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ON NILPOTENT FACTORS OF CONGRUENT IDEAL CLASS
GROUPS OF GALOIS EXTENSIONS

YOSHIOMI FURUTA

Introduction.

Let K be a Galois extension of an algebraic number field k of finite
degree with Galois group g. Then g acts on a congruent ideal class
group © of K as a group of automorphisms, when the class field M
over K corresponding to ® is normal over K. Let I, be the augmenta-
tion ideal of the group ring Zg over the ring of integers Z, namely I,
be the ideal of Zg generated by ¢ — 1, ¢ running over all elements of
g. Then I ® is the group of all elements a°~' where a and ¢ belong to
® and g respectively. Put Ii*'® = I[,(I}®) for ¢=0,1,2,---. Then we
have the sequence ® DID® DD D ... and call it the lower central
series for © with respect to g.

Denote by K§, or simply by K® the class field over K correspond-
ing to Ii® and denote by G(K“*"/K%) the Galois group of K“*" over
K®, Then for ¢ = 1 the field K is called the central class field of K
in M with respect to k, and some structure of G(K’/K) has been studied
in [5] and [6], when M is the absolute class field of K.

The purpose of the present paper is to investigate the structure of
the lower central series for © or the structure of the Galois groups
G(KV/KY) for ¢ =0,1,2, ---.

When K is a quadratic extension of the rational number field, the
explicit criteria for the divisibility of the class number by power of 2
has been studied by various authors. Especially P. Barrucand and H.
Cohn [2] and H. Hasse [9] gave new criteria resently, and G. Gras [7]
and [8] studied the structure of /¢-class groups of ideals for cyclic ex-
tensions of degree a prime 4. The foundation of the argument was a
generalization of the ambigous class. This can be considered as a study
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of the ‘“upper” central series for ®© in the above sense when 9 is the
absolute ideal class group of a cyclic extension K over k of a prime
degree.

In the present paper, we shall see that the investigation of the
“lower” central series make simplify the argument and possible to gen-
eralize it to the case of non-cyclic Galois extensions. In §1 we treat
the lower central series for the ideal class group of cyclic extensions and
it is reduced to the structure in the genus group. In the case of cyclic
extensions our argument is quite simple, but it is not so in the case of
non-cyclic extensions though the result is close to that of cyclic case
(Remark to Theorem 5). This is caused by the fact that the augmenta-
tion ideal I, operates on ® as a homomorphism and the homomorphism
theorem can be used in the case of cyclic extensions, but this does not
hold in the case of non-cyclic extensions. Qur main purpose in §2 be-
low is to reduce the structure of G(K“*V/K®) to the structure in the
central class group G(K®/K) which coincides with the genus group in
the case of cyclic extensions. First of all in §2 we recall the structure
of G(K/K) in general case. Namely, the argument of the genus field
and central class field for the absolute class field, which has been treated
in our previous papers [4],[5] and [6], is generalized to that for any
class fields. In §3 we study on cohomological expressions of central
class groups (Theorem 1 and 2), and in §4 we express G(K“+V/K®) by
cohomology groups attached to K/k (Theorem 3 and 4). Then in §5 we
have the main result (Theorem 5).

§1. The case of cyclic extensions.

Let & be an algebraic number field of finite degree and K be a
cyclic extension of finite degree with Galois group g generated by o.
Moreover let M be a class field over K corresponding to the congruent
ideal class group ©. We assume that M is normal over £ and we de-
fine an endomorphism ¢* on D by ¢!a) = a“* for any a of ® and ¢ =
1,2,.... Then we see I'D = ¢/(D). Let K be the class field over K
corresponding to ¢*(®) and denote by G(K“*?/K®) the Galois group of
K% ogver K. Then we have

G(K(iﬂ)/K(i)) ~ ¢i(@)/¢i+1(@) .
Let ¢* be the homomorphism of D/p(®) to ¢{(D)/e*(D) induced from ¢
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and denote by N the kernel of ¢?. Then the kernel of ¢ is equal to
N®p(D)/ (D), and we have

( 1 ) G(K(i+1)/K(i)) =~ @/(N(Z) S0(@)) .

When M is the absolute class field, K@ is the genus field of K with
respect to k& and the structure of the group G(K®/K), which is iso-
morphic to D/p(D), is known largely”’. We are able to study the struc-
ture of G(K“*V/K®) more explicitly by means of this way, for which
we will treat in other paper. In the following sections we shall study
to obtain a corresponding formula to (1) in the case where K is not
necessarily ecyclic over k.

§2. The genus group and the central class group.

For any algebraic number field K we denote by Jr and K* the idele
group of K and the multiplicative group of non-zero elements of K which
is embedded in Jr in usual way. For an extension L of K of finite
degree we denote by N,z the norm from L to K and by (L: K) the ex-
tension degree. When L is normal over K, we denote by G(L/K) the
Galois group of L over K.

Let M D K Dk be a sequence of extensions of algebraic number fields
of finite degree. Denote by K%, the maximal extension of K which is
contained in M and is obtained from K by composing an abelian exten-
sion over k. K3, is called the genus field of K itn M with respect to
k. When M is the absolute class field K of K, K;/k is called? simply the
genus field of K with respect to k.

PRrOPOSITION 1¥. Let notation be as above. Then K%, is normal
over K and we have

Nl x

GK% ./ K) =~ .
(Bern K) Newdx N K*Nopud

Proof. Let M, and K, be the maximal abelian extensions over %k
contained in M and K respectively. Then K%, = KM, and the transfer
theorem of class field theory implies G(K%,./K) = G(M,/K)) = F*Ngxl z,
[Ny o = BN x| KNy uy = NI g/ Ngpd g O BNy 31).

1) Cf. Furuta [4].

2) Cf. Froéhlich [3].
3) Cf. Furuta [4].
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Let M DK Dk be as above and p be an any prime of M. For the
prime of K or M which is divisible by p, we use the same letter p for
the sake of simplicity.

We call M an EL-genus extension® of K with respect to k if M, is
obtained from K, by composing an abelian extension over k, for every
prime p.

We call L a central extension of K with respect to k, if L is an
extension of K which is normal over k£ and G(L/K) is contained in the
center of G(L/k).

Now for a sequence M D K D k, we denote by K s the maximal
extension of K which is FL-genus and central with respect to ¥ and is
contained in M. When M is the absolute class field K of K, If,—(,,, is
called the central class field® of K with respect to k.

PROPOSITION 2 (Masuda [11]). Notation being as above, we have
GK yju/ K) = Ngpd x| Ng K> Nyped )
Combining with Proposition 1 we have® the following
PROPOSITION 3. Notation being as above,
GR ypn | Kk ) = (B N Ngpd )| N K- (% 0 Nagjud o))
When M is abelian over K, we have further the following

PROPOSITION 4. Let K be an extension of k and M be an abelion
extension of K. Let L be a subfield of M and assume that L contains
K% . Then we have

K N Nl
NgpK* 0 Nprd ) 0 Nypd 2)

G(Ly/L) =

Proof. Proposition 2 implies
G(Lyp/L) = Ny 1/ Ny N a2 ) -
Moreover by the translation theorem in class field theory,
NppL*Nyyrd ) = Nrp(Nrg(L* N yyrd o))

4) Cf. M_asuda [11], in which this is called an EL-abelian extension.
5) Cf. Furuta [5]. In the case where M = K, M itself is already EL-genus, be-
cause K is unramified extension over k.

6) Cf. Furuta [5, p.151].
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= NK/k(KxNM/KJM n NL/KJL) .
Hence we have
(2) NL/k(LXNM/LJM) = NK/k(KX n NL/KJL)'NM/kJM .

On the other hand L contains K}, = KM, where M, is the maximal
abelian extension of £ contained in M. Hence L%, = LM,= L, and
Proposition 1 implies

( 3) NL/IcJL = NL/IcJL n kXNM/kJM = (kX N NL/kJL)'NM/kJM .
Thus we have

(F* 0O Npwd) Nypd u
NK/IC(IK>< n NL/kJL)‘NM/kJM
- N My
" NeuwE* N Nygd ) (B 0 Nagyed o)

G(Lyp/L) =
(1)

Let us consider the special case where M is the absolute class field
of K, which we denote by K. Let Up be the unit idele group of K
whose real infinite components are the group of all non-zero real num-
bers or of all positive real numbers according as we treat K in wide
sense” or in narrow sense.

PROPOSITION 5. Let K be a Galois extension of k and L be a sub-
field of the absolute class field K of K. Assume that L contains the
genus field K* of K with respect to k and L is normal over k. Put
G =GWL/k) and H = G(L/K). Then we have

EX N Nyl
Ngp(K* N Nyed )Er O NgguUg)

G(Lgp/L) =
where E, stands for the global unit group of K which ts embedded in
I in usual way.

Proof. We have K*NyxJy = K*NgxJz = K*Ux and Np,J, D
Ng;wUg, since L is unramified over K. Hence the formulas (2) and (8)
in the proof of Proposition 4 are replaced by

NL/k(LXNM/LJM) = NK/k(KX UK n NL/KJL)
= NK/lc(K>< N NL/KJL) ‘NK/k UK

7) This means that all infinite primes are not ramified too.
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and

NL/IcJL = NL/IcJL n kxN,—{,sz = NL/kJL n kX'NK/k(KxNTc/KJTc)
= NL/kJL ﬂ kXNK/k(KXUK) = (kx ﬂ NL/kJL)'NK/kUK .
Thus the formula (4) is also replaced by
(F* N Nppdr) NepUxg
NK/k(KX n NL/KJL)’NK/kUK

- kN Nypls
" NgpE* N Nyjgd 1 )(B* N NgpUg)

G(Lzn/L) =

and the proposition follows.

§3. Cohomological expression of G(I:M,k /L).
Let K be a Galois extension of # and M be an abelian extension of
K. Let further L be a subfield of M. Assume that L contains the genus
field K%, and L is normal over k. Put G = G(L/k), H = G(L/K) and
L = dJg/L*.
We consider a natural exact sequence

0L —5J, Psec,—so.

Then we have the following commutative diagram, where the rows are
exact and the columns are corestrictions Cory g:

4 ot 4
o> HOH, T -5 HYH, Cp) 2> H(H, L) —2> HYH, J;) —> - -

R l

> HYG, J;) -2 H(G, C) 2> HAG, L") 2 HYG, ;) —> - --

Let f be a natural homomorphism of HYG,LX) to H(G, LX)/
COYH'G5§IH’1~(H,CL).
Now we put

X = (kx N NL/kJL)/NK/k(KX N NL/KJL) ’

(5)
{Y = NK/Ic(KX N NL/KJL)(kX N NM/ICJM)/NK/Ic(KX N NL/KJL) .

Then by Proposition 4 we have
(6) G(Ly/L) = X|Y .

For any finite group G and any G-module A we denote by &, the standard
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isomorphism of H°(G,A) to A¢/Ng;A, where A¢ is the subgroup of A
consisting of all G-invariant elements and N, is the trace map. Then
by k&, we have

Ngw(K* N Npgd ) [ NguWNgL*) = Cory ¢ (Ker )

7
(7) = Cory,q 34H'(H, C;)

and moreover

X = ((k* N Ny )| NppL®) | (NgwE* N Nzjgd )| NNz xL™))
= f.-0*H Y(G,CL) = ¢*H (G, C)/Cory,q 64H(H,Cy)
= ¢*H (G, Cyp)/é* Cory,c H'(H,Cy)
=~ HY@G,Cy)/(Cory s H*(H,C.) + Ker &) .

Since Ker ¢t = j*H-Y(G,J.), we have

H™'(G,Cy)

8 X .
() Cory,qe HW(H,Cy) + J*H™(G, J1)

IR

Next, we translate Y on the same stage for X. Consider the fol-
lowing commutative diagram whose rows and columns are exact by the
natural homomorphisms:

0 0 0

0"'——)LX/(LX ﬂ NM/LJM)_—>JL/NM/LJM'_—) JL/LXNM/LJM —_— 0
A A

o
0 > L* LN & I s J)L¥ ——>0
Ago \2

0—> L*N Nyply —2> NuyjpJy —> LNy d y/LX —> 0 .

0 0 0

Then we have the following commutative cohomology exact sequence.
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!

- —> H7(G, JL/LXNM/LJM) —> HYG,L*[(L* N NM/LJM)) — H'(G, JL/NM/LJM) >

" \ [ [

> HG,J. /L) ——> HG,L) ——— H(G,J)

TM T?*
& '“

<+ —> HNG, L*Ny; 1y | L) —> HYG,L* N Nayyrd ) N H(G,Nyjpds) —> -+

| |

]

> 0o

This implies that

(B O Nagud ) | N 1w(L* O Nygyd o)
= ((LX n NM/LJM)G n NM/kJM)/NL/k(LX n NM/LJM)
= Ker ¢, = 34 H (G, LN y,.d /L) .

Moreover since ((L* N Nuyyzd )% N Ngu(E* N Nyyed 1))/ N (L 0 Noygyrd )
= Ker (fo¢" by (70, we have ((* N NyuJu) N Nxi(K* N NypxJ1)/
Non@* 0 Ny y) = 35H NG, L*N g1 /LX) N Ker (f o ).

Now by (5) and (7) we have

Y = (f o4 H (G, L*N 3,1 3/ L))
= (fod* o YH (G, L*N y;2J | L*)
= (0M(Im 2 + Cory,qe (Im 6%))/Cory ¢ (Im d%)
= (*(Im 2% + ¢* Cory,s H'(H,Cp))/é* Cory o HY(H,Cy)

~ Im 2 + Cory, H'(H, C.) + Ker &*
- Cory,q H'(H,C,) + Ker & '

(9)

Since Ker ¢* = j*H (G, J;), it follows from (6), (8) and (9) the following

THEOREM 1. Let K be a Galois extension of k& and M be an abelian
extension over K. Let L be a subfield of M which contains the genus
field K%, of K in M with respect to k. Assume that L is nmormal over
k and put G = G(L/k) and H = G(L/K). Denote by L,, the mazimal
extension of L which is EL-genus and central with respect to k. Then
we have

H_I(G, CL)

G(Lyw/L) =
Laere /1) ZFHG,DWM|L)) + Cory,e H'(H,C;) + 7*H (G, Jy)
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where D(M|L) is the idele class group in L corresponding to M by class
field theory; A and j* are induced respectively by the injection map 2
of DIM/L) to C, and the natural homomorphism j of J. to Cj.

COROLLARY. Let K be a Galois extension of k and L be a subfield
of the absolute class field K of K. Assume that L contains the genus
field of K with respect to k and L is normal over k. Assume further
that any unit of k which is everywhere locally norm from K is a norm
of an element of K. Put G = G(L/k), H= G(L/K) and let G, be the
decomposition group of any one of the prime divisors p, in L, p, run-

ning over all finite and infinite primes of k ramified in Ly =1, -.-,1).
Then
. H (G, C)p)
G(Lz;/L) = ) <L
Canl L) & e o B, Op) + 33, Corg, g HNG, Cp)
H%G,2)

= Corgo HYH, Z) + >, Corg, cHG,, Z)

Proof. By the assumption for the units of k, Proposition 5 implies
G(Lz;/L) = X, where X is as in (5). Then the corollary follows from
(8), since it is well known that HY(G,C,) = H3G,Z) and 7*H (G, J;)
= >t Corg, ¢ H¥G,, Z).

THEOREM 2. Let K be a Galois extension of k with Galois group g
and let M be an abelion extension over K. Denote by D(M/K) the idele
class group in K corresponding to M by class field theory. Then we
have

H™'(g,Cx)

GR yyu) KX ) = ’
ST ZFH (g, D(M/K)) + >3:_, Cor,, , H™'(g,, Cx)

where g, is the decomposition group of any one of the prime divisors
of p, tn K, p, running over all finite and infinite primes of k ramified
n K.

Proof. We note that the right hand sides of Proposition 3 and
Proposition 4 are coincide, when L = K. Theorem 1 was obtained by
transforming the right hand side of Proposition 4. Therefore G(K ]
K% 1) is isomorphic to the right hand side of Theorem 1 by putting L = K.
Since it is well known that j*H-'(g, Jx) = >!_, Cor,, ,H™(g,, Cx), the theo-
rem is proved.
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Now for a while let G be any finite group, H be a subgroup of G
and A be any G-module. Denote by I; the augmentation ideal of the
group ring ZG. Denote further by N the trace map, namely Ny(a) =
> weno0 for an element a of A. Then Ny is an endomorphism of A.
Denote by Oz(A) the kernel of Ny. Then we have the isomorphism
k1t HN(G, A) = 04(A4)/15(A), and Cory, H'(H, A) = (0x(4) + 15(4)) [ 14(A).
Hence H (G, A)[Cory,¢ H'(H, A) = 04(A4)/(0x(A) + 1,(A)). Now assume
that H is normal in G. Then we see NyOg(A) = Og/z(NgA) and
Nyl;(A) = I4(NgA) = I5z(NgA). Hence HYG,A)/CorycH'(H,A) =
Os(NzA)/15,5(NgA) = H(G/H,N,zA). Let N, be the homomorphism
induced from Ny of Og(4)/14(4) to Ogu(NyA)/Ign(NyA). Then we
have

PROPOSITION 6. Let G be a finite group, H be a normal subgroup
of G and A be a G-module. Then we have the following exact sequence:

H-(H, 4) 228 7@, 4) Y% H-YG/H, N,A) —> 0 .
Now we come back to the investigation of the structure of G(EM,K /L).
Notation being as before, we have the following isomorphism by Theo-
rem 1 and Proposition 6.

(10) Clp/L) = o~ NaH G, CY) .
NyZH (G, DM /L)) + Nyj*H (G, J 1)

We consider the following commutative diagram.

~ . 0.C) Nz  Oyu(NyC) 1 _

HG,C) —2% Yen) A YenrWabn) L g-yq/H,N,C,)

I : T,(C) TouNuCr) [H, NuCr
28

P I b

. v1 Og(DMM/LY) Nu Ogu®NxDM/L) 3
HG, DMIL) —> T (DALY~ IomWNaD@M/L) > H (G/H,NxDM/L)

where 2 and 2”7 are induced from the injections of the numerators re-
spectively and 2% is induced from also the injection map in: NyD(M/L)
— N,C;. Then the following proposition follows immediately from (10),
the above diagram and Proposition 6.

PROPOSITION 7. Notation being as in Theorem 1 and as above, we
have
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7 -1
G(Ly /L) = HY(G/H,NxCy) . .
AHG/H,NyD(M/L)) + Nuj*H-\G, J ;)

§4. Cohomological expression of G(K“*V/K®)

Let K be a Galois extension of k£ with Galois group g and M be a
class field over K corresponding to an idele class group D(M/K). De-
noting by Cjx the idele class group of K as before, put © = Cx/D(M/K).
Assume that® M is an EL-genus extension of K with respect to k¥ and
normal over k. Then ® is a g-module in natural way. Let ®%,7=1,
2, -+, be the lower central series for ® with respect to g in the sense
of Introduction and let K, be the extension of K corresponding to D®.
Then DK, /K) = (IiJg-K*-NyxJ )/ K* and K, = K'M,k. We call the
field K, the i-th central class field of K in M with respect to k. When
M is equal to the absolute class field, we call K{, simply the i-th cen-
tral class field of K with respect to k and denote it by K.

Now since D = I'® by definition, we have for i = 1

GESGP | KRy = ID 1D = H'(g, I'D) .
For the sake of simplicity, denote by C® the idele class group of K@,
and put H, = GK§,,/K). Then DK,/K) = Ny, C? and we have the
following exact sequence in natural way:
0 —> D(M/K) —2> DK,/ K) —> D0 — 0

This implies the following cohomology exact sequence:

bl #
- —> H™(, DM/K) —> H~(g, Nz C) > H g, D)

a %
s Hg, DOM/K)) > HY(g, Ny C®) —%5 ... |
Hence we have

[H-Yg, Ng,C®): 2\ H (g, D(M /K)] < |H (g, D?)]|

1) : :
= |G(KSe | Kl -

On the other hand if we put L = K{, in Proposition 7, then EM,k =
Ki+» and we have the opposite inequality to (11). Therefore in the
above cohomology exact sequence p*, is surjective and we have the

8) Since we treat only EL-genus extensions contained in M, we add this assump-
tion for the sake of simplicity. Cf. also the footnote 5).-
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following

THEOREM 3. Let K be a Galois extension of k with Galois group g
and let M be an EL-genus extension over K with respect to k, abelian
over K and normal over k. Then for ¢ = 1 we have

GK§ 7 [ Kion) = H™(g, DK,/ K)) | #H (g, D(M | K)) ,

where A is induced from the injection map 2 of the idele class group
DM/K) to D(K$,/K).

We proceed our discussion to express the right hand side of Theo-
rem 3 by (—2)-cohomology groups. Notation being as above, put D% =
D(K$,/K) and consider the following natural commutative sequence:

0 D® ¢, pu-v _‘1'_, D4v/D®» 50 (exact)

Tiz Tid- T/li—l
Aoy !

00— D(M/K) — D%V — D% Y/D(M/K) —> 0 (exact) .
Then we have the following commutative diagram:

.« —— H-¥g, DY) __"’L) H-*(g, D%~V | D%) _5'_> H-'(g, D?) _902_, H-'(g, D% ") —» ... (exact)
a2 '[id. Tp:_, ng . Tid.
o —> H-(g, D) X5 F-(g, D0 /DM [K)) ~—> H-Yg, D(M/K)) == H-1(g, D4-) —> .- (exact)

We have

gD#H—-l(g, D(i)
A_H- g, DIM/K))

13)

In fact the left hand side of (13) is isomorphic to

H~'(g, D)/ %_H"'(3, DM/ K))
H-(g, D)/ o*H (g, D®)

and Theorem 3 implies H-(g, D¢ )/2_H (g, DIM/K)) = G(K,./ K&7P).
Moreover put M’ = K,. Then K2 = K>, K., = M’ and D(M’|K)
= D%, Hence Theorem 3 implies H-(g, D“")/¢*H (g, D?) = G(K)/
K72, Thus (13) is proved.

LEMMA. Let the following diagram of modules is commutative:
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AL T3 A T A, 1% 4, (exach)
Tz
) B—

Tz—z -1 TZO Txl
B, 9* B, 91 B, 9 B (exact)

Suppose that A_, and A, implies A_,= B_, and A, = B, respectively.
Then Ay/A,B, is a group extension of f,A,/A9.B, with kernel A_,/i_,B_,.

Proof. It is obvious that A,/i,B, is a group extension of A,/
(B, + f_.A_) with kernel (4,B, + f_,A_))/2,B,. Furthermore we have

A, ~ AJfLA, ~ JoA, — Ji4,
B, + fL A (B, + LA fLA JohBy 49,8,

and
4B, + f—lA—l ~ Y — f-lA—l — SaA
A,B, “ABoNfo A, 4B, N Kerf, A(XKer (fid))
f—lA—l — f—lA—l — f—~1A-1 ~ A——l

s

A(Ker g,) - A(9_B_) _f_1lz—1B—1 - A,B_,

since A_,B_, D 2_9.,B.,=f_,A_, = Ker f_,.
Now the following theorem follows immediately from (12), (13), lemma
and Theorem 3.

THEOREM 4. Let K be a Galois extension of k with Galois group g
and let M be an abelian extension of K which is normal over k and EL-
genus over K with respect to k. Then for 1 =1 we have

H~*g, DK, | K) | D(Kipy/ K))

GKeb | KW ) ~ ; ’
(K$72 | K$Pe) p_H g, D(K§» | K)|D(M/K))

where pi_, is induced from the natural homomorphism p,_, of
D72 K)/D(M|K) to D(K§7 | K)| DK,/ K).

§5. Reduction formula for G(K§;°/K,

Let Notation and assumption be as in Theorem 4 and for the sake
of simplicity put K% = K%, and D" = D(K{,/K). Especially K =K,
KV = KM,,C and D9 = Ck.

For ¢ > 1, Theorem 4 shows that G(K®*"/K"®) is isomorphic to a
homomorphic image of H-%g, G(K*» /K V). We study the homomorphism
explicitly. Put g, = g/[g,g], where [g,g] is the commutator subgroup of
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g Leta=3, t®aeg ®D“?/D?®, where reg,a,eD"" and the bar
means the class in obvious manner. Then since D“-?/D% ig g-invariant,
the isomorphism

(14) 02 5 Go ® D(i—l)/D(i) s H—Z(g’ D(‘i—-l)/D(i))

is defined by 0;(@) = 2 ¢, O:#[z] mod. coboundary, where the standard
expression of (—2)-cocycles follows Babakhanian [1,§21].
We have now the composition of the homomorphisms

k-1

@i 1 g ® D(i—l)/D(i) b > H—Z(g’ D(i—l)/D(i)) ot 3 H—l(g, D(’IZ)) 3 D(i)/D('L’+1) s

where §* is the same as in (12). Then for « as above we have®

0.() = ,s_,(( ST (et — 1)af) «[ ])

7€5,

=2 — 1o, mod. D¢V,

i€g,
It follows from Theorem 4 that GEK“P/K®) = D®/DD =~

H-*g, D%~V |D®)/tH-*g, D%V /D(M/K)). This implies that 0, is surjective
and we have®

(15)

Ker 0, = 6;YytH (g, D%~/ D(M | K))
1 _
4o {Z t®a.|a = 2. b, b,e D, > (o7 — 1)b, eD(M/K)} .

T€go PEQ

Denote by g{” the tensor product of r-copies of g, Moreover denote
by D" (g, M, K /K), for ¢ =0 and r = 1, the subgroup of g{” ® D®/D¢*v
which consists of

where a(@®, ---,z”) = >, b(p, ---,p0,) and b(p, - --,p,) is the class of

i=1 r
D® D% represented by b(p, - - -, p,) of D which satisfies
amn 2. (@ —1)--- (o, — b0y, - -+, p,) e DM /K) .

Py1stsPr€Y

For ¢ =0, put D(g, M, K) = D" (g, M, K®/K).
Then we have the following main theorem.

9) We use the additive expression for the product in Cg.
10) Cf. Babakhanian [1, §21.2].
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THEOREM 5. Let K be a Galois extension of k with Galois group
g and let M be an abelian extension of K which is normal over k and
EL-genus with respect to k. Then notation being as above we have

o7 o 8 ® Cr /DK i) K)
GEGD |KD,) = D(igzg,M’ I%k

Proof. By (16) and the definition of D™(g, M,K®/K), we have
Ker ®; = D¥(g, M, K%~V /K) and further

18 GK Y |K®) = g, ® DY/ D® .
= D(l)(g, M, K(’i—l)/K)

For ¢=0 and » =1 put 6{” =1,,_,,® 6,, which is a surjective homo-
morphism from g{” ® D¢V /D® = g P Qg,Q D~V /D® to gi’~» ® D/ DV,
Then it is easy to see that ©"D"(g, M,K“V/K) = D" (g, M, K?®/K)
and Ker " = g{"? ® Ker ©; C D" (g, M, K~V/K). Hence 0{” implies

(19) g(()'r) ® D(i—l)/D(i) - gér—l) ® D(i)/D(i.H)

D(r)(g’ M, K(i—-l)/K) - D(’r-l)(g, M’ K(%)/K) :

Now by applying this reduction formula to (18) repeatedly, the theorem
is proved.

Remark. If K is cyclic over & and the Galois group is generated
by o, then K, = K%, and g ® Cx/DK yx/K) = Cx/D(K%,./K). More-
over easily D®(g, M, K) = {a mod. D(K%,/K)|a € Cg, a“v* ¢ D(M/K)}.
Therefore Theorem 5 coincides with (1) in §1, when K is cyclic over k.
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