu2 ) = −1. Let c and c′ be distinct values in κ and suppose f −1

p (c) =
{v1 , v2 , v3}with all ramiûcation indices being 1 and f −1

p (c′) = {w1 ,w2}with ramiûca-
tion indicesofw1 andw2 being 1 and 2, respectively. Suppose v1,w1, andw2 aremarked
pointswith associated tangent directions tv1 , tw1 , and tw2 , respectively. _en tv1 , tw1 , and
tw2 are outgoing tangent directionswith m(p, tv1 ) = 1,m(p, tw1 ) = 1, andm(p, tw2 ) = 2.
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Moreover, the corresponding local partition of TanΓ(p) is {{tu1 , tu2 }, {tv1 }, {tw1 , tw2 }}.
Moreover, a divisor Dp on Cp is compatible with Hp if and only if u3 is a supporting
point of Dp .

Deûnition 2.10 We say that a reûned pre-limit g1
d (respectively, limit g1

d ) repre-
sented by (D,H) on a saturatedmetrized complex C = (Γ, {Cp}p∈Γ) is diagrammatic
if D and H are compatible and the local diagrams induced by H form a global dia-
gram. In addition, if the global diagram induced by (D,H) is solvable, then we say
that (D,H) is solvable.

2.6 Intrinsic Global Compatibility Conditions

In general, the extra condition in the deûnition of a (diagrammatic) limit g1
d over that

of a (diagrammatic) pre-limit g1
d represented by (D,H)doesnot guarantee solvability

(see the example in §5.1). However, if (D,H) is smoothable, then it must be solvable
(see_eorem 2.6).

On the other hand, solvability is only a necessary condition for (D,H) being
smoothable. In particular, it does not fully utilize information in Hp . In order to
determine the smoothability of (D,H), we will construct the bifurcation tree B and
the natural surjection πB∶ Γ → B from a solution to the characteristic equation and
introduce the intrinsic global compatibility conditions which are compatibility con-
ditions between Hp ’s and themap πB.

Let ρ be a rational function on Γ with everywhere nonzero slopes. For a point p in
Γ, recall that TanΓ(p) is the set of tangent directions emanating from p. By Tanρ+

Γ (p),
we denote the set of tangent directions in TanΓ(p), where ρ locally increases. We
canonically associate ρ with a pair (B, πB), whereB is ametric tree called the bifur-
cation tree with respect to ρ, and πB∶ Γ → B is a canonical projection from Γ onto B

(see details of the construction in §4.1). In addition,B has a distinguished point called
the root. Moreover, πB induces a push forwardmap πB∗ from the tangent directions
at all points in Γ to the tangent directions at all points in B. More precisely, if we let
Tan+B(x) be the set of forward tangent directions at x ∈ B (meaning that the distance
function from the root increases along these directions), then by the construction in
Section 4.1, we have πB∗(t) ∈ Tan+B(πB(p)) for all p ∈ Γ and t ∈ Tanρ+

Γ (p).
Using the above notions, we formulate the intrinsic global compatibility condi-

tions. For a solvable (D,H)with a solution ρ, letB be the bifurcation tree and let πB

be the corresponding projection from Γ onto B.

Deûnition 2.11 A collection of non-constant rational functions G = {gp}p∈Γ ∈ H
is called admissible if it has one of the following equivalent properties.
● _ere is a function η∶∐x∈B Tan+B(x)→ κ such that G ○Red(t) = η ○ πB∗(t) for all

t ∈∐p∈Γ Tanρ+
Γ (p).

● For each pair of tangent directions t1 ∈ Tanρ+
Γ (p1) and t2 ∈ Tanρ+

Γ (p2) such that
πB(p1) = πB(p2) and πB∗(t1) = πB∗(t2), we have

gp1(redp1(t1)) = gp2(redp2(t2)).
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We say that (D,H) satisûes the intrinsic global compatibility conditions ifH contains
an admissible collection of non-constant rational functions.

2.7 Finite Verification of Intrinsic Global Compatibility Conditions

In this section, we will show that the intrinsic global compatibility conditions can
be veriûed in ûnitely many steps, which makes _eorem 2.6 an eòective smoothing
criterion.
A point p ∈ Γ is called an ordinary point of ρ if its valence is two, the slopes of ρ

at p in the two tangent directions have the same magnitude and opposite signs, and
the curve Cp has genus 0. Denote the set of ordinary points by Oρ . _e points in
Eρ ∶= Γ ∖ Oρ and the values in the image of ρ restricted to Eρ are called exceptional
points and exceptional values of ρ, respectively. Note that Eρ is a ûnite set.

_e intrinsic global compatibility conditions are ûnitely veriûable since the veri-
ûcation can be restricted to the set Eρ of exceptional points, which is ûnite. _is is
because for any ordinary point p ∈ Oρ , there is only one forward tangent direction t
in Tanρ+

Γ (p), and by Lemma 2.12we can always ûnd some non-constant gp ∈ Hp such
that gp(redp(t)) = c for whatever desirable c ∈ κ.

Lemma 2.12 Let C be a curve over κ and H the linear subspace of the function ûeld
of C spanned by {1, f }, where f is a non-constant rational function on C.
(i) Suppose u is a point on C that is not a pole of f . _en for any value c ∈ κ, the

space of all rational functions in H taking value c at the point u is a line in H.
(ii) Suppose u1 and u2 are points on C that are not poles of f and f (u1) /= f (u2).

_en for any distinct values c1 , c2 ∈ κ, we can always ûnd a unique non-constant
g ∈ H such that g(u1) = c1 and g(u2) = c2.

Proof All rational functions in g ∈ H can be expressed as a linear combination of 1
and f , i.e., g = α + β f ∈ H for some α, β ∈ κ. For (i), the space {g ∈ H ∣ g(u) = c} =
{α + β f ∣ α + β f (u) = c is a line in H. For (ii), the linear equations α + β f (u1) = c1
and α + β f (u2) = c2 have a unique solution for α and β.

More accurately, we have the following algorithm to determinewhether (D,H) is
smoothable (see also Example 5.5).

Algorithm 2.13 Input: A diagrammatic pre-limit g1
d represented by (D,H).

Output:Whether (D,H) is smoothable.

1 Determine whether (D,H) is solvable. If not, then (D,H) is not smoothable. If
yes, let Eρ be the set of exceptional points.

2 Fix a basis {1, fp} of Hp for all exceptional points p ∈ Eρ and consider a collection
of ûnitely many variables {αp , βp}p∈Eρ .

3 For each pair (t1 , t2) such that t1 ∈ Tanρ+
Γ (p1), t2 ∈ Tanρ+

Γ (p2), p1 , p2 ∈ Eρ ,
πB(p1) = πB(p2), and πB∗(t1) = πB∗(t2), add a linear restriction

αp1 + fp1(redp1(t1))βp1 = αp2 + fp2(redp2(t2))βp2 .
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4 (D,H) satisûes the intrinsic global compatibility conditions and thus is smooth-
able if and only if there exists a solution for {αp , βp}p∈Eρ satisfying the linear re-
strictions in (3) and βp /= 0 for all p ∈ Eρ . In particular, in the case {αp , βp}p∈Eρ is
a solution. If we let gp = αp + βp fp for p ∈ Eρ and gp = fp for p ∈ Oρ , then {gp}p∈Γ
is admissible.

3 Morphisms of Saturated Metrized Complexes and Their Relations
to Smoothability

In this section, we give precise deûnitions of pseudo-harmonic morphisms and har-
monic morphisms of saturated metrized complexes and smoothability of a pre-limit
g1
d (Deûnition 3.8) and study their close relations to smoothable limit g1

ds (§3.3). We
use notions from the theory of Berkovich analytic spaceswith explanations inAppen-
dix A. _e reader is urged to use references [6, 8] with an elaborate treatment of this
analytical construction.

3.1 Pseudo-harmonic Morphisms and Harmonic Morphisms

We give a natural extension of the notion of harmonic morphism of metrized com-
plexes from [4, 5] to saturatedmetrized complexes. We start with the notion of pseu-
do-harmonicmorphism of saturatedmetrized complexes.

Let C and C′ be saturatedmetrized complexes. _e underlying metric graphs of C
and C′ are Γ and Γ′ respectively, and the associated curves of C and C′ are {Cp}p∈Γ
and {C′q}q∈Γ′ , respectively.

Deûnition 3.1 A pseudo-harmonicmorphism between C and C′ consists of the data
{ϕΓ , {ϕp}p∈Γ}, where ϕΓ ∶ Γ → Γ′ is a continuous ûnite surjective piecewise-linear
map with integral slopes (that is called a pseudo-harmonic morphism between Γ and
Γ′) and ϕp ∶Cp → C′ϕΓ(p) is a ûnite morphism of curves that satisûes the following
compatibility conditions.
● For all p ∈ Γ, two tangentdirections t1 , t2 ∈ TanΓ(p) aremapped to the same tangent
direction t′ ∈ TanΓ′(ϕΓ(p)) by the induced map of ϕΓ if and only if the marked
points corresponding to t1 and t2 are mapped to the marked point corresponding
to the tangent direction t′ by ϕp .

● For all p ∈ Γ and all tangent directions t ∈ TanΓ(p), the expansion factor dt(ϕΓ) of
ϕΓ along t coincides with the ramiûcation index of ϕp at the marked point corre-
sponding to the tangent direction t. Here the expansion factor dt(ϕΓ) is the abso-
lute value of the slope of ϕΓ along t, i.e., the ratio of the length between ϕΓ(p) and
ϕΓ(q) over the length between p and q, where q is near p in the direction t.

Deûnition 3.2 A pseudo-harmonic morphism {ϕΓ , {ϕp}p∈Γ} between saturated
metrized complexes C and C′ is called a harmonic morphism at a point p ∈ Γ if ϕΓ is
harmonic at p and the degree of ϕΓ at p ∈ Γ is the same as the degree of ϕp . More
explicitly, we say ϕΓ is harmonic at p if it is a pseudo-harmonicmorphism ofmetric
graphs satisfying the following balancing condition: for any tangent direction t′ ∈
TanΓ′(ϕ(p)), the sum of the expansion factors dt(ϕΓ) over all tangent directions t in
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TanΓ(p) that map to t′, i.e., the integer

∑
t∈TanΓ(p)

t↦t′

dt(ϕΓ),

is independent of t′; it is called the degree of ϕΓ at q.
We say ϕΓ is a harmonic morphism of metric graphs if ϕΓ is harmonic at each

p ∈ Γ, and {ϕΓ , {ϕp}p∈Γ} is a harmonic morphism of saturated metrized complexes
if {ϕΓ , {ϕp}p∈Γ} is harmonic at each p ∈ Γ.

Remark 3.3 More precisely, our notion of harmonicmorphisms of saturatedmet-
rized complexes corresponds to the notion of ûnite harmonicmorphisms ofmetrized
complexes [5].

_e notion of harmonicmorphism allows us to deûne the notion of isomorphism
of saturated metrized complexes. Two saturated metrized complexes C1 and C2 are
isomorphic if there is a harmonicmorphism Cϕ1∶C1 → C2 and a harmonicmorphism
Cϕ2∶C2 → C1 such that Cϕ2 ○ Cϕ1 and Cϕ1 ○ Cϕ2 are identity maps on C1 and C2,
respectively.

_e following theorem summarizes the li�ing results of saturated metrized com-
plexes that is a direct corollary of the li�ing theorems for metrized complexes in [5].
See Appendix A.1 for the association of a saturatedmetrized complex with a skeleton
of a Berkovich analytic curve.

_eorem 3.4 We have the following li�ing properties for saturated metrized com-
plexes and harmonicmorphisms of saturatedmetrized complexes.
(i) Let C be a saturated metrized complex of curves over κ. _ere exists a smooth

curve X/K and a skeleton Σ of the Berkovich analytiûcation Xan of X such that C
is isomorphic to the associated saturatedmetrized complex of Σ.

(ii) If Cϕ∶C → C′ is a harmonicmorphism of saturatedmetrized complexes where C′

is isomorphic to the saturated metrized complex associated with a skeleton of the
Berkovich analytiûcation X′ an of a smooth curve X′/K, then there exists a ûnite
morphism ϕ∶X → X′ of curves overK such that C is isomorphic to the associated
saturatedmetrized complex of a skeleton of Xan and ϕ induces Cϕ.

Proof For part (i), we can choose a vertex set V of the underlying metric graph Γ
of C such that the curves associated with points in Σ ∖ V are all projective lines over
κ with two marked points. Let C0 be the metrized complex derived from restricting
C to V (Remark 2.2). We can li� C0 to a smooth curve X over K with skeleton Σ by
the li�ing theorem ofmetrized complexes. It is then straightforward to verify that C
is isomorphic to the associated saturatedmetrized complex of Σ.
For part (ii), we choose vertex sets of C and C′ ûne enough to derive metrized

complexes C0 and C′0, respectively, such that the harmonicmorphism Cϕ of saturated
metrized complex can be restricted to harmonicmorphismCϕ0∶C0 → C′0 ofmetrized
complexes. By the li�ing theorem of harmonicmorphism ofmetrized complexes, we
can li� Cϕ0 to a ûnitemorphism ϕ∶X → X′. _en Cϕ is induced by ϕ.
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_e rest of this subsection contains thenotion of pullback of aharmonicmorphism
and the notion of modiûcation of saturated metrized complex. _is will be used in
the proof of the smoothing criterion (§6).

Remark 3.5 (Pullback divisor and pullback function of a harmonicmorphism) Let
Cϕ = (ϕΓ , {ϕp}p∈Γ) be a harmonic morphism between saturated metrized com-
plexes C and C′ whose underlying metric graphs are Γ and Γ′, respectively. Let p′

be a point in Γ′ and u′ be a point in the associated curve C′p′ of p′ in C′. Let Eu′

be the degree one eòective divisor on C′ whose only supporting point is u′. _en
we can naturally associate a pullback divisor Cϕ∗(Eu′) ∈ Div(C) of Eu′ deûned as
follows: (1) the tropical part of Cϕ∗(Eu′) is the pullback divisor ϕ∗Γ((p′)) ∈ Div(Γ)
of the divisor (p′) ∈ Div(Γ′), (2) the Cp-part of Cϕ∗(Eu′) is the pullback divisor
ϕ∗p((u′)) ∈ Div(Cp) of the divisor (u′) ∈ Div(C′p′) if p ∈ ϕ−1

Γ (p′), and (3) theCp-part
ofCϕ∗(Eu′) is 0 if p ∉ ϕ−1

Γ (p′). Note that the properties ofharmonicmorphisms guar-
antee that Cϕ∗(Eu′) is a well-deûned divisor on C. We may sometimes also simply
refer to the pullback divisor of Eu′ as the pullback divisor of the point u′. Since we
can formally write Eu′ = (u′) (Remark 2.4), we can also formally write

Cϕ∗((u′)) = ∑
p∈ϕ−1

Γ (p′)
ϕ∗p((u′)).

Moreover, by letting Cϕ∗ preserve linear combinations, we can naturally associate a
pullback divisor Cϕ∗(D′) on C with each divisors D′ on C′.

On the other hand, if f′ = ( f ′Γ′ , { f ′p′}p′∈Γ′) is a rational function on C′, thenwe can
also pullback f′ to a rational function Cϕ∗(f′) on C in a natural way: the tropical part
of Cϕ∗(f′) is the pullback function ϕ∗Γ( f ′Γ′) of f ′Γ′ , and the Cp-part of Cϕ∗(f′) is the
pullback function ϕ∗p( f ′ϕΓ(p)) of the rational function f ′ϕΓ(p). It is straightforward to
verify that the principal divisor associatedwith the pullback function of f′ is the same
as the pullback divisor of the principal divisor associated to f′.

A metric graph Γmod is called a modiûcation of a metric graph Γ if Γ is isometric
to a subgraph of Γmod and the genus of Γmod is the same as the genus of Γ.
A saturatedmetrized complexCmod is called amodiûcation of a saturatedmetrized

complexC if (1) themetric graph Γmod underlyingCmod is amodiûcation of themetric
graph Γ underlying C, (2) g(Cmod) = g(C), and (3) for each point p ∈ Γ, when p is
also considered as a point in Γmod, the curve associated with p in C is identical to the
curve associated with p in Cmod and the reduction map of C at p is identical to the
reduction map of Cmod at p restricted to TanΓ(p) (note that in this setting we have
TanΓmod(p) ⊇ TanΓ(p)).

Remark 3.6 If Cmod is a modiûcation of C as saturated metrized complexes with
underlying metric graphs Γmod and Γ, respectively then by the retraction map from
Γmod to Γ, a divisor on Γmod also naturally retracts to a unique divisor on Γ. In addi-
tion, a divisor on Cmod naturally retracts to a divisor on C and any specialization map
of divisors factors through the retraction map of divisors.
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3.2 Smoothability

_e following theorem is the analogue of the specialization theorem for saturated
metrized complexes [3,_eorem 5.9].

In Appendix A, we show that for a smooth curve X/K, we can associate a satu-
ratedmetrized complex C(Σ) with a Berkovich skeleton Σ of Xan, and there exists a
specialization map τ∗ that takes a divisor on X to a divisor on C(Σ) and a reduction
map that takes a rational function on X to a rational function on C(Σ).

_eorem 3.7 For any gr
d on X represented by the pair (D,H),whereH is an (r+1)-di-

mensional linear space of rational functions on X, the data (τ∗(D), {Hp}p∈Γ), where
Hp is the image of H under the reduction map at p, is a limit gr

d on C(Σ).

Proof By Lemma A.4, the dimension of the space H is preserved by the specializa-
tionmap. From Lemma A.3,we know that for any eòective divisor E = (EΓ , {Ep}p∈Γ)
such that Ep has support in Sp for every p ∈ Γ, there exists an eòective divisor E on
X such that τ∗(E) = E. Since (D,H) represents a gr

d on X, there must be a rational
function f ∈ H such that D − E + div( f ) ≥ 0. We apply the specialization map to
this inequality. Using the property that the specialization map is a homomorphism
between divisor groups that preserves eòective divisors, combinedwith_eoremA.5,
we conclude that τ∗(D) − E + div(f) ≥ 0.

_e following deûnition of smoothability of a pre-limit (or limit) gr
d represented

by (D,H) accounts for whether (D,H) can be “li�ed” to some gr
d represented by

(D,H).

Deûnition 3.8 A pre-limit gr
d (respectively, a limit gr

d ) represented by (D,H) on a
saturatedmetrized complex C is said to be smoothable if there exists a smooth proper
curve X over K and a skeleton Σ of the Berkovich analytiûcation Xan of X such that
C is isomorphic to the saturatedmetrized complex associated with Σ and there exists
a gr

d on X that is represented by (D,H) such that the associated pre-limit gr
d (respec-

tively, a limit gr
d ) on C is represented by (D,H).

Remark 3.9 Since K is a large ûeld with value group R, we have no restrictions
on the edge lengths of the underlying metric graph of C, and the above deûnition of
smoothability is in themost general form.

Remark 3.10 _eorem 3.7 actually tells us that we do not need to distinguish the
notion of a smoothable pre-limit linear series and the notion of a smoothable limit
linear series. _e extra restriction on limit linear series over pre-limit linear series is
guaranteed by smoothability.

3.3 Smoothable Pre-Limit g1
d and Harmonic Morphisms

Let K be any algebraically closed ûeld. Let H be a two-dimensional linear space of
rational functions on a smooth proper curve X over K. Assume constant functions
are contained in H. _en all nonconstant rational functions in H have the same poles
and same order on the poles. We say the degree ofH is the degree of any nonconstant
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function inH. _erefore,H deûnes amorphism ϕ∶X → P1
K of the same degree,where

P1
K has a marked point ∞ such that all nonconstant rational functions f in H factor

through ϕ via a degree one rational function on P1
K such that all poles of f map to∞

inP1
K . Conversely, given amorphism ϕ∶X → P1

K ,whereP1
K has amarked point∞,we

know that the linear space L((∞)) associated with the divisor (∞) is a degree one
two-dimensional linear space of rational functions on P1

K that pulls back to a two-
dimensional linear space H of rational functions on X by ϕ and has the same degree
as ϕ. Note that L((∞)) contains constant functions on P1

K and H contains constant
functions on X.

Suppose C(T) is a genus zero-saturatedmetrized complex over κ with underlying
metric tree T . _en any two distinct eòective divisors on C(T) diòer by a principal
divisor associatedwith a degree one rational function on C(T). Moreover, by embed-
ding T isometrically into the analytiûcation of P1

K and using the li�ing theorem (_e-
orem 3.4),wemay consider T as a skeleton ofP1

K whose associated saturatedmetrized
complex is naturally isomorphic to C(T). In addition, since C(T) is of genus zero,
all divisors and rational functions on C(T) are li�able to P1

K with linear equivalence
respected.

Now let C be a saturatedmetrized complex with underlying metric graph Γ.

Lemma 3.11 A smoothable pre-limit gr
d on C is reûned limit gr

d .

Proof A smoothable pre-limit gr
d is a limit gr

d by _eorem 3.7. We show that a
smoothable limit gr

d satisûes the two properties of reûned limit gr
d . For the ûrst prop-

erty of reûned limit g1
d , we note that the constant function is contained in H where

(D,H) is any smoothing of the limit gr
d , and it follows from the Poincaré–Lelong

Formula (_eorem A.5). Using the characterization of the image of the specializa-
tion map obtained in Lemma A.3, we deduce that a smoothable limit gr

d satisûes the
second property of a reûned limit gr

d .

Remark 3.12 For a smoothable pre-limit g1
d represented by (D,H) on C, wemust

haveD andH compatible with each other.

_eorem 3.13 A pre-limit g1
d represented by (D,H) on C is smoothable if and only

if there exists amodiûcation Cmod of C and a harmonicmorphism

Cϕmod = (ϕΓmod , {ϕp}p∈Γmod)

from Cmod to a genus zero saturatedmetrized complex C(T) such that
(i) D is the retract onto C of the pullback divisor on Cmod by Cϕmod over a degree one

eòective divisor (u′) on C(T),
(ii) for each p ∈ Γ, if gp is the Cp-part of the pullback function of a rational function

on C(T) of degree ⩽ 1 with only one possible pole at u′, then gp ∈ Hp .

Proof First, by Lemma 3.11 and Remark 3.12, we can assume that (D,H) is reûned,
and let us ûrst assume (D,H) is base-point free.

If (D,H) is smoothable, there exists a smooth proper curve X over K and a
skeleton Σ(Xan ,V) of X such that the saturated metrized complex associated with
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(Xan ,V) is isomorphic to C (we identify them in the following for simplicity of dis-
cussion and thus Γ = Σ(Xan ,V)). Let (D,H) represent a g1

d on X corresponding to
(D,H) that is also base-point free.
Consider amap ϕ∶X → P1

K deûned byH,whereP1
K ismarkedwith a point∞K and

D is the pullback divisor of ϕ over the point∞K of P1
K. _en H is the pullback of the

two-dimensional linear space L((∞K)) associated with (∞K) ∈ Div(P1
K) by ϕ. _e

analytiûcation functor induces amap ϕan∶Xan → P1
Berk, where P1

Berk is the Berkovich
analytiûcation of P1

K. We restrict themap ϕan to the skeleton Γ to obtain a surjective
map ϕΓ ∶ Γ → T , where T is a skeleton of P1

Berk. Let Γmod be (ϕan)−1(T), which is a
skeleton of X such that Γmod ⊇ Γ. Restricting themap ϕan to the skeleton Γmod,we get
a map ϕΓmod ∶ Γmod → T . Let Cmod be a saturated metrized complex associated with
X with skeleton Γmod. Let C(T) be a saturatedmetrized complex associated to P1

Berk
with skeleton T .

_e reduction to Cmod of H and the reduction to C(T) of L((∞K)) deûnemaps
ϕp ∶Cp → C′ϕΓmod (p) for all p ∈ Γmod that respect ϕ. _en the data (ϕΓ , {ϕp}p∈Γ) sat-
isûes the compatibility conditions of a pseudo-harmonicmorphism (Deûnition 3.1),
and the data (ϕΓmod , {ϕp}p∈Γmod) satisûes the conditions of a harmonic morphism
(Deûnition 3.2). Furthermore, the specialization of D to Cmod is the pullback divi-
sorDmod by (ϕΓmod , {ϕp}p∈Γmod) over a degree one eòective divisor, denoted by (u′),
that is the specialization of the divisor (∞K) ∈ Div(P1

K) to C(T). In addition, D is
the specialization of D to C that is also the retract ofDmod to C. On the other hand,
since H is the pullback of L((∞K)) by ϕ and the space of rational functions f′ on
C(T) of degree ⩽ 1 with the only possible pole at u′ is exactly the reduction to C(T)
ofL((∞K)), the Cp-part of the pullback function of f′ must be an element ofHp , the
reduction of H at Cp .
Conversely, suppose that there is aharmonicmorphismCϕmod = (ϕΓ , {ϕp}p∈Γmod)

between saturated metrized complexes Cmod that is a modiûcation of C and a genus
zerometrized complexC(T). LetD be the retract ontoC of the pullback divisorDmod

over a point u′ ∈ C′p′ in C(T) by Cϕmod. For each p′ ∈ T , restricted to the C′p′-parts,
the rational functions f′ on C(T) of degree ⩽ 1 with the only possible pole at u′ make
up a two-dimensional linear space H′

p′ of rational functions on C
′

p′ . Pulling back H′

p′

for all p′ ∈ T by Cϕmod, we obtain two-dimensional linear spaces Hp for all p ∈ Γ. In
this way, we get the data (D,H) whereH = {Hp}.
By the li�ing theorem (_eorem 3.4), we can li� Cϕmod∶Cmod → C(T) to a ûnite

morphism ϕ∶X → P1
K of K-curves. Mark a point in P1

K by∞K whose reduction to
C(T) is u′. LetD be the pullback divisor of ϕ over the point∞K andH be the pullback
of the two-dimensional linear space L((∞K)) associated with the divisor (∞K) by
ϕ. _en the li�ing theorem also guarantees that (D,H) can be smoothed to (D,H).

Suppose that (D,H) has base points u1 , . . . , um with orders α1 , . . . , αm , respec-
tively. _en D′ = D − ∑m

i=1 α i(u i) is base-point free. Since (D,H) is smoothable
if and only if (D′ ,H) is smoothable, the smoothing criterion on (D′ ,H) can be ex-
tended to the smoothing criterion on (D,H).
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4 Bifurcation Trees and Partition Trees

In this section, we investigate in detail the deûnitions and properties of bifurcation
trees and partition trees, which are notions employed in the smoothing criterion.
A solvable diagrammatic pre-limit g1

d has a solution ρ to its characteristic equation
(unique up to addition by a constant function) from which we can canonically con-
struct a rooted metric tree called the bifurcation tree B and a projection πB∶ Γ → B

for ρ (§4.1). Partition trees are derived from the bifurcation tree B by suitably glu-
ing the branches of B (§4.2). In particular, any metric tree T underlying the genus-0
metrized complex C(T) in the commutative diagram in Section 1 must be a partition
tree. _e treatment will be expanded in Sections 5 and 6 leading to the proof of the
smoothing criterion.

4.1 Bifurcation Trees

Let ρ be a rational function on Γwith everywherenonzero slopes and let ρ̂ ∶= ρ−min ρ
be the normalized function of ρ with minimum value zero. For a real number c and
∗ ∈ {≥, ≤, <, >, =}, the set Sρ

∗c is deûned as {p ∈ Γ ∣ ρ(p) ∗ c}. Denote the set of
connected components of Sρ

∗c by Comp(Sρ
∗c).

For each value c ∈ Im ρ, the connected components of Sρ
⩾c are called closed super-

level components at c, and the connected components of Sρ
>c are called open superlevel

components at c.

Remark 4.1 Herewe summarize some facts about closed and open superlevel com-
ponents that are immediate from their deûnition.
● For c ∈ Im ρ, for any open superlevel component β ∈ Comp(Sρ

>c), there exists a
unique closed superlevel component α ∈ Comp(Sρ

⩾c) such that α ⊇ β.
● For each c, c′ ∈ Im ρ such that c′ ⩽ c and α ∈ Comp(Sρ

⩾c), there exists a unique
element α′ ∈ Comp(Sρ

⩾c′) such that α′ ⊇ α.
● Comp(Sρ

⩾minp∈Γ ρ(p)) is a singleton whose element is the wholemetric graph Γ.
● For α1 ∈ Comp(Sρ

⩾c1) and α2 ∈ Comp(Sρ
⩾c2), there exists a largest c3 ∈ Im ρ such

that there exists α3 ∈ Comp(Sρ
⩾c3) with α3 ⊇ α1 ∪ α2. In particular, c3 ⩽ min(c1 , c2)

and α3 is the unique smallest closed superlevel component containing α1 ∪ α2.

We deûne the notion of bifurcation tree associated with ρ as follows (see also Ex-
ample 4.8).

Deûnition 4.2 Consider a rational function ρwith everywhere nonzero slopes. _e
bifurcation treeBwith respect to ρ is a rootedmetric tree constructed in the following
way.
● By abuse of notation, we also useB to represent the set of points ofB. We identify

the set of points of B with the set of all closed superlevel components of ρ by the
bijection ιB∶B→∐c∈Im ρ Comp(Sρ

⩾c).
● We assign a metric structure dB to B. For x1 , x2 ∈ B, let x1 ∨ x2 be the (unique)
element inB such that ιB(x1∨x2) is the smallest closed superlevel component that
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contains ιB(x1) ∪ ιB(x2). Suppose ιB(x1) ∈ Comp(Sρ
⩾c1), ιB(x2) ∈ Comp(Sρ

⩾c2),
and ιB(x1 ∨ x2) ∈ Comp(Sρ

⩾c3). _en we let dB(x1 , x2) = c1 + c2 − 2c3.
● _e root r(B) of B corresponds to the unique closed superlevel component at

minp∈Γ ρ(p), which is the wholemetric graph Γ.

For x ∈ B, if ιB(x) ∈ Comp(Sρ
⩾c), where c ∈ Im ρ, we let dρ

B
(x) = c and d0B(x) =

c −minp∈Γ ρ(p). Note that dρ
B
(r(B)) = minp∈Γ ρ(p), d0B(r(B)) = 0, and d0B(x) =

dB(r(B), x). We now show that B is well deûned as ametric tree with an associated
partial order.

Proposition 4.3 B constructed in Deûnition 4.2 is a rootedmetric tree.

Proof Herewe give a proof following a general construction of parametrized rooted
trees and rooted R-trees as discussed in [7, Appendix B5]. We will show that B can
be constructed as a tree by gluing subsets ofB that are isometric to line segments and
then dB is a well-deûnedmetric on B.

We ûrst note that a partial order can be associated with B, i.e., for two points x
and x′, we say x ⩾ x′ if ιB(x) ⊇ ιB(x′). Clearly dρ

B
(x) ⩽ dρ

B
(x′) if x ⩾ x′. By

Remark 4.1, this partial order is well deûned and it is easy to verify that B is a join-
semilattice under the join operation∨where for any two elements x and x′ inB, x∨x′
corresponds to the smallest closed superlevel component that contains ιB(x)∪ιB(x′)
as in Deûnition 4.2. Note that x ⩾ x′ whenever x ∨ x′ = x, and r(B) is the unique
maximal element. For x1 , x2 ∈ B, suppose that x1 ⩾ x2, which means x1 ∨ x2 = x1. Let
dρ
B
(x1) = c1 and dρ

B
(x2) = c2. Bydeûnition,wehave dB(x1 , x2) = c1+c2−2c1 = c2−c1.

We claim that X = {x ∈ B ∣ x1 ⩾ x ⩾ x2} is isometric to a closed segment of length
c2 − c1. First, note that dρ

B
(x) ∈ [c1 , c2] for any x ∈ X. Now for each c ∈ [c1 , c2],

there exists a unique x ∈ B such that dρ
B
(x) = c and x ⩾ x2, i.e., ιB(x) is the unique

closed superlevel component in Comp(Sρ
⩾c) that contains ιB(x2) (Remark 4.1). On

the other hand, we must have x1 ⩾ x at the same time and thus x ∈ X. _erefore, by
sending c to x,we can deûne a bijection ϕ∶ [c1 , c2]→ X. It remains to show that ϕ is an
isometry. Actually, by an analogous argument as above,we see that for any y1 , y2 ∈ X,
we either have y1 ⩾ y2 or y2 ⩾ y1 and dB(y1 , y2) = d2 − d1 if y1 ⩾ y2 and dρ

B
(y1) = d1

and dρ
B
(y2) = d2. It follows that ϕ is an isometry. Here, we write [x1 , x2] to represent

X as a closed line segment, and let (x1 , x2] = [x1 , x2]∖{x1}, [x1 , x2) = [x1 , x2]∖{x2},
and (x1 , x2) = [x1 , x2] ∖ {x1 , x2}.

Since ρ is a rational function with everywhere nonzero slopes, there are only
ûnitely many points x1 , . . . , xm in Γ at which ρ takes local maximum values. Let

X i ∶= {x ∈ B ∣ x ⩾ x i} for i = 1, . . . ,m.

_en X i = [r(B), x i]. Note that we must have B = ⋃m
i=1 X i . Let us reconstruct B

by gluing X i one by one. First let us glue X1 and X2. Note that x1 ∨ x2 ⩾ x1 , x2, and
thus x1 ∨ x2 ∈ X1 ∩ X2. _is means that X1 ∩ X2 = [r(B), x1 ∨ x2] and X1 ∪ X2 =
[r(B), x1 ∨ x2]∐(x1 ∨ x2 , x1]∐(x1 ∨ x2 , x2]. Note that it follows that X1 ∪ X2 is a
(topological) tree. Let us do this construction in general. Suppose we have derived
X′ = X1 ∪ ⋅ ⋅ ⋅ ∪ X i as a tree already. Consider Y = {x i+1 ∨ x j ∣ j = 1, . . . , i}. Clearly Y
is a subset of X i+1, which means Y is totally ordered. Let y be theminimum element
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of Y . _en X′ ∩ X i+1 = [r(B), y], and X1 ∪ ⋅ ⋅ ⋅ ∪ X i+1 = X′ ∪ X i+1 = X′∐(y, x i+1],
which is also a tree. _us B is a tree.

It remains to show that dB is a metric on the whole tree B. We verify from the
deûnition that for each x1 , x2 ∈ B, dB(x1 , x2) = dB(x1 , x1∨x2)+dB(x2 , x1∨x2). For
each x3 ∈ B, consider x1∨x3 and x2∨x3. Without loss of generality,we can assume: (1)
x1∨x3 > x2∨x3 or (2) x1∨x3 = x2∨x3. For case (1),wehave x1∨x2∨x3 = x1∨x2 = x1∨x3,
and thus

dB(x1 , x2) = dB(x1 , x1 ∨ x2 ∨ x3) + dB(x1 ∨ x2 ∨ x3 , x2 ∨ x3) + dB(x2 ∨ x3 , x2)
⩽ (dB(x1 , x1 ∨ x2 ∨ x3) + dB(x1 ∨ x2 ∨ x3 , x2 ∨ x3) + dB(x2 ∨ x3 , x3))
+ (dB(x2 ∨ x3 , x2) + dB(x2 ∨ x3 , x3))

= dB(x1 , x3) + dB(x2 , x3),
where equality holds if and only if x3 ⩾ x2. For case (2),we have x1∨x2∨x3 = x1∨x3 =
x2 ∨ x3 ⩾ x1 ∨ x2, and thus

dB(x1 , x2) = dB(x1 , x1 ∨ x2) + dB(x2 , x1 ∨ x2)
⩽ (dB(x1 , x1 ∨ x2) + dB(x1 ∨ x2 , x1 ∨ x2 ∨ x3) + dB(x3 , x1 ∨ x2 ∨ x3))
+ (dB(x2 , x1 ∨ x2) + dB(x1 ∨ x2 , x1 ∨ x2 ∨ x3) + dB(x3 , x1 ∨ x2 ∨ x3))

= dB(x1 , x3) + dB(x2 , x3),
where equality holds if and only if x3 = x1 ∨ x2. _erefore, the triangle equality is
satisûed and dB is ametric.

Remark 4.4 In the above proof, note that the leaves ofB other than r(B) are in one-
to-one correspondence with those closed superlevel sets which are singletons, and in
one-to-one correspondence with local maximum points of ρ (which wemay also call
sink points of ρ). Denote the set of leaves of B by Leaf(B). We call a point x of B
with ∣Tan+B(x)∣ ⩾ 2 a bifurcation point ofB and denote the set of bifurcation points by
Bif(B). _en (B)∩Bif(B) = ∅, and Leaf(B)∪Bif(B) is the set of points of valence
other than 2 in B together with r(B). Note that we have either r(B) ∈ Leaf(B) or
r(B) ∈ Bif(B). We call the image of dρ

B
restricted to theminimal vertex set ofB the

set of bifurcation values, denoted by Bif ρ . _en Bif ρ is ûnite and we have Bif ρ ⊆ Eρ ,
where Eρ is the set of exceptional points of ρ.

For a point p in Γ, recall that Tanρ+
Γ (p) is the set of tangent directions in TanΓ(p)

emanating from p where ρ locally increases. Similarly, we let Tanρ−
Γ (p) be the set of

tangent directionswhere ρ locally decreases. _enTanΓ(p) = Tanρ+
Γ (p)∐Tanρ−

Γ (p).
Let T be ametric tree rooted at r(T). For a point x in T,we say a tangent direction

t ∈ TanT(x) is a forward (respectively, backward) tangent direction at x if the distance
function from the root increases (respectively, decreases) along t. Denote byTan+T(x)
(respectively, Tan−T(x)) the set of forward (respectively, backward) tangent directions
at x. Note that Tan−T(x) is empty if x is the root of T and a singleton otherwise.

We statewithout proofs ofLemma 4.5 andLemma 4.6,which follownaturally from
the construction of the bifurcation tree B with respect to ρ. Lemma 4.5 states that ρ
factors through dρ

B
by the canonical projection πB∶ Γ → B. Lemma 4.6 states that
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the set of forward tangent directions on B can be identiûed with the set of all open
superlevel components of ρ.

Lemma 4.5 For p ∈ Γ, there is a unique closed superlevel component α at ρ(p) that
contains p. Sending p to ι−1

B (α), induces a canonical projection πB∶ Γ → B. Moreover,
themap πB is continuous, piecewise-linear, surjective, and satisûes ρ = dρ

B
○ πB.

Lemma 4.6 _ere is a canonical bijection

ι⃗B∶ ∐
x∈B

Tan+B(x)→ ∐
c∈Im ρ

Comp(Sρ
>c).

In particular, Tan+B(x) is in bijection with {β ∈ Comp(Sρ
>d ρ

B
(x)) ∣ β ⊆ ιB(x)}.

Remark 4.7 _e projection πB naturally induces a pushforwardmap

πB∗∶∐
p∈Γ

TanΓ(p)→ ∐
x∈B

TanB(x).

In particular, if t ∈ Tanρ−
Γ (p), then πB∗(t) is the unique element in Tan−B(π(p));

if t ∈ Tanρ+
Γ (p), then πB∗(t) ∈ Tan+B(πB(p)) and more precisely ι⃗B(πB∗(t)) is

the unique open superlevel component of ρ with p on its boundary and t pointing
inwards. Note that πB∗ is surjective.

Example 4.8 In Figure 2, suppose {o1 , o2 , p1 , p2 , p3 , q1 , q2 , q3} is a vertex set of Γ
(upper panel) and all edges have length 1. _en a global diagram on Γ with all multi-
plicities being 1 along directionsmarked by the arrows is solvable andwe suppose a so-
lution is ρwith the corresponding bifurcation treeB and the canonical projection πB.
In particular, as shown by the vertical dashed lines, the point x is the root of the bifur-
cation tree corresponding to the unique closed superlevel set atminp∈Γ(ρ) (thewhole
metric graph Γ), which is also the image of o1 and o2 under πB; y1 = πB(p1), corre-
sponds to the closed superlevel component {p1}; y2 = πB(p2) = πB(p3) corresponds
to the closed superlevel component that is the union of all closed edges connecting p2,
p3, q1, q2, and q3; for i = 1, 2, 3, z i = πB(q i) corresponds to closed superlevel compo-
nent {q i}. Note that z1 ∨ z2 = z1 ∨ z3 = z2 ∨ z3 = y2 and y1 ∨ z1 = y1 ∨ z2 = y1 ∨ z3 = x.
_en for i , j = 1, 2, 3 and i /= j,we have dB(z i , z j) = dB(z i , y2)+dB(z j , y2) = 1+1 = 2
and dB(z i , y1) = dB(z i , x) + dB(y1 , x) = 2 + 1 = 3. In addition, the tangent direc-
tion from y2 to z1 corresponds to the open superlevel component (p2 , q1] ∪ (p3 , q1],
the tangent direction from y2 to z2 corresponds to the open superlevel component
(p2 , q2] ∪ (p3 , q2], and the tangent direction from y2 to z3 corresponds to the open
superlevel component (p2 , q3] ∪ (p3 , q3]. Moreover, Leaf(B) = {y1 , z1 , z2 , z3} and
Bif(B) = {x , y2}.

4.2 Partition Trees

We now generalize the notion of bifurcation trees to objects called partition trees.
Partition trees are the elements in the spaces Λ(1)

D,H, Λ
(2)
D,H, Λ

(3)
D,H, and Λ(4)

D,H treated
in Section 5.
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Figure 2: An illustration of a bifurcation treeB of Γ and the canonical projection πB.

For each rooted metric tree T with root r(T), we can deûne a distance function
d0T ∶T → R that takes a point x ∈ T to the distance between r(T) and x. Note that
this is consistent with the deûnition of d0B, where B is some bifurcation tree B with
respect to ρ introduced in the previous subsection.

Deûnition 4.9 Let ρ∶ Γ → R be a rational function on Γ with everywhere nonzero
slopes. We call (T, πT), or simply T, a partition tree with respect to ρ if T is a rooted
metric tree and πT ∶ Γ → T is a continuous ûnite surjection (ûnitemeans all ûbers are
ûnite) such that ρ̂ = d0T ○ πT , where ρ̂ = ρ −minp∈Γ ρ(p). We let Λρ be the set of all
partition trees with respect to ρ.

Example 4.10 LetB be the bifurcation tree with respect to ρ and πB the canonical
projection from Γ onto B. _en (B, πB) ∈ Λρ , following from Lemma 4.5 directly.

Example 4.11 _e segment Im ρ can be considered as a metric graph with root
minp∈Γ ρ(p). Clearly (Im ρ, ρ) ∈ Λρ .

_e following proposition says that all partition trees can be constructed by gluing
the bifurcation tree properly.

Proposition 4.12 Let ρ∶ Γ → R be a rational function on a metric graph Γ with ev-
erywhere nonzero slopes and let B be the bifurcation tree with respect to ρ. Let ρ̂ =
ρ −minp∈Γ ρ(p). Let T be a rooted metric tree and let πT ∶ Γ → T be a continuous û-
nite surjection. _en (T, πT) ∈ Λρ if and only if there exists a continuous surjection
ΘB

T ∶B→ T such that the following diagram commutes.

https://doi.org/10.4153/CJM-2017-027-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-027-2


652 Y. Luo andM. Manjunath

Γ B T Im ρ̂
πB

πT

ρ̂

ΘB
T

d0B

d0T

Proof If the diagram commutes, then (T, πT) ∈ Λρ by the deûnition of partition
trees. Now suppose (T, πT) ∈ Λρ . _en ρ̂ = d0T ○ πT and we just need to ûnd the
canonical projection ΘB

T from B to T such that πT = ΘB
T ○ πB and d0B = d0T ○ΘB

T .
For a point x ∈ B, let c = d0B(x). Note that ιB(x) ∈ Comp(S ρ̂

⩾c) and by deûnition
of πB, we have π−1

B (x) = ∂ιB(x), where ∂ιB(x) is the set of boundary points of
ιB(x). We claim that for any two points p, q ∈ ∂ιB(x), we have πT(p) = πT(q).
Note that d0T(πT(p)) = d0T(πT(q)) = ρ̂(p) = ρ̂(q) = c, since ρ̂ = d0B ○ πB = d0T ○ πT .
Let Y = {y ∈ T ∣ d0T(y) ⩾ c} and ∂Y = {y ∈ T ∣ d0T(y) = c}. Note that each
connected component of Y has exactly one boundary point in ∂Y , since T is ametric
tree. Clearly πT(p), πT(q) ∈ ∂Y and πT(ιB(x)) ⊆ Y . Since ιB(x) is connected
and πT is continuous, πT(ιB(x)) must be connected, which is only possible when
πT(ιB(x)) is contained in one connected component of Y . _is implies πT(p) =
πT(q).
Deûne ΘB

T (x) to be this point πT(p) = πT(q) ∈ T. _e above argument shows
that ΘB

T is well deûned. _e continuity ofΘB
T and commutativity of the diagram also

naturally follow.

Remark 4.13 Consider the bifurcation tree B and a partition tree T with respect
to ρ. _e canonical projectionΘB

T induces a partition Pc of (dρ
B
)−1(c) for any c ∈ Im ρ

as follows: x1 ∼ x2 in Pc if and only ifΘB
T (x1) = ΘB

T (x2). (See Appendix B for further
discussions.)

Remark 4.14 Like the pushforward πB∗ induced by the canonical projection πB,
we also have the pushforward map πT∗∶∐p∈Γ TanΓ(p) → ∐x∈T TanT(x) such that
(i) if t ∈ Tanρ−

Γ (p), then πT∗(t) is the unique element in Tan−T(πT(p)); (ii) if t ∈
Tanρ+

Γ (p), then πT∗(t) ∈ Tan+T(πT(p)).

Example 4.15 In Figure 3, we show an example of partition tree T based on the
bifurcation treeB constructed in Example 4.8. In particular, T is constructed by glu-
ing edges y2z1 and y2z2 of B (the grey edges) isometrically into edge y′2 y′12 of T. As
a result, πT maps all the edges of Γ connecting p2 and p3 with q1 and q2 to the edge
y′2 y

′
12.
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TB

Γ

πB πT

ΘB
T

Figure 3: An illustration of a projection πT from Γ to a partition tree T.

5 Obstructions of Smoothability and Spaces Λ(1)D,H, Λ(2)D,H, Λ(3)D,H

and Λ(4)D,H of Partition Trees

5.1 An Example of a Non-Solvable Limit g1
d

In this subsection, we will show that the additional restriction on limit g1
d over pre-

limit g1
d does not guarantee solvability by presenting an example of non-solvable

limit g1
d .

Consider the global diagram on a cycle as shown in Figure 4 with multiplicity 1
on each edge. _e metric graph Γ has the lengths: ℓv2 ,v3 = ℓv2 ,v8 , ℓv4 ,v3 = ℓv4 ,v5 ,
ℓv1 ,v5 = ℓv1 ,v7 , and ℓv1 ,v6 = ℓv1 ,v8 . At every point p ∈ Γ the algebraic curve Cp is
a projective line over κ. Let the two outgoing tangent directions to1,1 and to1,2 at v1
be locally equivalent, let the two outgoing tangent directions to3,1 and to3,2 at v3 be in
diòerent local equivalence classes, let the two incoming tangent directions t i2,1 and t i2,2
at v2 be locally equivalent, and let the two incoming tangent directions t i4,1 and t i4,2
at v4 be locally equivalent. For all p ∈ Γ ∖ {v1 , v2 , v3 , v4}, there is only one incoming
tangent direction t ip and one outgoing tangent direction top at p,while t ip and top are in
diòerent local equivalence classes. We verify that this global diagram is not solvable.

On the otherhand, from this globaldiagram,we can construct a diagrammaticpre-
limit g1

d represented by (D,H) in the followingway. Let DΓ = 2(v1)+(v3). Let Dv1 =
(x1,1) + (x1,2), where x1,1 and x1,2 are two distinct non-marked points in Cv1 , Dv3 =
(x3),where x3 is a non-marked point on Cv3 and Dp = 0 for all p ∈ Γ∖{v1 , v3}. Using
the approach shown in Remark 2.5, we can construct Hp conversely using the local
diagrams at p induced from the global diagram. More precisely, let fv1 be a rational
function onCv1 whose associated divisor is (redv1(to1,1))+(redv1(to1,2))−(x1,1)−(x1,2),
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v1

v2

v3

v4

v5
v6

v7

v8

Figure 4: An example of a diagrammatic limit g1
d such that the characteristic equation associated

with the global diagram does not have a solution.

let f (1)v3 be a rational function on Cv3 whose associated divisor is (redv3(to3,1))− (x3),
let f (2)v3 be a rational function on Cv3 whose associated divisor is (redv3(to3,2))− (x3),
let fv2 be a rational function on Cv2 whose associated divisor is

(x2,1) + (x2,2) − (redv2(t i2,1)) − (redv2(t i2,2)),

where x2,1 and x2,2 are twonon-markedpoints inCv2 , and let fv4 be a rational function
onCv4 whose associated divisor is (x4,1)+(x4,2)−(redv4(t i4,1))−(redv4(t i4,2)),where
x4,1 and x4,2 are two non-marked points in Cv4 . For all p ∈ Γ∖{v1 , v2 , v3 , v4}, let fp be
a rational function on Cp whose associated divisor is (redp(top)) − (redp(t ip)). _en
we let Hp be a linear space of rational functions on Cp with a basis {1, fp} for all p ∈ Γ
(for p = v3, we choose fv3 to be either f (1)v3 or f (2)v3 , noting that the rational functions
1, f (1)v3 , and f

(2)
v3 are linear dependent).

We claim that (D,H) constructed this way represents a limit g1
d . To this end, we

must show that for every eòective divisor E = (u, zu) of degree one on the saturated
metrized complex where u ∈ Γ and zu ∈ Cu , there exists a rational function g =
(gΓ , {gp}p∈Γ) such that gp ∈ Hp andD + div(g) − E ≥ 0.

We ûrst specify gΓ . We describe gΓ in terms of a series of chip-ûring moves: (1) if
u lies in [v1 , v8] or [v1 , v6],we can ûre both chips from v1 until one of the chips hits u;
(2) if u lies in [v2 , v8] or [v2 , v3], we ûrst ûre both chips from v1 until one of the chips
hits v8 and then ûre the chip at v3 and v8 simultaneously until one of the chips hits u;
(3) if u lies in [v4 , v5] or [v4 , v3], we ûre ûrst both chips from v1 until a chip hits v5
and then ûre the chips at v3 and v5 simultaneously until one of the chips hits u.

Now let us specify gp . (1) First, let gu = fu − fu(zu). _en gu has the same poles
as fu and has a zero at zu . (2) For all the points p ∈ Γ such that gΓ is locally constant,
we let gp be a constant. (3) If the slope of gΓ along to3,1 is nonzero, let gv3 = f

(1)
v3 . If the

slope of gΓ along to3,2 is nonzero, let gv3 = f
(2)
v3 . (4) For all remaining points p ∈ Γ, we

let gp = fp .
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For this choice of g, we have D − E + div(g) ≥ 0. _erefore, (D,H) represents a
non-solvable limit g1

d and we have the following proposition.

Proposition 5.1 _ere exists a non-smoothable diagrammatic limit g1
d . In particular,

there exists a diagrammatic limit g1
d that is not solvable.

5.2 Four Levels of Obstructions to Pre-limit g1
d Being Smoothable

_e following two subsections are a preparation for the proof of the smoothing crite-
rion in Section 6.

We say a diagrammatic pre-limit g1
d represented by (D,H) satisûes a Level-I re-

striction if it is solvable, and in the followingwewill introduce Level-II, Level-III, and
Level-IV restrictions that form additional obstructions of (D,H) to being smooth-
able.

Now assume that (D,H) is solvable with a solution ρ and corresponding bifurca-
tion tree B. Recall that (D,H) satisûes the intrinsic global compatibility conditions
if and only if H contains an admissible collection {gp}p∈Γ of non-constant rational
functions gp ∈ Hp .

Deûnition 5.2 A bifurcation partition system {P⃗x}x∈B on the bifurcation tree B is
a collection of partitions P⃗x of Tan+B(x) for all points x ∈ B.

Note that there are only ûnitely many possible bifurcation partition systems on
B, since Tan+B(x) is a singleton for all but ûnitely many points x ∈ B, and for the
exceptions, P⃗x is a partition of a ûnite set.

Remark 5.3 Suppose H contains an admissible collection G = {gp}p∈Γ of non-
constant rational functions gp ∈ Hp (Deûnition 2.11). _is means that for each x ∈ B,
if Tan+B(x) = {t1 , . . . , tn}, then we can assign values c1 , . . . , cn ∈ κ to t1 , . . . , tn , re-
spectively, such thatG○Red(t) = c i for i = 1, . . . , n and each t ∈ π−1

B∗(t i). Canonically,
we can associate a bifurcation partition system {P⃗x}x∈B with G by letting t i and t j be
equivalent in P⃗x if and only if c i = c j . Moreover,we say {P⃗x}x∈B is globally compatible
with H (or (D,H) even if this compatibility does not depend on D) if H contains
an admissible G = {gp}p∈Γ such that {P⃗x}x∈B is exactly the bifurcation partition sys-
tem associatedwithG. (In this case, to bemore speciûc,we sometimes say {P⃗x}x∈B is
globally compatiblewithH viaG.) In addition, the intrinsic global compatibility con-
ditions on (D,H) can be restated equivalently as that there exists some bifurcation
partition system globally compatible with (D,H).

We deûne Level-II, Level-III, and Level-IV restrictions as follows.

(1) We say that a bifurcation partition system {P⃗x}x∈B is Level-II compatible (re-
spectively, Level-III compatible) with (D,H) if it satisûes the following property: for
each point p ∈ Γ, the tangent directions t1 and t2 in Tan+Γ(p) are equivalent in the
local diagram at p (we also say t1 and t2 are locally equivalent), if (respectively, if and
only if) πB∗(t1) and πB∗(t2) are equivalent in P⃗πB(p).
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(2) We also call a bifurcation partition system Level-IV compatible with (D,H)
if it is globally compatible with (D,H).

(3) We say that (D,H) satisûes Level-II (respectively, Level-III and Level-IV) re-
strictions if there exists a bifurcation partition system which is Level-II (respectively,
Level-III and Level-IV) compatible with (D,H). Note that by the smoothing crite-
rion, _eorem 2.6 actually means that (D,H) is smoothable if and only if Level-IV
compatibility is satisûed.

_e motivation for introducing the two intermediate compatibility levels (Level-
II and Level-III) will be addressed in more detail in our subsequent work. Note that
Level-II and Level-III compatibilities can be determined purely combinatorially given
the local diagrams induced byH.

We denote the set of all bifurcation partition systems on B by BP(1)
D,H, and the

sets of bifurcation partition systems Level-II, Level-III, and Level-IV compatiblewith
(D,H) by BP(2)

D,H, BP
(3)
D,H and BP(4)

D,H, respectively.

Lemma 5.4 Level-IV⇒ Level-III⇒ Level-II⇒ Level-I and BP(1)
D,H ⊇ BP(2)

D,H ⊇
BP(3)

D,H ⊇ BP(4)
D,H.

Proof To see this, note that we only need to verify thatLevel-IV implies Level-III.
Note that an equivalent way to say that a bifurcation partition system {P⃗x}x∈B is
globally (Level-IV) compatible with H via {gp}p∈Γ ∈ H is as follows: for each pair
of tangent directions t1 ∈ Tanρ+

Γ (p1) and t2 ∈ Tanρ+
Γ (p2) such that πB(p1) = πB(p2),

we have the equivalence of the statements (1) gp1(redp1(t1)) = gp2(redp2(t2)), and
(2) πB∗(t1) and πB∗(t2) are in the same equivalence class in P⃗x ,where x = πB(p1) =
πB(p2). _en, by specializing to cases p1 = p2, we conclude that Level-IV implies
Level-III.

Example 5.5 Consider a saturatedmetrized complex C = (Γ, {Cp}p∈Γ), where the
underlying metric graph Γ is as shown in Figure 2 and all Cp are projective lines over
C. Suppose that (D,H) is a solvable diagrammatic limit g1

d with solution ρ, where
the corresponding bifurcation tree B and the canonical projection πB∶ Γ → B are as
in Figure 2 (see Example 4.8). For each p ∈ Γ, ûx a basis {1, fp} of Hp where fp is a
non-constant rational function.

Here we apply Algorithm 2.13 to check the smoothability of (D,H), i.e., whether
H contains an admissible G = {gp}p∈Γ . Note that by the algorithm, we only need to
check the ûnite set of exceptional points (see deûnition in §2.7), which in this case is
the vertex set, i.e., Eρ = {o1 , o2 , p1 , p2 , p3 , q1 , q2 , q3}. For adjacent p, q ∈ Eρ , we let
tpq represent the tangent direction in TanΓ(p) emanating from p towards q and then
redp(tpq) is themarked point on Cp associated with tpq . Note that

x = πB(o1) = πB(o2), y1 = πB(p1), y2 = πB(p2) = πB(p3),
z1 = πB(q1), z2 = πB(q2), z3 = πB(q3),

https://doi.org/10.4153/CJM-2017-027-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-027-2


Smoothing of Limit Linear Series of Rank One 657

and

tx y1 = πB∗(to1 p1) = πB∗(to2 p1), tx y2 = πB∗(to2 p2) = πB∗(to2 p3),
ty2z1 = πB∗(tp2q1) = πB∗(tp3q1), ty2z2 = πB∗(tp2q2) = πB∗(tp3q2),
ty2z3 = πB∗(tp2q3) = πB∗(tp3q3).

Consider a collection of ûnitely many variables {αp , βp}p∈Eρ . _en the algorithm
reduces the intrinsic global compatibility conditions to the solvability of the following
linear equations of variables {αp , βp}p∈Eρ .

αo1 + fo1(redo1(to1 p1))βo1 = αo2 + fo2(redo2(to2 p1))βo2 ,
fo2(redo2(to2 p2)) = fo2(redo2(to2 p3)),

αp2 + fp2(redp2(tp2q1))βp2 = αp3 + fp3(redp3(tp3q1))βp3 ,
αp2 + fp2(redp2(tp2q2))βp2 = αp3 + fp3(redp3(tp3q2))βp3

αp2 + fp2(redp2(tp2q3))βp2 = αp3 + fp3(redp3(tp3q3))βp3 .

Now suppose

fo1(redo1(to1 p1)) = 1,
fo2(redo2(to2 p1)) = 2, fo2(redo2(to2 p2)) = fo2(redo2(to2 p3)) = 1,
fp2(redp2(tp2q1)) = fp2(redp2(tp2q2)) = 1, fp2(redp2(tp2q3)) = −2,
fp3(redp3(tp3q1)) = fp3(redp3(tp3q2)) = 2, fp3(redp3(tp3q3)) = −1.

_en the above system of linear equations is solvable, and thus (D,H) is smoothable
by Algorithm 2.13. In particular, we have a solution αo1 = 0, βo1 = 2, αo2 = 0, βo2 = 1,
αp2 = 2, βp2 = 1, αp3 = 1, βp3 = 1. _erefore, if we let go1 = 2 fo1 , go2 = fo2 , gp1 = fp1 ,
gp2 = 2 + fp2 , gp3 = 1 + fp3 , gq1 = fq1 , gq2 = fq2 , gq3 = fq3 , and gp = fp for all p ∉ Eρ ,
then G = {gp}p∈Γ is admissible.

Moreover, let P be the unique bifurcation partition system that has a partition
{{tx y1}, {tx y2}} at x and {{ty2z1 , ty2z2}, {ty2z3}} at y2, and letP′ be the unique bifur-
cation partition system that has a partition {{tx y1}, {tx y2}} at x and

{{ty2z1}, {ty2z2}, {ty2z3}}

at y2. _enP is the bifurcation partition system associatedwithG, BP(3)
D,H = BP(4)

D,H =
{P}, and BP(2)

D,H = {P,Q}.

5.3 The Spaces Λ(1)
D,H, Λ(2)

D,H, Λ(3)
D,H, and Λ(4)

D,H of Partition Trees

Suppose that (D,H) represents a solvable diagrammatic pre-limit g1
d with a solution

ρ and the corresponding bifurcation treeB. Aswehave deûned four levels of compati-
bilities between bifurcation partition systems and (D,H) in the previous subsection,
here we deûne four levels of compatibilities between bifurcation trees and (D,H),
and construct the spaces Λ(1)

D,H, Λ
(2)
D,H, Λ

(3)
D,H, and Λ(4)

D,H of partition trees as fol-
lows.
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(1) Let Λ(1)
D,H ∶= Λρ . (We let Λ(1)

D,H = ∅ when (D,H) is non-solvable.) In other
words, Λ(1)

D,H is the space of all possible partition trees with respect to a solution
ρ of the global diagram deûned by (D,H).

(2) We say that a partition tree T is Level-II (respectively, Level-III) compatible with
(D,H) if for every point p ∈ Γ and each pair of tangent directions t1 , t2 ∈
Tan+Γ(p), we have that t1 is locally equivalent to t2 if (respectively, if and only
if) πT∗(t1) = πT∗(t2).

(3) We say that a partition tree T is globally (or Level-IV) compatible with (D,H)
if there exists a collection G = {gp}p∈Γ of non-constant functions gp ∈ Hp such
that one of the following equivalent statements are satisûed.
(a) _ere is a function ξ∶∐x∈T Tan+T(x)→ κ such that ξ, restricted toTan+T(x), is

injective for each x ∈ T, andG○Red(t) = ξ○πT∗(t) for all t ∈∐p∈Γ Tanρ+
Γ (p).

(b) Whenever t1 ∈ Tanρ+
Γ (p1) and t2 ∈ Tanρ+

Γ (p2), where πT(p1) = πT(p2), we
have gp1(redp1(t1)) = gp2(redp1(t2)) if and only if πT∗(t1) = πT∗(t2).

In this sense, to be more speciûc, we also say that T and (D,H) are globally
compatible via {gp}p∈Γ .

(4) Denote by Λ(2)
D,H, Λ

(3)
D,H and Λ(4)

D,H the spaces of partition trees Level-II, Level-
III, and Level-IV compatible with (D,H), respectively.

(5) As in Lemma 5.4, one can easily see that Λ(1)
D,H ⊇ Λ(2)

D,H ⊇ Λ(3)
D,H ⊇ Λ(4)

D,H. An
example of Λ(1)

D,H, Λ
(2)
D,H, Λ

(3)
D,H, and Λ(4)

D,H for simplemetric graphs is shown in
Example B.4 in the Appendix.

_ere is a natural map ϕΛ ∶Λ(1)
D,H → BP(1)

D,H such that for every x ∈ B, every two
forward tangent directions t1 and t2 in Tan+B(x) are equivalent in ϕΛ(T) if and only
if they are pushed forward to the same tangent direction in Tan+T(ΘB

T (x)) by ΘB
T .

On the other hand, given a bifurcation partition system {P⃗x}x∈B, we want to con-
struct a partition tree. For a small enough δ (precisely, we can let δ be less than the
minimal distance between two distinct exceptional values of ρ), we derive ametric in
the followingway: for each point x ∈ Bif(B) and each equivalence class E ⊆ Tan+B(x)
in P⃗x ofTan+B(x),we isometrically glue all the segments of length δ with one endpoint
being x and the other being in a forward tangent direction ofB in E. _en it can eas-
ily be seen that T is a partition tree induced by the gluing and ϕΛ(T) = {P⃗x}x∈B. We
call the partition tree constructed in this way the δ-glued partition tree with respect
to {P⃗x}x∈B. An example is shown in Figure 5, where a δ-glued partition tree in the
right panel is derived from the bifurcation tree in Figure 2 and a bifurcation partition
system in the le� panel.

Proposition 5.6 ϕΛ is a surjection from Λ(1)
D,H to BP(1)

D,H. In addition, the images of
ϕΛ restricted toΛ(2)

D,H,Λ
(3)
D,H, andΛ(4)

D,H areBP
(2)
D,H, BP

(3)
D,H, andBP

(4)
D,H, respectively.

Proof _e surjectivity of ϕΛ follows from the construction of the δ-glued partition
tree with respect to any bifurcation partition system.

Now let us show that the image of ϕΛ restricted to Λ(2)
D,H is contained in BP(2)

D,H,
and the image of ϕΛ restricted to Λ(3)

D,H is contained in BP(3)
D,H. Suppose T is Level-II
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Figure 5: An illustration of a δ-glued partition tree.

(respectively, Level-III) compatible with (D,H). For all p ∈ Γ and each pair t1 , t2 ∈
Tanρ+

Γ (p), we have πB∗(t1), πB∗(t2) ∈ Tan+B(πB(p)). Also, πB∗(t1) ∼ πB∗(t2) in
ϕΛ(T) if and only if πT∗(t1) = πT∗(t2), since πT factors through πB. _erefore, we
derive that t1 and t2 in Tanρ+

Γ (p) are locally equivalent if (respectively, if and only
if) πB∗(t1) ∼ πB∗(t2) in ϕΛ(T). _erefore, ϕΛ(T) is a bifurcation partition system
Level-II (respectively, Level-III) compatible with (D,H).

Nextwewill show that the image of ϕΛ restricted to Λ(4)
D,H is contained in BP(4)

D,H.
Let T be a partition tree globally compatible with (D,H) via {gp}p∈Γ ∈H. _en one
can see that ϕΛ(T) will be a bifurcation partition system globally compatible with
(D,H) via {gp}p∈Γ .
Conversely, we will show that the images of ϕΛ restricted to Λ(2)

D,H, Λ
(3)
D,H, and

Λ(4)
D,H contain BP(2)

D,H, BP
(3)
D,H, and BP

(4)
D,H, respectively. To this end, we show that

a δ-glued partition tree with respect to a bifurcation partition system in BP(2)
D,H,

(BP(3)
D,H, and BP

(4)
D,H, respectively), is an element in Λ(2)

D,H, (Λ
(3)
D,H, and Λ(4)

D,H, re-
spectively). _e ûrst two cases for BP(2)

D,H and BP(3)
D,H are straightforward by deûni-

tions.
Now let {P⃗x}x∈B ∈ BP(4)

D,H be the bifurcation partition system associated with an
admissible {gp}p∈Γ ∈ H and let T be its corresponding δ-glued partition tree. We
claim that T ∈ Λ(4)

D,H. To show this, we want to turn {gp}p∈Γ into {g′p}p∈Γ ∈ H and
deûne a function ξ∶∐x∈T Tan+T(x) → κ such that T and (D,H) are compatible via
{gp}p∈Γ .

1 Assign values gp(redp(t)) to πT∗(t) for all p ∈ Eρ and t ∈ Tanρ+
Γ (p)

2 Assign values in κ for the remaining elements in∐x∈T Tan+T(x) such that for each
x ∈ T, ξ restricted to Tan+T(x) is injective.

3 Let g′p = gp for all p ∈ Eρ .
4 For an ordinary point p ∈ Oρ , there is a unique forward tangent direction (denoted
by t) at p. _erefore, we can always ûnd a non-constant rational function g′p ∈ Hp

such that g′p(redp(t)) = ξ(πT∗(t)) (Lemma 2.12).
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By the above construction, T is globally compatible with (D,H) via {g′p}p∈Γ ,
which means T ∈ Λ(4)

D,H.

Remark 5.7 We will employ the surjectivity of themap ϕΛ ∣Λ(4)
D,H

∶Λ(4)
D,H → BP(4)

D,H

in the proof of the smoothing criterion in the next section.

6 Proof of the Smoothing Criterion

We restate the smoothing criterion combining the two versions as follows.

_eorem 6.1 Given a saturated metrized complex C and a pre-limit g1
d represented

by (D,H), the following statements are equivalent.

(i) (D,H) is smoothable.
(ii) (D,H) is solvable and Λ(4)

D,H is nonempty.
(iii) (D,H) is solvable and satisûes the intrinsic global compatibility conditions.

Proof (ii) is equivalent to saying that there exists a partition tree globally compatible
with (D,H), and (iii) is equivalent to saying that there exists a bifurcation partition
systemglobally compatiblewith (D,H). _en the equivalence of (ii) and (iii) follows
from Proposition 5.6.

(i)⇒ (ii). Let (D,H) represent a smoothable pre-limit g1
d on C. _en by _eo-

rem 3.13, we know that there exists a harmonicmorphism

Cϕmod = (ϕΓmod , {ϕp}p∈Γmod)

of degree deg(D) from a modiûcation Cmod of C to a genus zero saturated metrized
complexC(T) such that (1)D is the retraction toC of a divisorDmod onCϕmod,which
is a pullback divisor by Cϕmod of an eòective degree one divisor on C(T), and (2) ϕp
coincides with the morphism from Cp to P1

κ , deûned by Hp . Here the underlying
metric graphs of C, Cmod, and C(T) are denoted by Γ, Γmod, and T , respectively. Now
it remains to show that T must be an element in Λ(4)

D,H.
Denote by r(T) the root of T which is the image of Dmod

Γ (the tropical part of
Dmod)under ϕΓmod . _en r(T) and themap ϕΓ ∶ Γ → T that is the restriction to Γ of the
harmonicmorphism ϕΓmod ∶ Γmod → T induces a global diagram on Γ in the following
way. For any point p ∈ Γ and any tangent direction t ∈ TanΓ(p), the multiplicity
m1(p, t) is the expansion factor with sign “−” if the pushforward of t by ϕΓ coincides
with the tangent direction on T along the unique path from ϕΓ(p) to r(T), and with
sign “+” otherwise.

On the other hand, we also construct local diagrams from (D,H) (Remark 2.5).
In particular, themultiplicitym2(p, t) in the local diagram at point p associatedwith
(D,H) equals the ramiûcation index of ϕp at redp(t) with an appropriate sign. By
the compatibility property of the harmonic morphisms, we know that the ramiûca-
tion index of ϕp at the marked point redp(t) on Cp corresponding to t equals the
expansion factor of ϕΓ at t. _erefore m1(p, t) = m2(p, t), which means (D,H) is
diagrammatic and solvable with a solution d0T ○ ϕΓ , where d0T is the distance from
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points on T to the root point r(T). Hence, (T , ϕΓ) is an element of Λ(1)
D,H. In ad-

dition, the compatibility property of the harmonic morphisms also guarantees that
(T , ϕΓ) must be in Λ(4)

D,H.
(ii)⇒ (i). Let (T , πT) ∈ Λ(4)

D,H be globally compatible with (D,H). To show that
(D,H) is smoothable, using_eorem 3.13,weneed toûnd someharmonicmorphism
compatible with (D,H). More precisely, we want to construct a modiûcation Cmod

of C with underlying metric graph Γmod such that (1) ϕΓmod ∶ Γmod → T is a harmonic
morphism (between metric graphs)whose restriction to Γ is πT , and (2) ϕΓmod can be
li�ed to a harmonicmorphism Cϕmod from Cmod to a genus zero saturatedmetrized
complex C(T) whose underlying metric tree is T . In Section 3.1, we also introduced
the notion of a pseudo-harmonic morphism, which does not require the balancing
condition as for harmonicmorphisms. In the rest of the proof, we will show that we
can ûrst ûnd a compatible pseudoharmonic morphism from C to a genus zero sat-
urated metrized complex C(T). _en we will show that we can always extend this
pseudo-harmonic morphism to a desired harmonic morphism by generating a suit-
ablemodiûcation Cmod of C, while we single out the statement and proof in Proposi-
tion 6.2 together with Example 6.3 to aid our exposition.
Assume {gp}p∈Γ is a collection of rational functions gp ∈ Hp on Cp that makes

(D,H) and (T , πT) compatible. _ere is a function ξ∶∐x∈T Tan+T(x) → κ such that
ξ is injective restricted to Tan+T(x) for each x ∈ T , and gp ○ redp = ξ ○ πT∗ for all
p ∈ Γ. Let g p ∶Cp → κ∞ be the function on Cp extending gp to its poles, and let
ξ∶∐x∈T TanT(x) → κ∞ be the extension of ξ such that for each x ∈ T , ξ maps the
incoming tangent direction at x to∞ in κ∞. _en we also have g p ○ redp = ξ ○ πT∗.

Since κ∞ is isomorphic to a projective line over κ, we can build a genus zero
metrized complex C(T) from T (for all x ∈ T , the curve C′x associated with x is a
projective line) by letting γx ○ ξx be the reduction map at x ∈ T , where ξx is the
function ξ restricted to TanT(x) and γx ∶ κ∞

∼→ C′x is the isomorphism between κ∞
and C′x .

Now let ϕp = γπT(p) ○ g p . _en (πT , {ϕp}p∈Γ) is a pseudo-harmonic morphism
from C to C(T), since the compatibility conditions of a pseudo-harmonicmorphism
(Deûnition 3.1) are guaranteed by the solvability of (D,H) and the relation

ϕp ○ redp = γπT(p) ○ g p ○ redp = γπT(p) ○ ξπT(p) ○ πT∗ ,

where γπT(p) ○ ξπT(p) is the reduction map at πT(p) by the construction of C(T).
By Proposition 6.2,we can extend the pseudo-harmonicmorphism (πT , {ϕp}p∈Γ)

to a harmonicmorphism (ϕmod , {ϕp}p∈Γmod) from amodiûcationCmod ofC toC(T).

Proposition 6.2 Let Cϕ be a pseudo-harmonicmorphism from a saturatedmetrized
complex C to a saturated metrized complex C(T) of genus zero. If Cϕ is harmonic at
all but ûnitely many points in its underlying metric graph, then there is a modiûcation
Cmod of C and a harmonic morphism Cϕmod from Cmod to C(T) such that Cϕ is the
restriction of Cϕmod to C.
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Proof Assume that the underlyingmetric graphs ofC andC(T) are Γ and T , respec-
tively, and the associated curves ofC andC(T) are {Cp}p∈Γ and {C′x}x∈T , respectively.
Let Cϕ = (ϕΓ , {ϕp}p∈Γ), where ϕΓ ∶ Γ → T is the associated pseudo-harmonic mor-
phism of metric graphs and ϕp ∶Cp → C′ϕΓ(p) is the associated ûnite morphism of
curves at p. We will derive amodiûcation Cmod of C in the following way.
Consider a point q ∈ Γ. For each tangent direction t′ ∈ TanT(ϕΓ(q)) at ϕΓ(q)

on T , let u ∈ Cq be a non-marked point of Cq that is an element in the ûber
ϕ−1

q (redϕΓ(q)(t′)). Suppose the ramiûcation index of ϕq at u is m.
Let T ′ be the connected component of T ∖ {ϕΓ(q)} corresponding to the tangent

direction t at ϕΓ(q). Let T ′
1 , . . . , T ′

m be m copies of T ′. For i = 1, . . . ,m, let x i be the
open end of T ′

i corresponding to the open end ϕΓ(q) of T ′ and let y i be the point
in T ′

i with a small distance l to x i (l is less than theminimum distance of branching
points of T ′ to ϕΓ(q)).

Nowwewant to attach to Γ an extra branch Γ′u with respect to u. _en by equipping
Γ′u with projective lines, we will get amodiûcation of C with respect to u.

We construct Γ′u fromT ′
1 , . . . , T ′

m byûrst identifying the segments (x i , y i] and then
shrinking the glued segment by a factor of m. Denote by (x , y] the corresponding
segment in Γ′u with x being itsopen end. _enby this construction, the lengthof (x , y]
is l/m and Γ′u ∖ (x , y] is a disjoint union of T ′

i ∖ (x i , y i]. Forgetting the compactness
restriction of a metric graph, we also call T ′, T ′

i , and Γ′u metric graphs. _en there
is a natural harmonic morphism ϕΓ′u from Γ′u to T ′, where the balancing condition
(Deûnition 3.2) is automatically satisûed by the construction of Γ′u .

Let C(T ′) be C(T) restricted to T ′. We can construct a saturated metrized com-
plex C(Γ′u) with underlying metric graph Γ′u by associating each point p ∈ Γ′u with a
projective line Cp . Let x′ = ϕΓ′u(p). _e reductionmap redp at p is derived as follows.

● If p ∈ (x , y), then there are two tangent directions t1 and t2 in TanΓ′u(p) and two
tangent directions t′1 and t′2 in TanT′(x′) where t1 and t2 are pullbacks of t′1 and t′2 by
ϕΓ′u . Let ϕp ∶Cp → C′x′ be a degree m morphism from Cp to C′x′ (the curve associated
with ϕΓ′u(p) in C(T ′)) such that there are two points v1 and v2 in Cp with ramiû-
cation index m over the marked points redx′(t′1) and redx′(t′2) in C′x′ , respectively.
Let themarked point redp(t1) associatedwith t1 be v1 and themarked point redp(t2)
associated with t2 be v2.

● If p = y, then there arem+ 1 tangent directions t1 , . . . , tm+1 in TanΓ′u(p) and two
tangent directions t′1 and t′2 in TanT′(x′). We can assume that t′1 is the tangent direc-
tion corresponding to the edge between x′ and the open end of T ′, t1 is the pullback of
t′1 by ϕΓ′u , and {t2 , . . . , tm+1} is the pullback of t′2 by ϕΓ′u . Let ϕp ∶Cp → C′x′ be a degree
m morphism from Cp to C′x′ such that there is a point v1 ∈ Cp with ramiûcation in-
dexm over themarked point redx′(t′1) and there are distinct points v2 , . . . , vm+1 ∈ Cp
with ramiûcation index 1 over the marked point redx′(t′2). _en we let the marked
point redp(t i) associated with t i be v i for i = 1, . . . ,m + 1.

● If p ∈ Γ′u∖(x , y], thenTanT′(x′) pulls back bijectively toTanΓ′u(p) by ϕΓ′u . We let
ϕp ∶Cp → C′x′ be an isomorphism. For every pair of corresponding tangent directions
tp ∈ TanΓ′u(p) and tx′ ∈ TanT′(x′), we let themarked point redp(tp) associated with
tp be ϕ−1

p (redx′(tx′)).
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Note that in all cases above, the morphism ϕp ∶Cp → C′x′ always exists, since Cp
and C′x′ are projective lines. We conclude that (ϕΓ′u , {ϕp}p∈Γ′u) is a harmonic mor-
phism from C(Γ′u) to C(T ′), since ϕΓ′u is a harmonicmorphism ofmetric graphs and
the compatibility conditions of Deûnition 3.1 are automatically satisûed by the above
construction of C(Γ′u).

Now we get a modiûcation of Γ with respect to u by attaching the open end of
the extra branch Γ′u to Γ at q, and a modiûcation of C with respect to u by adding u
as a marked point of Cq and attaching C(Γ′u) to C. Moreover, the pseudo-harmonic
morphisms ϕΓ and Cϕ also naturally extend to these modiûcations of Γ and C, re-
spectively, with respect to u, which are harmonic at all the points in the extra branch
Γ′u (not necessarily at q).

Recall that u is a non-marked point of Cq that at the same time is an element of
ϕ−1

q (redϕΓ(q)(t′)), where t′ is a tangent direction at ϕΓ(q) on T . _erefore, we can
get modiûcations of Γ and C with respect to q by performing modiûcations of Γ and
C on all possible u in this sense at the same time. Moreover, the pseudo-harmonic
morphisms ϕΓ and Cϕ also naturally extend respectively to these modiûcations of
Γ and C with respect to q, which are harmonic at the point q and all the points in
the extra branches. Note that if Cϕ is already harmonic at q, then no modiûcation is
performed.

_e ûnal modiûcations of Γ and C, denoted by Γmod and Cmod, respectively, are
derived by performing modiûcations of Γ and C at the same time to all q ∈ Γ at which
Cϕ is not harmonic. In this way, we get a harmonicmorphism Cϕmod∶Cmod → C(T)
as required.

Example 6.3 In Figure 6, we show how a modiûcation is performed at point o1
in Figure 3 of Example 4.15. _e image of o1 under πT is x′. First note that there is
only one outgoing edge o1p1 from o1 with expansion factor 1 of themap πT . Suppose
that the degree of the nonconstant rational function go1 ∈ Ho1 is 3. Suppose that the
forward tangent direction from x′ to y′1 corresponds to c1 ∈ κ and the forward tangent
direction from x′ to y′2 corresponds to c2 ∈ κ. Suppose that g−1

o1 (c1) = {u1 , u2 , u3} and
u1 is the reduction of the tangent direction from o1 to p1. _en two copies of x′y′1 will
be attached to o1 as extra branches corresponding to u2 and u3, respectively. Suppose
that g−1

o1 (c2) = {v1 , v2}, while the ramiûcation index of v1 is 1 and the ramiûcation
index of v2 is 2. Let T ′ be the subgraph of T connecting x′, z′12, and z′3. _en one copy
of T ′ is attached to o1 as the extra branch corresponding to v1. Accordingly, the extra
branch corresponding to v2 is made from two copies T ′

1 and T ′
2 of T ′ by ûrst gluing

from the open ends of T ′
1 and T ′

2 along small segments of the same length and then
shrinking the glued segment by a factor of 2.

7 Applications

We apply the smoothing criterion to the saturatedmetrized complex versions of cer-
tain types of curves: curves of compact type studied by Eisenbud and Harris, nodal
curves with dual graphs made of separate loops and curves considered byHarris and
Mumford to characterize gonality stratiûcation. We also extend the smoothing crite-
rion to metrized complexes by showing a concrete example.

https://doi.org/10.4153/CJM-2017-027-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-027-2


664 Y. Luo andM. Manjunath

x′

y′1

y′2
z′12

z′3

o1
o2

p1

p2

p3

q1

q2

q3

T

Γ

πT o1
p1

Figure 6: Amodiûcation performed at point o1 based on the projectionmap πT in Example 4.15
and the local data in Ho1 .

7.1 Saturated Metrized Complexes of Compact Type

We show that every diagrammatic pre-limit g1
d on a saturated metrized complex of

compact type, i.e.,whose underlyingmetric graph is ametric tree, is smoothable. _is
theorem is an analogue of [16, Proposition 3.1 ] by Eisenbud andHarris for curves of
compact type.

_eorem 7.1 Every diagrammatic pre-limit g1
d represented by (D,H) on a saturated

metrized complex C of compact type is smoothable.

Proof _e underlying metric graph Γ of C is a tree. _erefore (D,H) must be solv-
able. Let ρ be a solution to (D,H) and Eρ be the set of exceptional points of ρ (§2.7).
_en we can subdivide Γ into segments L1 , . . . , Ln by Eρ (the end points of L i are
exceptional points). _e restrictions of (D,H) to each L i must be smoothable since
the intrinsic global compatibility conditionswill be trivial. _is theorem then follows
directly from Proposition 7.2.

Consider a diagrammatic pre-limit g1
d represented by (D,H) on a saturatedmet-

rized complex C whose underlying metric graph is Γ. Let Γ′ be a connected closed
metric subgraph of Γ. A saturated metrized complex C′ is said to be the restriction
of C to Γ′ if the underlying metric graph of C′ is Γ′, the associated curves of C′ and
C at p are identical for all p ∈ Γ′, and the reduction maps of C′ and C at p restricted
to TanΓ′(p) are identical for all p ∈ Γ′ (note that TanΓ′(p) ⫋ TanΓ(p) when p is a
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boundary point of Γ′ in Γ). Moreover, a diagrammatic pre-limit g1
d represented by

(D′ ,H′) on C′ is said to be the restriction of (D,H) to Γ′ (or C′) if the following are
satisûed.
● H′

p (the Cp-part ofH′) is identical to Hp (the Cp-part ofH) for all p ∈ Γ′.
● D′p (the Cp-part ofD′) is identical to Dp (the Cp-part ofD) for all p ∈ Γ′∖∂Γ′ (here

∂Γ′ stands for the boundary of Γ′ in Γ).
● For all p ∈ ∂Γ′, D′p is modiûed from Dp as

Dp = D′p + ∑
t∈InΓ(p)∖InΓ′(p)

(−m(p, t))(redp(t)),

where m(p, t) is the multiplicity of t (which is negative if t ∈ InΓ(p)) in the local
diagram induced by H at p. Note that this modiûcation guarantees the compat-
ibility between Dp and Hp which further implies that (D′ ,H′) is diagrammatic
(Deûnition 2.10).

Proposition 7.2 Let Γ1 and Γ2 be connectedmetric subgraphs of ametric graph Γ such
that Γ = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 is a singleton. For a saturated metrized complex C whose
underlying metric graph is Γ, let (D,H) represent a diagrammatic pre-limit g1

d on C.
Let (D1 ,H1) and (D2 ,H2) be the restrictions of (D,H) to Γ1 and Γ2, respectively. _en
(D,H) is smoothable if and only if (D1 ,H1) and (D2 ,H2) are both smoothable.

Proof Let Γ1 ∩ Γ2 = {q}. Let C1 and C2 be the restrictions of C to Γ1 and Γ2, re-
spectively. _en (D1 ,H1) is on C1 and (D2 ,H2) is on C2. It follows easily from
the smoothing criterion that (D,H) being smoothable implies that (D1 ,H1) and
(D2 ,H2) are both smoothable.

Now suppose that (D1 ,H1) and (D2 ,H2) are both smoothable and we claim that
(D,H) is smoothable. _is means (D1 ,H1) and (D2 ,H2) are solvable, and since
Γ = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = {q}, (D,H) must be solvable. _us we may assume ρ is a
solution to the global diagramof (D,H),while the restriction of ρ to Γ1 (respectively,
Γ2), denoted by ρ1 (respectively, ρ2), is a solution to the global diagram of (D1 ,H1)
(respectively, (D2 ,H2)). LetB,B1, andB2 be the bifurcation trees with respect to ρ,
ρ1, and ρ2, respectively.
By the smoothing criterion,H1 contains an admissible collection { f (1)p }p∈Γ1 of ra-

tional functions f (1)p ∈ Hp and H2 contains an admissible collection { f (2)p }p∈Γ2 of
rational functions f (2)p ∈ Hp .

Note that B1 and B2 are subtrees of B and B1 ∪ B2 = B. Let r(B), r(B1), and
r(B2) be the roots ofB,B1, andB2, respectively. Clearly r(B) must be either r(B1)
or r(B2). Without loss of generality, we assume r(B) = r(B1). Let y = πB(q) and
L be the closed segment connecting r(B2) and y in B. _en one can observe that
B1∩B2 = L. We construct a desirable admissible { fp}p∈Γ ∈H by clutching { f (1)p }p∈Γ1

and { f (2)p }p∈Γ2 as follows.

(1) For x ∈ B1 ∖ L, let P⃗x = P⃗(1)
x .

(2) For x ∈ B2 ∖ L, let P⃗x = P⃗(2)
x .

(3) For p ∈ Γ1 ∖ π−1
B (L), let fp = f (1)p .
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(4) For p ∈ Γ2 ∖ π−1
B (L), let fp = f (2)p .

(5) For x ∈ L, consider all the forward tangent directions in

Tan+B1(x) = {t(1)1 , . . . , t(1)k }

and all the forward tangent directions in Tan+B2(x) = {t(2)1 , . . . , t(2)l }. _en by
the smoothing criterion on (D1 ,H1) and (D2 ,H2), we can assign values

c(1)1 , . . . , c(1)k ∈ κ

to t(1)1 , . . . , t(1)k , respectively, and values c(2)1 , . . . , c(2) ∈ κ to t(2)1 , . . . , t(2)l respec-
tively such that
(a) f (1)p (redp(t)) = c(1)i for all i = 1, . . . , k whenever p ∈ π−1

B1
(x) and

t ∈ Tanρ1+
Γ1

(p) ∩ π−1
B1∗(t

(1)
i ),

(b) f (2)p (redp(t)) = c(2)j for all j = 1, . . . , l whenever p ∈ π−1
B2

(x) and t ∈
Tanρ2+

Γ2 (p) ∩ π−1
B2∗

(t(2)j ).
When x ∈ L ∖ {y}, we have

π−1
B (x) = π−1

B1(x) ∪ π−1
B1(x),

π−1
B1(x) ∩ π−1

B1(x) = ∅,
Tan+B(x) = Tan+B1(x) ∪ Tan+B2(x),

and Tan+B1(x) ∩ Tan+B2(x) is a singleton. Without loss of generality, we let t1 =
t(1)1 = t(2)1 be the forward tangent direction common to both Tan+B1(x) and
Tan+B2(x), which means that ι⃗B1(t1) and ι⃗B2(t1) are the open superlevel com-
ponents (for Γ1 and Γ2, respectively) containing q and ι⃗B(t1) = ι⃗B1(t1) ∪ ι⃗B2(t1).
So we can let fp = f (1)p − c(1)1 for all p ∈ π−1

B1
(x) and fp = f (2)p − c(2)1 for all

p ∈ π−1
B2

(x). In this way of clutching, we conclude the following.
(a) fp(redp(t)) = c(1)i − c(1)1 for all i = 1, . . . , k whenever p ∈ π−1

B1
(x) and t ∈

Tanρ1+
Γ1

(p) ∩ π−1
B1∗

(t(1)i ).
(b) fp(redp(t)) = c(2)j − c(2)1 for all j = 1, . . . , l whenever p ∈ π−1

B2
(x) and t ∈

Tanρ2+
Γ2 (p)⋂ π−1

B2∗
(t(2)j ).

(c) In particular, by (a) and (b), fp(redp(t)) = 0 whenever p ∈ π−1
B (x) and t ∈

Tanρ+
Γ (p) ∩ π−1

B∗(t1). (Note that π−1
B∗(t1) = π−1

B1∗
(t(1)1 ) ∪ π−1

B2∗
(t(2)1 ).)

When x = y, we have π−1
B (x) = π−1

B1
(x) ∪ π−1

B1
(x), π−1

B1
(x) ∩ π−1

B1
(x) = {q},

Tan+B(x) = Tan+B1(x) ∪ Tan+B2(x), and Tan+B1(x) ∩ Tan+B2(x) = ∅. Since

f (1)q , f (2)q ∈ Hq ,

we must have f (2)q = α + β f (1)q for some α, β ∈ κ. So we can let fp = α + β f (1)p

for all p ∈ π−1
B1

(x) and fp = f (2)p for all p ∈ π−1
B2

(x). In this way of clutching, we
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conclude the following.
(a) fp(redp(t)) = α + βc(1)i for all i = 1, . . . , k whenever p ∈ π−1

B1
(x) and t ∈

Tanρ1+
Γ1

(p) ∩ π−1
B1∗

(t(1)i ),
(b) fp(redp(t)) = c(2)j for all j = 1, . . . , l whenever p ∈ π−1

B2
(x) and

t ∈ Tanρ2+
Γ2 (p) ∩ π−1

B2∗(t
(2)
j ),

(c) in particular, (a) and (b) coincide at p = q by our assumption as fq(redq(t)) =
α + β f (1)q (redq(t)) = f (2)q (redq(t)) for all t ∈ Tanρ+

Γ (q) = Tanρ1+
Γ1

(q) ∪
Tanρ2+

Γ2 (q).

_e above construction guarantees that { fp}p∈Γ is admissible in H. _erefore,
(D,H) is smoothable.

Example 7.3 For a smoothable pre-limit g1
d represented by (D,H), it is possi-

ble that we can construct diòerent smoothings, or equivalently diòerent pseudo-har-
monicmorphisms (see §3.1 for a precise deûnition) from the saturatedmetrized com-
plex to a genus 0 metrized complex. Figure 7 is an example for a case of a saturated
metrized complex of compact type whose underlying metric graph is a segment. Fix
a rational function f1 ∈ Hp1 . Suppose the value of f1 on the marked point corre-
sponding to p1p0 is c0 and on the marked point corresponding to p1p3 is c3. _en
the rational functions in Hp2 that take the value c0 at the marked point correspond-
ing to p2p0 form a one-dimensional subspace H of Hp2 . Let f2 ∈ H take the value c3
on the marked point corresponding to p2p4 and let f ′2 ∈ H take a value other than
c3 on the marked point corresponding to p2p4. _en f1 and f2 can be used to con-
struct a pseudo-harmonicmorphism as in Figure 7(a), while f1 and f ′2 can be used to
construct a pseudo-harmonicmorphism as in Figure 7(b).

7.2 Saturated Metrized Complexes with Genus-g Underlying Metric Graphs
Containing g Separate Loops

For a generalization of saturatedmetrized complexes of compact type, we consider a
saturatedmetrized complex Cwhose underlyingmetric graph Γ has genus g and con-
tains g separate loops Ω1 , . . . ,Ωg (see Figure 8 for such a metric graph of genus 6).
Here Ω i and Ω j are separate if the intersection of Ω i and Ω j is either empty or just a
singleton. By the smoothing criterion, one prerequisite for being smoothable is solv-
ability, i.e., the integration along each Ω i for i = 1, . . . , g with respect to the global
diagram induced by (D,H) is 0. We let ρ be a solution to the global diagram and
B be the corresponding bifurcation tree. Consider a loop Ω ∈ {Ω1 , . . . ,Ωg}. We
let Ωmin(ρ) be the set of points where ρ restricted to Ω i achieves minimum. _en
Ωmin(ρ) is a ûnite set with at least one element, and for each point p ∈ Ωmin(ρ),
there are exactly two forward tangent directions in Tanρ+

Ω (p) (forward tangent direc-
tions restricted to Ω). We say p is a closing point if these two tangent directions are
locally equivalent in the local diagram at p induced by H, and say p is an opening
point otherwise. Denote the set of closing points in Ωmin(ρ) by Ωc

min(ρ), and the
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(a)

(b)
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p1
p2

p3
p4

q0

q12 q34

p0

p1
p2

p3

p4

q0

q12 q3

q4

Figure 7: Examples of pseudo-harmonicmorphisms (see §3.1 for a precise deûnition) that can
be derived from the same (D,H) on a saturatedmetrized complex of compact type.

Ω1
Ω2

Ω3

Ω4

Ω5

Ω6

Figure 8: A genus-6 metric graph containing 6 separate loops Ω1 , . . . ,Ω6 . All the loops are
disjoint with each other except that Ω1 and Ω2 intersect at a single point.

set of opening points in Ω i ,min(ρ) by Ωo
min(ρ). _e following theorem says that de-

termining whether (D,H) is smoothable can be reduced to a purely combinatorial
point-counting problem in Ωc

min(ρ) and Ωo
min(ρ).

_eorem 7.4 Let C be a saturated metrized complex whose underlying metric graph
Γ has genus g and contains g separate loops Ω1 , . . . ,Ωg . Let (D,H) represent a solv-
able pre-limit g1

d on C with a solution ρ. _en (D,H) is smoothable if and only if the
following are satisûed on each loop Ω ∈ {Ω1 , . . . ,Ωg}.
(i) If Ωmin(ρ) is a singleton, the unique point p ∈ Ωmin(ρ) is a closing point.
(ii) If the cardinality of Ωmin(ρ) is at least 2, then either Ωc

min(ρ) = ∅ or Ωc
min(ρ)

has the same parity as Ωmin(ρ).
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Proof By Proposition 7.2,we can subdivide Γ into segments and loops and testwhe-
ther (D,H) restricted to each segment or loop is smoothable. _e case of segments
can be dealt with analogously as for compact type saturatedmetrized complexes, and
it only needs to show the case for (D,H) restricted to a single loop Ω. Without loss of
generality, we can assume Γ = Ω and apply intrinsic global compatibility conditions
to this speciûc graph.

Let ρ be a solution to (D,H) and B be the corresponding bifurcation tree. We
need to test the possibility of constructing an admissible { fp}p∈Γ ∈ H. Actually, we
will consider cases for all p ∈ π−1

B (x) for each x ∈ B separately.
Firstwe consider the root y ofΩ. Note that the closed superlevel component ιB(y)

corresponds to y and Ωmin(ρ) = π−1
B (y).

(1) When Ωmin(ρ) = {p}, there is only one open superlevel component with the
boundary point p. _erefore, to pass the compatibility test, the two tangent di-
rections inTanρ+

Ω (p)must be locally equivalent,whichmeans pmust be a closing
point.

(2) When Ωmin(ρ) = {p1 , . . . , pk} with k ⩾ 2, there are exactly k open superlevel
components β1 , . . . , βk with the boundary points in Ωmin(ρ) (the k open edges
in Ω with end points in Ωmin(ρ)). We let the end points of β i be p i and p i+1 for
i = 1, . . . , k − 1 and the end points of βk be pk and p1.
Firstnote that for any pointΩmin(ρ), if the two tangent directions inTanρ+

Ω (p)
are not locally equivalent, then for any two arbitrarily chosen distinct values, we
can always ûnd a rational function fp ∈ Hp taking these values, respectively, at
the two reduction points in Cp corresponding to these two tangent directions
(Lemma 2.12). Assigning values c1 , . . . , ck ∈ κ to β1 , . . . , βk , respectively, we have
the following cases.
(a) If c1 , . . . , ck are all distinct, then to pass the compatibility test, it is equivalent

to say that the two tangent directions in Tanρ+
Ω (p i) for each i = 1, . . . , k must

not be locally equivalent, i.e., p1 , . . . , pk are all opening points.
(b) If at least one point in Ωmin(ρ) is a closing point, we can assume pk is a

closing point without loss of generality. _en to pass the compatibility test,
ck must be equal to ck−1 and the whole case reduces to dropping pk from
Ωmin(ρ) and assigning values c1 , . . . , ck−1 to β1 , . . . , βk−1.

It is straightforward to verify that the above arguments aòord the conditions (i) and
(ii) stated in the theorem.

It remains to show that the compatibility test can always be passed for those points
x inB∖{y}. Note that each forward tangent direction t ∈ Tan+B(x) corresponds to an
open superlevel component ι⃗B(t) of ρ. If ιB(x) is a singleton {p}, then Tanρ+

B
(p) =

Tan+B(x) = ∅ and we simply let fp be any non-constant function in Hp . Otherwise,
if ∂ι⃗B(t) is the set of boundary points of ι⃗B(t), we must have ⋃t∈Tan+

B
(x) ∂ι⃗B(t) =

π−1
B (x), which is assumed in the following discussion.
Note that for x ∈ B ∖ {y}, Tan+B(x) is either empty or satisûes the ordering prop-

erty: starting from an arbitrary t1 ∈ Tan+B(x), there exists an ordering t1 , t2 , . . . , tk of
all the tangent directions inTan+B(x) such that (⋃i−1

j=1 ∂ι⃗B(t j))∩∂ι⃗B(t i) is a singleton
{q i} for i = 2, . . . , k. In otherwords,we can rebuild the closed superlevel component
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ιB(x) from the open superlevel components ι⃗B(t) with t ∈ Tan+B(x) one by one by
choosing the attaching point from π−1

B (x) properly.
Note that at each q i , there exists two forward tangent directions in Tanρ+

Γ (q i). On
the other hand, if a point p in π−1

B (x) is not any of the q i , then there is exactly one
forward tangent direction in Tanρ+

Γ (p).
We use the following procedure to assign values to the tangent directions in

Tan+B(x) and ûnd compatible rational functions fp ∈ Hp for all points p ∈ π−1
B (x).

(1) We assign an arbitrary value c1 ∈ κ to t1. For each p ∈ ∂ι⃗B(t1), we are able to
ûnd a nonconstant rational function fp ∈ Hp such that fp(redp(t1,p)) = c1,where tp,1
is the unique tangent in Tanρ+

Γ (p) such that πB∗(t1,p) = t1.
(2) Now suppose we have already assigned values c1 , . . . , c i ∈ κ to t1 , . . . , t i , re-

spectively, and found rational functions fp ∈ Hp for all p ∈ ⋃i
j=1 ∂ι⃗B(t j) such that

for j = 1, . . . , i, we have fp(redp(t)) = c j as long as t ∈ Tanρ+
Γ (p) ∩ π−1

B∗(t j). Note
that q i+1 is the unique element in both ⋃i

j=1 ∂ι⃗B(t j) and ∂ι⃗B(t i+1). Let tq i+1 be the
unique tangent direction in Tanρ+

Γ (q i+1) such that πB∗(tq i+1) = t i+1. We let c i+1 =
fq i+1(redq i+1(tq i+1)), and for each p ∈ ∂ι⃗B(t i+1) ∖ {tq i+1}, we let fp be a nonconstant
rational function in Hp such that fp(redp(t)) = c i+1 where t is the unique tangent
direction in Tanρ+

Γ (p) ∩ π−1
B∗(t i+1).

In this way, we derive a sequence of c1 , . . . , ck ∈ κ and a family of rational func-
tions { fp}p∈π−1

B
(x). By our construction, for j = 1, . . . , k and all p ∈ π−1

B (x), we have
fp(redp(t)) = c j as long as t ∈ Tanρ+

Γ (p)⋂ π−1
B∗(t j). Hence, the compatibility test get

passed at all x ∈ B ∖ {y}.

Remark 7.5 Here are a few cases of the conditions in the above theorem.
● If #Ωmin(ρ) = 1, then #Ωc

min(ρ) can only be 1.
● If #Ωmin(ρ) = 2, then #Ωc

min(ρ) can only be 0 or 2.
● If #Ωmin(ρ) = 3, then #Ωc

min(ρ) can only be 0, 1, or 3.
● If #Ωmin(ρ) = 4, then #Ωc

min(ρ) can only be 0, 2, or 4.

7.3 Saturated Metrized Complexes of the Harris–Mumford Type

Here we study saturatedmetrized complexes arising from the construction of Harris
andMumford [24,_eorem 5]. _ese correspond to two types of saturatedmetrized
complexes.
A Harris–Mumford saturated metrized complex of type I is a saturated metrized

complex C with underlying metric graph Γ homeomorphic to a topological bouquet
graph obtained by gluing together ûnitely many (0 is allowed) circles along a single
vertex o (Figure 9) while g(C) = g(Co) + g(Γ). We call this central vertex o the eye
vertex and Co the eye of C. We also call themiddle points of the attached circles petal
vertices. In particular, we have g(Γ) petal vertices. We call the pair ofmarked points
on the eye corresponding to the two edges connecting o and p i the p i-marked points
on the eye.
A Harris–Mumford saturated metrized complex of type II is a saturated metrized

complex C with underlying metric graph Γ homeomorphic to a topological graph
obtained by gluing together ûnitely many (0 is allowed) circles along the endpoints
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Figure 9: Example of the underlying metric graphs of Harris–Mumford saturated metrized
complex of type I and II. For type I, o is the eye vertex, p1 , p2 , and p3 are the three petal ver-
tices. For type II, o1 and o2 are the eye vertices; p1 , p2 , p3 , p4 , and p5 are the three petal vertices.
Examples of regulated global diagrams are also shown with edgemultiplicities marked.

o1 and o2 of a line segment (Figure 9), while g(C) = g(Co1) + g(Co2) + g(Γ). We
call the two vertices o1 and o2 the eye vertices and the associated curves Co1 and Co2
the eyes of C. Analogously, the middle points of the attached circles are called petal
vertices. We also call the pair ofmarked points on the eyes corresponding to the two
edges connecting the segment o1o2 and p i the p i-marked points.
For both types, we say a global diagram on Γ is regulated if edgemultiplicities only

possibly change across the eye vertices and the petal vertices (Figure 9). _e follow-
ing theorem is an analogue for Harris–Mumford [24,_eorem 5] saturatedmetrized
complexes.

_eorem 7.6 (i) A Harris–Mumford saturated metrized complex C of type I has
a base-point-free smoothable limit g1

d whose global diagram is regulated if and only if
there exists a rational function f of degree d on the eye which has the same value and
ramiûcation indices on each pair of the p i-marked points for all petal vertices p i .

(ii) A Harris–Mumford saturated metrized complex C of type II has a base-point-
free smoothable limit g1

d whose global diagram is regulated if and only if there exist
rational functions f1 and f2 on the two eyes, respectively, such that
(a) for all petal vertices p i , the pair of p i-marked points have the same value and ram-

iûcation indices for the corresponding f j ( j = 1 or 2), and
(b) d = d1 + d2 − l ,where d1 and d2 are the degrees of f1 and f2, respectively, and both

ramiûcation indices of f1 and f2 at respective marked points corresponding to the
central segment take the same value l .

Proof For (i), ûrst let (D,H) represent a base-point-free smoothable limit g1
d with

regulated global diagram. _en the only possible global diagrams are those with the
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same multiplicity along each pair of edges connecting the eye vertex o and a petal
vertex. Consider a nonconstant function f in Ho where o is the eye vertex. By the
smoothing criterion (version II,_eorem 2.6), f has the same value and ramiûcation
indices on each pair of the p i-marked points for all petal vertices p i . In addition, since
(D,H) is base-point free, f must also have degree d.

On the other hand, if f is a rational function of degree d on the eye Co that has
the same value and ramiûcation indices on each pair of the p i-marked points for
all petal vertices p i , then we can construct a base-point-free smoothable limit g1

d
represented by (D,H) with regulated global diagram in the following way. First
we let Ho be the space of rational functions spanned by a constant function and f .
Since for each petal vertex p i , the distances of the two edges connecting p i and o
are the same and f has the same multiplicities on the pair of p i-marked points, we
can construct a regulated global diagram compatible with the local diagram for Hp
(Remark 2.5). Associate projective lines with the points p other than o and we can
always construct a two-dimensional space Hp of rational functions on Cp whose lo-
cal diagram is compatible with the global diagram. Now for all p ∈ Γ, let Dp =
Σt∈In(p)m(p, t)(redp(t))+D−fp based on the notations inRemark 2.5. By the smooth-
ing criterion, the ({Dp}p∈Γ , {H}p∈Γ) constructed in this way represents a smooth-
able g1

d .
For (ii), suppose (D,H) represents a base-point-free smoothable limit g1

d with reg-
ulated global diagram. _en the only possible global diagrams are thosewith the same
multiplicity along each pair of edges connecting a petal vertex to its corresponding eye
vertex o1 or o2 and with unchanged multiplicity along o1o2. Consider non-constant
functions f1 ∈ Ho1 and f2 ∈ Ho2 . _erefore condition (a) is satisûed using a similar ar-
gument as for (i) and the ramiûcation indices of f1 and f2 at respectivemarked points
u1 and u2 corresponding with the segment o1o2 take the same value, say l . Moreover,
if u1 is a pole of f1, then u2 is not a pole of f2, and vice versa. _en the total degree
d of (D,H) must be d = d1 + d2 − l , where d1 and d2 are the degrees of f1 and f2,
respectively.

On the other hand, suppose we have rational functions f ′1 on Co1 and f ′2 on Co2
satisfying conditions (a) and (b). If none of u1 and u2 are respectively poles of f1 and
f2, we let f1 = f ′1 and f2 = 1/( f ′2 − f ′2(u2)). If both u1 and u2 are respectively poles
of f1 and f2, we let f1 = 1/ f ′1 and f2 = f ′2 . Now u1 is not a pole of f1 and u2 is a pole
of f2, while both f1 and f2 satisfy conditions (a) and (b). Moreover, the ramiûcation
index of f1 at u1 is the same as the ramiûcation index of f2 at u2. For i = 1, 2, let
Ho i be spanned by a constant function and f i . _en we can construct a regulated
global diagram compatible with the local diagrams associated with Ho1 and Ho2 and
build a base-point-free smoothable limit g1

d on this global diagram following a similar
approach as in (i).

7.4 The Smoothing Criterion on Metrized Complexes

Recall that inRemark 2.2,we compared thenotion ofmetrized complex introduced by
Amini andBaker [3] and thenotion of saturatedmetrized complex. Consider ametric
graph Γ and a vertex set A of Γ. Suppose CA is ametrized complex with its underlying
metric graph being Γ and each point p ∈ A is associated with a curve Cp . As for

https://doi.org/10.4153/CJM-2017-027-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-027-2


Smoothing of Limit Linear Series of Rank One 673

pre-limit gr
d deûned on saturated metrized complexes (Deûnition 2.5), we say that a

pre-limit gr
d on themetrized complex CA is represented by the data (DA,HA), where

DA = (DΓ , {Dp}p∈A) is an eòective divisor of degree d on CA and HA = {Hp}p∈A,
where Hp is an (r + 1)-dimensional subspace of the function ûeld of Cp . (See [3]
for more details about the divisor theory on metrized complexes.) In addition, as
in Deûnition 3.8, we say (DA,HA) is smoothable if there exists a gr

d represented by
(D,H) on a smooth proper curve X/K specialized to (DA,HA) on CA.
Consider a saturatedmetrized complexCwhich is a saturation ofCA (Remark 2.2).

We say a divisor D = (D′Γ , {D′p}p∈Γ) on C is a saturation ofDA = (DΓ , {Dp}p∈A) on
CA if DΓ = D′Γ and Dp = D′p for all p ∈ A, and we say H = {H′

p}p∈Γ is a saturation
of HA = {Hp}p∈A if H′

p = Hp for all p ∈ A. _en naturally we have the following
statement.

Lemma 7.7 A pre-limit gr
d represented by (DA,HA) on a metrized complex CA is

smoothable if and only if there exists a saturation (D,H) of (DA,HA) on a saturation
C of CA such that (D,H) is smoothable.

Our smoothing criterion for the rank one case on saturated metrized complexes
can be extended to the case for metrized complexes. _e subtlety here is thatwe need
to consider all possible saturationsof (DA,HA) and each saturation (D,H) aòords its
own global diagram that might either be solvable or not solvable. So to say (DA,HA)
is smoothable, we should be able to single out a solvable saturation (D,H) that sat-
isûes the intrinsic global compatibility conditions. Fortunately, even though the pro-
cess of determining rank-one smoothability on metrized complexes is usually more
complicated, it is still ûnitely veriûable, as in the following example.

Example 7.8 Consider a metric banana graph Γ of genus 3 as shown in Figure 10
(a). Let A = {p, q} be a vertex set of Γ and then suppose the four edges L1, L2, L3,
and L4 connecting p and q have the same length 1. Let o be the middle point of L1.
Let CA be a metrized complex with underlying metric graph being Γ and associated
curves being Cp and Cq with respect to p and q, respectively. Let (DA,HA), where
DA = (DΓ , {Dp ,Dq}) has degree d andHA = {Hp ,Hq} represent a pre-limit g1

d on
CA. More speciûcally, we assume that DΓ(o) = 3, Dp is compatible with Hp , Dq is
compatible with Hq , and DΓ(p′) = 0 for every p′ ∈ Γ ∖ {o, p, q}. _e local diagrams
at p and q induced by Hp and Hq , respectively, are also shown in Figure 10 (a), i.e.,
the tangent directions at p corresponding to L1, L2, L3, and L4 havemultiplicities −1,
2, 1, and 1, respectively, and the tangent directions at q corresponding to L1, L2, L3,
and L4 have multiplicities −1, 1, 1, and 2, respectively. Let C be a saturation of CA.
_en (DA,HA) is smoothable if and only if there exists a saturation of (DA,HA) on
C which is smoothable. Let (D,H) be a diagrammatic saturation of (DA,HA) on
C. First we need to determine whether (D,H) is solvable. Figure 10 (b) shows the
allowable cases of the discrete 1-form ω in the global diagram of (D,H) restricted
to the four edges L1, L2, L3, and L4. Note that the variation of the multiplicity along
L2, L3, or L4 from p to q must be non-increasing since DΓ(p′) = 0 for p′ in the
interior of these edges. In addition, we have the following restrictions for the lengths
of segments with uniform multiplicities: x2 + y2 + z2 = x3 + y3 = x4 + y4 + z4 = 1,
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Figure 10: An example of the smoothability test on a metrized complex with its underlying
metric graph being a banana graph of genus 3 and its vertex set being the two valence-4 points.

x2 , z2 , x3 , y3 , x4 , z4 > 0, and y2 , y4 ⩾ 0. _e case for L1 is a little bit special, since DΓ
has value 3 at themiddle point o of L1. Again, the variation ofmultiplicity from o to
p or q must be non-increasing. _us the two tangent directions at o (one from o to p
and the other from o to q) must be outgoing tangent directions in the local diagram
at o induced by (D,H). In addition, these two tangent directions must be locally
equivalent if we want (D,H) to be smoothable since o must map to the root of the
corresponding bifurcation tree and there is only one forward tangent direction from
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the root (see Figure 10 (c), (d), and (e)). _e three possible cases on L1 are shown in
Figure 10 (b) and the restrictions are x1 + y1 = x′1 + y′1 = 1/2, x1 , x′1 ⩾ 0, and y1 , y′1 > 0.

Let ∫L i
ω be the integral of ω along L i from p to q. _en (D,H) is solvable if

and only if ∫L1
ω = ∫L2

ω = ∫L3
ω = ∫L4

ω. Depending on the cases, ∫L1
ω = 0 or

1/2 − 2x1 − y1 or 2x′ + y′ − 1/2. _erefore, −1/2 < ∫L1
ω < 1/2. Similarly, −1 < ∫L2

ω =
2x2 + y2 − z2 < 2, −1 < ∫L3

ω = x3 − y3 < 1, and −2 < ∫L4
ω = −2x4 − y4 + z4 < 1.

_erefore, by adjusting the values of x2 , y2 , z2 , x3 , y3 , x4 , y4 , z4, for the three cases
of the global diagram restricted to L1 in Figure 10 (b), we can always ûnd a solvable
global diagram and the corresponding (D,H). Moreover, the projection from Γ to
a bifurcation tree corresponding to each of the three solvable cases are sketched in
Figure 10 (c), (d), and (e), respectively.
For the case in Figure 10 (c), p and q map to the same point that has three forward

tangent directions in the bifurcation tree. _erefore, to determine the smoothability
of a solvable (D,H) whose projection to its bifurcation tree is as in Figure 10 (c),
the intrinsic global compatibility conditions are trivially satisûed and only need to
be tested for Hp and Hq . More precisely, suppose Hp has a basis {1, fp}, Hq has a
basis {1, fq}, u2, u3, and u4 are themarked points on Cp that are the reductions of the
tangent directions at p corresponding to the edges L2, L3, and L4, respectively, and v2,
v3, and v4 are themarked points on Cq that are the reduction of the tangent directions
at q correspondingwith the edges L2, L3, and L4, respectively. _en byAlgorithm 2.13,
(D,H) is smoothable if and only if the linear equations αp+ fp(u i)βp = αq+ fq(v i)βq
have a solution for the unknowns αp , βp , αq , βq such that βp /= 0 and βq /= 0.

To determine the smoothability of a solvable (D,H) whose projection to its bi-
furcation tree is as in Figure 10 (d) (respectively, Figure 10 (e)), one only needs to test
the intrinsic global compatibility conditions at p (respectively, at q),which reduces to
saying that (D,H) is smoothable if and only if the three forward tangent directions
at p (respectively, at q) are locally equivalent.
Finally, let us sum up the smoothability test for (DA,HA) based on the above

discussion on all cases of possible saturations of (DA,HA) as follows: (DA,HA) is
smoothable if and only if either at one of p and q, the three forward tangent directions
are locally equivalent, or the linear equations αp + fp(u i)βp = αq + fq(v i)βq have a
solution for the unknowns αp , βp , αq , βq such that βp /= 0 and βq /= 0.

A Berkovich Skeleta and Saturated Metrized Complexes

A.1 Saturated Metrized Complex associated with a Berkovich Skeleton

We begin by brie�y recalling the concept of the skeleton of the Berkovich analytic
curve. A semistable vertex set V of Xan is a ûnite set of type II points of Xan such that
the complement of V in Xan is a disjoint union of a ûnite number of open annuli and
an inûnite number of open balls. Let Σ(Xan ,V) be the skeleton of Xan with respect
to a semistable vertex set V .

In order to associate a saturatedmetrized complex C(Σ)with Σ(Xan ,V),wemust
associate the following datawith it: ametric graph Γ, a smooth algebraic curve Cp for
each point p ∈ Γ, and for each Cp , wemust specify a set Ap ofmarked points that are
in bijection with the set of tangent directions at p. _emetric graph Γ underlying the
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saturatedmetrized complex is deûned as being isometric to Σ(Xan ,V). We associate
the algebraic curve Cp with each point p ∈ Γ as follows: since the value group ofK is
R, every point in Σ(Xan ,V) is a type II point [8]. Hence, the double residue ûeld has
transcendence degree one over κ and is isomorphic to the function ûeld of a smooth
curve over κ. _is smooth curve is well deûned up to isomorphism and we associate
this curve Cp with the point p ∈ Γ. We deûne marked points associated with the
algebraic curve Cp as follows: let x be the type II point corresponding to p, the set
of tangent directions at any type II point in Xan has a canonical bijection with the
set of discrete valuations of the double residue ûeld at that point [8, Chapter 1]. _e
set of discrete valuations of the double residue ûeld is in turn in bijection with the
set of closed points of Cp [8, Chapter 1]. For each tangent direction t ∈ TanΓ(p), we
deûne its marked point as the point in Cp associated with the corresponding tangent
direction in the skeleton Σ(Xan ,V). Note that themarked point associatedwith each
tangent direction is distinct.

Lemma A.1 For any skeleton Σ(Xan ,V) of Xan, the data C(Σ) deûne a saturated
metrized complex. In particular, for all but a ûnite number of points in Γ, the curve Cp
is a projective line over κ.

Proof To show that C(Σ) is a saturated metrized complex, we must verify that the
curve Cp has genus zero for all but ûnitely many points of Γ. Using [6, (5.45.1)], we
have g(X) = g(Γ) +∑p∈Γ g(Cp). Hence, g(Cp) = 0 for all but ûnitely many p.

Remark A.2 _e semistable vertex sets of X are in one-to-one correspondencewith
the semistablemodels of X. (We refer to [6, §5.14 and §5.29] for a detailed treatment
of the topic.) Via this correspondence, we can associate a saturated metrized com-
plex with a semistable model of X. _is saturated metrized complex is the “limit" of
the metrized complexes associated with semistable models obtained by successively
blowing up the special ûber at its nodes.

We deûne a morphism from τ∗∶Div(X) → Div(C(Σ)) called the specialization
map and amap that takes a rational function on X to a rational function on C(Σ) is
called the reduction map. We follow the analogous construction for metrized com-
plexes by Amini and Baker [3, §4].

A.2 Specialization Map

Suppose that rV ∶Xan → Σ(Xan ,V) is the retraction map and let {rV ,s}s∈[0,1] be the
family of retraction maps associated with the deformation retraction from Xan to
Σ(Xan ,V). In particular, rV ,1 = rV . For a closed point z ∈ X, the point rV(z)
has a unique tangent direction tanV (z) in Xan that lies in the image of the retraction
map rV ,s , where s is in an open neighborhood of 1. _e map τ∗ takes z to the point
(rV(z), redp(tanV (z)) on C(Σ), where redp(tanV (z)) is the marked point in Cp cor-
responding to the tangent direction tanV (z). We extend this map linearly to deûne a
specialization map from Div(X) to Div(C(Σ)).
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Lemma A.3 _e specialization map τ∗ is a homomorphism from Div(X) to

Div(C(Σ))
that takes eòective divisors onDiv(X) to eòective divisors onDiv(C(Σ)). _e image of
τ∗ is the set of all divisors (DΓ , {Dp}p∈Γ) ∈ Div(C(Σ)) such that the support of Dp is
contained in the set Cp ∖ Ap for all p ∈ Γ.

A.3 Reduction of Rational Functions

Consider a point p ∈ Γ and let x be the corresponding type (2) point in Σ(Xan ,V).
By f (x), we denote themultiplicative semi-norm deûned by x evaluated at f and let
c ∈ K∗ such that ∣c∣ = ∣ f (x)∣. Let H̃(x) be the double residue ûeld of x and note
that the ûeld H̃(x) is isomorphic to the function ûeld of Cp . Suppose that f maps
to fx in H̃(x). _e reduction map takes f to (c−1 f )x ; we denote (c−1 f )x by f̃x and
the corresponding rational function in Cp by f̃p . Note that fx is only deûned up to
multiplication by κ∗ and hence, its divisor is well deûned.

Lemma A.4 ([3, Lemma 4.3]) _e dimension of any ûnite-dimensional subspace of
κ(X) is preserved by reduction.

Given a rational function f on X,we let fΓ be a rational function on Γ given by the
restriction to the skeleton Γ = Σ(Xan ,V) of the function log ∣ f ∣∶Xan → R ∪ {±∞}.
Hence, given a rational function f on X, we associate a rational function

f = ( fΓ , { f̃p}p∈Γ)
on C(Σ). _e following version of the Poincaré–Lelong Formula for saturated met-
rized complexes establishes a compatibility between the specialization and the reduc-
tion maps.

_eorem A.5 (Poincaré–Lelong Formula) For any non-zero rational function f on
X, suppose that f is the reduction of f onC(Σ), sowe have τ∗(div( f )) = div(f). Hence,
themap τ∗ takes principal divisors in X to principal divisors in C(Σ).

Proof For a point x in the skeleton Σ(Xan ,V), we partition the set of Tanx of tan-
gent directions at x into the tangent directions in Σ(Xan ,V) and its complement and
denote them by Tani ,x and Tanr ,x , respectively. By parts (2) and (5) of the slope for-
mula [6, _eorem 5.69], we note that ordt( f̃x) = 0 for all but points x ∈ Σ(Xan ,V)
and t ∈ Tanr ,x except those that lie in the image (under the retraction map) of the
support of div( f ). By part (2) of the slope formula, slt( fΓ) = ordt( fx). Hence, div(f)
has support at a ûnite number of points and its support coincides with the support
of τ∗(div( f )). Hence, div(f) is a divisor (not just a pseudo-divisor). Let S be the
union of the support of div( fΓ) and the points of Γ with valence at least three. _us,
τ∗(div( f )) and div(f) coincide on points in Γ ∖ S. Consider the metrized complex
C(Σ)∣S obtained by restricting C to S. More precisely, C(Σ)∣S is ametrized complex
whosemetric graph is Γ with themodel given by the set S and the algebraic curves Cv
for every point in v ∈ S and the marked points exactly as in C(Σ). By the Poincare–
Lelong formula [3], we have τ∗(div( f )) and div(f) coincide on C(Σ)∣S.
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B Λ(1)D,H, Λ(2)D,H, Λ(3)D,H, and Λ(4)D,H as Partially Ordered Sets

In this section, we show that a partial order can be naturally imposed on the spaces
Λ(1)

D,H, Λ
(2)
D,H, Λ

(3)
D,H, and Λ(4)

D,H of partition trees.
Let ρ be a solution to (D,H) and B be the corresponding partition tree. Recall

that for a partition tree (T, πT) in Λ(1)
D,H = Λρ , we have a canonical projection ΘB

T

from B to T (Proposition 4.12) which induces a partition Pc of (dρ
B
)−1(c) for any

c ∈ Im ρ (Remark 4.13).
For two partition trees (T1 , πT1) and (T2 , πT2), we say (T1 , πT1) ⩽ (T2 , πT2), or

simply T1 ⩽ T2, if the partition of (dρ
B
)−1(c) induced by T1 is a reûnement of the

partition induced by T1 for each c ∈ Im ρ. Moreover, if T1 ⩽ T2, there is a natu-
ral map ΘT1

T2
∶T1 → T2 with x ↦ y if (ΘB

T )−1(x) ⊆ (ΘB
T )−1(y). Clearly, in this

sense, the coarsest partition tree (Im ρ, ρ) and the ûnest partition tree (B, πB) are
the maximum and minimum of Λρ , respectively, (recall that as a rooted metric tree,
Im ρ = [minp∈Γ ρ(p),maxp∈Γ ρ(p)] has its root at minp∈Γ ρ(p)).

_e following lemma is a natural consequence of the deûnitions of partition trees
and themaps between them.

Lemma B.1 If T1 ⩽ T2 ⩽ T3 as partition trees, the following diagram commutes.

Γ T1

T2

T3 Im ρ
πT1

πT2

πT3

ρ

ΘT1
T2

ΘT1
T3

d ρ
T1

ΘT2
T3

d ρ
T2

d ρ
T3

_e following lemma says that Λ(2)
D,H is lower closed.

Lemma B.2 If T ∈ Λ(2)
D,H, then any element T

′ ∈ Λ(1)
D,H with T′ ⩽ T is also in Λ(2)

D,H.

Proof Recall that, by deûnition, to say T ∈ Λ(2)
D,H is equivalent to saying that for

every point p ∈ Γ and each pair of tangent directions t1 , t2 ∈ Tan+Γ(p), t1 is locally
equivalent to t2 if πT∗(t1) = πT∗(t2).

On the other hand, T′ ⩽ T means that T′ induces ûner partitions on forward tan-
gent directions of B than T. _us if πT′∗(t1) = πT′2∗(t2), then πT∗(t1) = πT∗(t2)
and we conclude T′ ∈ Λ(2)

D,H.
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(a)

p0

p1

p2

p3

α β

Γ

T

πT

(b)

x

y

z

O
AA0

A1

A2

A3

P0 (1, 1, 1)

P1

P2

P3

Figure 11: (a) Ametric tree Γ with the projection onto a partition tree. (b) Λ(1)
D,H is a union of

three triangles △OP0P1 , △OP0P2 , and △OP0P3 , and the space {T ∈ Λ(1)
D,H ∣ T ⩽ A} is the

union of triangles△OA0A2 ,△OA0A3 , and trapezoid OA0AA1 .

SinceB is theminimum element of Λ(1)
D,H, we have the following corollary.

Corollary B.3 If Λ(2)
D,H is nonempty, then B is an element of Λ(2)

D,H.

Example B.4 We consider a simplemetric graph Γ that is ametric treewith root p0
and leaves p1, p2, and p3 and all edge lengths being 1 as shown in Figure 11 (a). LetC be
a saturatedmetrized complex of genus 0 with underlyingmetric graph Γ. Suppose the
global diagram of a base-point-free diagrammatic pre-limit g1

d (D,H) on C has its
diòerential formpartwithmultiplicity 1 on each direct edge from p0 to p i (i = 1, 2, 3).
_en each partition tree T in Λ(1)

D,H can be derived by the following procedure: (1)
glue the three edges p0p1, p0p2, and p0p3 continuously from p0 of length α, and then
(2) choose two edges and continue the gluing on the selected edges for length β (as
shown in Figure 11 (a)). Note that we have three cases for step (2) based on which
two edges are selected: Case 1 for p0p1 and p0p2 being selected, Case 2 for p0p2 and
p0p3 being selected, and Case 3 for p0p1 and p0p3 being selected. Let x be the total
length glued for p0p1, y the total length glued for p0p2, and z the total length glued
for p0p3. _en we can represent T uniquely by a point with coordinates (x , y, z).
In particular, the coordinates are (α + β, α + β, α) for Case 1, (α, α + β, α + β) for
Case 2, and (α + β, α, α + β) for Case 3. _erefore Λ(1)

D,H is a union of three triangles
inside a unit cube. As shown in Figure 11 (b), Λ(1)

D,H =△OP0P1 ∪△OP0P2 ∪△OP0P3,
where△OP0P1 corresponds to Case 1, △OP0P2 corresponds to Case 2 and△OP0P3
corresponds toCase 3. Moreover, let point Awith coordinates (αA+βA, αA+βA, αA)
be a point in△OP0P1. In Figure 11 (b), the space {T ∈ Λ(1)

D,H ∣ T ⩽ A} is shown as the
darker region (polyhedral complex with vertices O, A, A0, A1, A2, and A3).
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For this simplemetric graph, to deriveΛ(2)
D,H,Λ

(3)
D,H, andΛ(4)

D,H, the only local data
needing to be examined are for the curve at p0. Note that this also means Λ(3)

D,H =
Λ(4)

D,H. Denote the outgoing tangent directions at p0 by t1, t2, and t3, where t i is the
tangent direction from p0 to p i . We have the following cases under the assumption
that (D,H) is base-point free (the conventional notations of open, closed and half-
open-half-closed intervals are used for those of segments).

Case 1: (D,H) has degree 1. _en the local partition at p0 is the ûnest partition
{{t1}, {t2}, {t3}}. We have Λ(2)

D,H = Λ(3)
D,H = Λ(4)

D,H = {O}.
Case 2: (D,H) has degree 2. _en the local partition at p0 is made of a singleton
and a set of two elements.

Subcase 2.1: _e local partition at p0 is {{t1 , t2}, {t3}}. _en Λ(2)
D,H = [O , P1] and

Λ(3)
D,H = Λ(4)

D,H = (O , P1].

Subcase 2.2: _e local partition at p0 is {{t2 , t3}, {t1}}. _en Λ(2)
D,H = [O , P2]

and Λ(3)
D,H = Λ(4)

D,H = (O , P2].

Subcase 2.3: _e local partition at p0 is {{t1 , t3}, {t2}}. _en Λ(2)
D,H = [O , P3]

and Λ(3)
D,H = Λ(4)

D,H = (O , P3].
Case 3: (D,H) has degree 3. _en all tangent directions at p0 are locally equivalent.
We have Λ(2)

D,H = Λ(1)
D,H and Λ(3)

D,H = Λ(4)
D,H = Λ(1)

D,H ∖([O , P1] ∪ [O , P2]⋃[O , P3]).
One can consider Λ(1)

D,H as the compactiûcation of Λ(4)
D,H’s in case (3) by Λ(4)

D,H in
case (1) and (2).

Remark B.5 _e spaces Λ(1)
D,H, Λ

(2)
D,H, Λ

(3)
D,H, and Λ(4)

D,H havemuch richer struc-
tures, e.g., lattice structure, metric, and convexity, which will be presented in our
follow-up work. Moreover, we expect that the space Λ(4)

D,H has an interpretation in
terms of a skeleton of the analytiûcation of the following moduli space of maps: the
moduli space of all maps of the form X → P1

K, where X is the smooth curve in the
commutative diagram 1.2. Results of this �avor have been obtained by Cavalieri et al.
[13] for spaces of admissible covers and for moduli spaces of curves by Abramovich
et al. [1]. Aswe vary over all limits g1

d on the saturatedmetrized complex C, the space
⋃(D,H) Λ

(4)
D,H parameterizes the space of metric trees underlying all smoothings of

limit g1
d in C.
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