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Hardy Space Estimate for the Product of
Singular Integrals
To the memory of Akihito Uchiyama

Akihiko Miyachi

Abstract. H p estimate for the multilinear operators which are finite sums of pointwise products of singular
integrals and fractional integrals is given. An application to Sobolev space and some examples are also given.

1 Introduction

For 0 � λ < ∞, we define G(λ) as the set of all those C∞ functions a on Rn \ {0} such
that

|∂αξ a(ξ)| � cα|ξ|
−λ−|α|

for every multi-index α.
Let S denote the Schwartz class of testing functions. We denote by S0 the set of all those

f ∈ S such that f̂ (ξ), the Fourier transform, vanishes in a neighbourhood of ξ = 0.
If a ∈ G(λ), then we define the linear operator T : S0 → S0 by

T f = (a f̂ )∨ ( f ∈ S0),

where ∨ denotes the inverse Fourier transform. The function a is called the multiplier of
T. We denote by K(λ), 0 � λ < ∞, the set of all the operators T corresponding to the
multipliers a ∈ G(λ).

Let H p = H p(Rn), 0 < p � 1, denote the usual real variable Hardy space on Rn. We
define H p = Lp = Lp(Rn) for 1 < p <∞. For H p, see, e.g., [S, Chap. III].

The following H p-Hq estimate of the operators of class K(λ) is well known: If T ∈ K(λ),
0 � λ <∞, then, for p and q satisfying

0 < p � q <∞ and
1

p
−

1

q
=
λ

n
,(1.1)

the estimate

‖T f ‖Hq � c‖ f ‖H p(1.2)

holds for all f ∈ S0. See [CT, Section 4].
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In this paper, we consider the multilinear operator Λ defined by

Λ( f1, . . . , fk) =
∑
σ∈A

(Tσ
1 f1) · · · (Tσ

k fk)(1.3)

for f1, . . . , fk ∈ S0, where A is a finite index set and Tσ
j are linear operators such that

Tσ
j ∈ K(λσj ), 0 � λσj <∞ (σ ∈ A, j = 1, . . . , k).(1.4)

(Each term in the right hand side of (1.3) is the pointwise product of the k functions Tσ
j f j .)

This Λ is well-defined as a multilinear operator (S0)k → S.
We consider the case where

k∑
j=1

λσj = λ is independent of σ ∈ A.(1.5)

Let p1, . . . , pk and q be positive real numbers such that

∞ >
1

p j
>
λσj

n
(σ ∈ A, j = 1, . . . , k)(1.6)

and

k∑
j=1

(
1

p j
−
λσj

n

)
=

1

q
.(1.7)

Then clearly we have the estimate

‖Λ( f1, . . . , fk)‖q � c‖ f1‖H p1 · · · ‖ fk‖H pk .(1.8)

(We write ‖ · ‖r to denote the quasinorm in Lr(Rn); see Section 2.1.) Indeed, if we write
1/qσj = 1/p j − λσj /n, then the estimate (1.2)–(1.1) implies

‖Tσ
j f j‖H

qσj
� c‖ f j‖H p j .

Hence, we use Hölder’s inequality to obtain

‖Λ( f1, . . . , fk)‖q � c
∑
σ∈A

‖(Tσ
1 f1) · · · (Tσ

k fk)‖q � c
∑
σ∈A

k∏
j=1

‖Tσ
j f j‖qσj

� c
∑
σ∈A

k∏
j=1

‖Tσ
j f j‖H

qσj
� c

k∏
j=1

‖ f j‖H p j .

(We use the letter c to denote various positive constants which may be different in each
occasion.)
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The subject of this paper is to show that, under certain assumptions on Λ, the Lq-
quasinorm in (1.8) can be replaced by the Hq-quasinorm as

‖Λ( f1, . . . , fk)‖Hq � c‖ f1‖H p1 · · · ‖ fk‖H pk .(1.9)

Of course only the case q � 1 is interesting. (If 1 < q < ∞, then Hq = Lq and (1.8)
and (1.9) are the same.)

If 0 < q � 1, then S is not included in Hq. The fact is this: f ∈ S ∩ Hq, 0 < q � 1, if
and only if f ∈ S and ∫

Rn

f (x)xα dx = 0 for |α| � [n/q− n].

Therefore, when 0 < q � 1, in order that (1.9) holds it is necessary that the moment
condition ∫

Rn

Λ( f1, . . . , fk)(x)xα dx = 0 for |α| � [n/q− n](1.10)

is satisfied for all f1, . . . , fk ∈ S0.
The purpose of this paper is to show that (1.10) is also sufficient when k = 2 or when

k � 3 and all the operators Tσ
j are homogeneous operators. The precise statement shall

now be given below.
We say that an operator T ∈ K(λ) is homogeneous if its multiplier a ∈ G(λ) is a ho-

mogeneous function, i.e., if a(tξ) = t−λa(ξ) for all t > 0 and all ξ ∈ Rn \ {0}. (Clearly a
homogeneous function in the class G(λ) is homogeneous of degree−λ.)

The main result of this paper reads as follows.

Theorem Let Λ be given by (1.3) with (1.4). Suppose λσj satisfy (1.5). Let p1, . . . , pk and
q satisfy (1.6) and (1.7). Suppose q � 1 and the moment condition (1.10) is satisfied for all
f1, . . . , fk ∈ S0. Then:

(a) If k = 2, then the estimate (1.9) holds for all f1, . . . , fk ∈ S0;
(b) If k � 3 and if all the operators Tσ

j are homogeneous, then the estimate (1.9) holds for all
f1, . . . , fk ∈ S0.

The homogeneity assumption in (b) can be removed if we assume further moment con-
ditions; see Remark at the end of Section 5. The present author does not know whether the
homogeneity assumption in (b) can entirely be removed.

In fact, there already exist several papers dealing with this kind of estimate (as we shall
see below). Our result improves the previously known results in the following points. First,

our theorem treats the full range 0 � λσj <∞; the case λσj = 0 or the case λ =
∑k

j=1 λ
σ
j <

n are already treated. Second, the assumption of our theorem for the case k � 3 is simplified
compared with the previous theorems; cf. [G]. Thirdly, in the proof of our theorem, we
shall give a rather explicit pointwise estimate for the maximal function of Λ( f1, . . . , fk),
which will be of independent interest.

Several interesting examples together with applications of the estimate of the form (1.9)
are given in the paper by Coifman-Lions-Meyer-Semmes [CLMS]. Some examples will also
be given in the last section of the present paper.
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We shall now review some previous works concerning the same subject.
The simplest case of the estimate (1.9) is for n = 1, k = 2, and for

Λ( f1, f2) = f1 f̃2 + f̃1 f2 or f1 f2 − f̃1 f̃2,

where ˜ denotes the Hilbert transform. In this case, the estimate (1.9) can be immediately
derived from Hölder’s inequality and the Burkholder-Gundy-Silverstein theorem [BGS]
(this theorem gives a characterization of H p(R) in terms of the classical Hardy class of
holomorphic functions of one variable).

The first result for n � 2 was given by Coifman-Rochberg-Weiss [CRW, Theorems I
and II] for the case k = 2, λσj = 0, and q = 1. Chanillo [Ch] treated the case k = 2,

0 < λ < n, and q = 1. The method used in [CRW] and [Ch] was to use the H1-BMO
duality and thus was restricted to the case q = 1. Uchiyama [U] introduced a method
which directly estimate certain maximal functions and extended the result of [CRW] to the
case k = 2, λσj = 0, and n/(n+1) < q � 1. Generalizing Uchiyama’s method, Komori [K1]
and the present author [M1] treated the case k = 2, 0 < λ < n, n/(n + 1) < q � 1 and
the case k = 2, λσj = 0, 0 < q � n/(n + 1), respectively. These were further generalized by
[M2] to the case k = 2, 0 � λ < n, and 0 < q � 1.

In fact, the papers cited above do not treat Λ of the general form (1.3) but treat Λ of a
specified form. The methods of [M1] and [M2], however, can be applied to the general Λ
with k = 2 without essential change.

The case k � 3 with λσj = 0 was considered by Grafakos [G]. The theorems given
in [G] contained certain restrictions on the parameters p1, . . . , pk; Komori [K2] showed
that those theorems can be generalized to the entire range 0 < p j <∞.

The contents of the succeeding sections are as follows. In Section 2, we fix several no-
tations and recall some preliminary facts. Sections 3 through 5 are devoted to the proof of
Theorem. In Section 6, we give some examples.

2 Preliminaries

2.1 Notations

As well as the notations already introduced in Section 1, the following notations are used
throughout this paper.

The letter N denotes the set of positive integers; N does not contain 0. For x ∈ R, [x]
denotes the integer which satisfies [x] � x < [x] + 1.

In this paper, we consider functions and function spaces defined on Rn; letter n always
denotes the dimension of the basic space Rn. If E is a measurable subset of Rn and 0 < p �
∞, then ‖ · ‖p,E denotes the quasinorm in Lp(E), i.e., for measurable functions f defined
on E, we define

‖ f ‖p,E =

(∫
E
| f (x)|p dx

)1/p

with the usual modification for p =∞. If E = Rn, then ‖ f ‖p,E is simply denoted by ‖ f ‖p.
The symbol B(x, t) denotes the open ball in Rn with respect to the usual Euclidean metric
with center x ∈ Rn and with radius t , 0 < t <∞. The value of the distribution f evaluated
at the testing function ϕ is denoted by 〈 f , ϕ〉.
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We fix a function φ on Rn which has the following properties: φ is C∞, 0 � φ(x) � 1
for all x ∈ Rn, φ(x) = 1 for |x| � 1, and supp φ ⊂ B(0, 2).

2.2 Operators of Class K(λ)

Let T ∈ K(λ), 0 � λ < ∞. As was already mentioned in Section 1, the H p-Hq estimate
(1.2)–(1.1) holds for all f ∈ S0. Hence, since S0 is dense in H p for every 0 < p < ∞,
the operator T : S0 → S0 can be uniquely extended to a bounded operator H p → Hq for
each (p, q) satisfying (1.1). If the condition (1.1) is satisfied for (p, q) = (p1, q1) and for
(p, q) = (p2, q2), then the extended T : H p1 → Hq1 and the extended T : H p2 → Hq2

coincide on H p1 ∩ H p2 . Therefore the extensions of T give rise to a well-defined mapping⋃
0<p<n/λ

H p −→
⋃

0<q<∞

Hq.

In the sequel we shall use the same symbol T to denote the last mapping.
If T ∈ K(0), then T f for f ∈ S0 can be written as

(T f )(x) = γ f (x) + lim
j→∞

∫
|y|>ε j

A(y) f (x − y) dy,(2.1)

where γ is a complex constant, A is a function in G(n) such that

sup
0<a<b<∞

∣∣∣∣∫
a<|y|<b

A(y) dy

∣∣∣∣ <∞,
and (ε j) is a sequence such that ε j > 0 and lim j→∞ ε j = 0; the converse also holds. The
formula (2.1) can also be applied to some extensions of T. For example, it holds for all
f ∈ S and for all x ∈ Rn. If f ∈ Lp with 1 < p <∞, then (2.1) holds almost everywhere.
For these facts, see, e.g., [S, Chap. VI, Section 4, and Chap. VII, Section 3].

If T ∈ K(λ) with 0 < λ < n, then there exists an A ∈ G(n− λ) such that

(T f )(x) =

∫
Rn

A(y) f (x − y) dy

for f ∈ S0; the converse also holds. This formula can be applied also to f which is in L∞

and has compact support. For these facts, see, e.g., [S, Chap. VI, Section 4, Proposition 1].

2.3 The Vanishing Moment Condition

For nonnegative integers M, we denote by PM the set of polynomial functions on Rn of
degree not exceeding M. If M is a negative integer, we define PM = {0}.

Let f be a locally integrable function on Rn (or let f be a distribution with compact
support) and let M be an integer. If f P ∈ L1 and

∫
f (x)P(x) dx = 0 for all P ∈ PM (or if

〈 f , P〉 = 0 for all P ∈ PM , resp.), then we write f ⊥ PM .
If M is a negative integer, then every f satisfies f ⊥ PM since PM = {0} by our defini-

tion.
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Now let Λ be the operator defined by (1.3) with (1.4) and let M be an integer.
We say Λ satisfies the vanishing moment condition up to order M if Λ( f1, . . . , fk) ⊥ PM

for all f1, . . . , fk ∈ S0. We say Λ satisfies the vanishing moment condition of all orders if
Λ( f1, . . . , fk) ⊥ PM for all M ∈ N and for all f1, . . . , fk ∈ S0.

If k = 1, then Λ is a finite sum of operators of class
⋃
λ>0 K(λ) and, hence, for every

f ∈ S0, we have Λ( f ) ∈ S0 and Λ( f ) ⊥ PM for every M. Thus Λ with k = 1 satisfies the
vanishing moment condition of all orders. If M < 0, then we can say that every Λ satisfies
the vanishing moment condition up to order M since PM = {0} by our definition.

The vanishing moment condition forΛ can be restated as a condition on the multipliers
of Tσ

j in the following way.
Let aσj ∈ G(λσj ) be the multiplier of Tσ

j . The Fourier transform of Λ( f1, . . . , fk) can be
written as(

Λ( f1, . . . , fk)
)∧

(ξ)

=
∑
σ∈A

∫
(Rn)k−1

aσ1 (η1) f̂1(η1) · · · aσk−1(ηk−1) f̂k−1(ηk−1)

× aσk (ξ − η1 − · · · − ηk−1) f̂k(ξ − η1 − · · · − ηk−1) dη1 · · · dηk−1.

The condition Λ( f1, . . . , fk) ⊥ PM , M ∈ N ∪ {0}, is equivalent to the condition that the

partial derivatives of
(
Λ( f1, . . . , fk)

)∧
(ξ) of order � M vanish at ξ = 0. From this, it is

easy to see that Λ satisfies the vanishing moment condition up to order M, M ∈ N ∪ {0},
if and only if the equality∑

σ∈A

aσ1 (η1) · · · aσk−1(ηk−1)∂βηk
aσk (ηk) = 0(2.2)

holds for all multi-indices β with |β| � M and for all η1, . . . , ηk ∈ Rn \ {0} satisfying
η1 + · · · + ηk = 0.

By the symmetry of the situation, the equality (2.2) can be replaced by∑
σ∈A

( ∏
j: j �=m

aσj (ησj )
)
∂βηm

aσm(ηm) = 0

with any m ∈ {1, . . . , k− 1}.

2.4 Maximal Functions

For measurable functions f on Rn and for 0 � λ < ∞ and 0 < r < ∞, the maximal
function f ∗λ,r is defined by

f ∗λ,r(x) = sup
∞>t>0

tλ−n/r‖ f ‖r,B(x,t) (x ∈ Rn).

If 0 � λ <∞, 0 < r < p � q �∞, and 1/p − 1/q = λ/n, then

‖ f ∗λ,r‖q � c‖ f ‖p(2.3)
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for all measurable functions f on Rn. See [Ch, Lemma 2].
For 0 � λ <∞, m ∈ N∪{0}, x ∈ Rn, and 0 < t <∞, we define the set Tλm(x, t) as the

set of all those ϕ ∈ C∞0 (Rn) such that supp ϕ ⊂ B(x, t) and

‖∂αϕ‖∞ � tλ−n−|α| for |α| � m.

For f ∈ D ′(Rn), 0 � λ <∞, and m ∈ N∪{0}, we define the maximal function Mλ
m( f )

by

Mλ
m( f )(x) = sup

{
|〈 f , ϕ〉| | ϕ ∈

⋃
0<t<∞

Tλm(x, t)
}

(x ∈ Rn).

If 0 � λ < ∞, m ∈ N ∪ {0}, 0 < p < ∞, 0 < q � ∞, 1/p − 1/q = λ/n, and
m > n/p − n, then

‖Mλ
m( f )‖q � c‖ f ‖H p(2.4)

for all f ∈ H p(Rn). If 0 < p <∞, m ∈ N ∪ {0}, and m > n/p − n, then

‖M0
m( f )‖p ≈ ‖ f ‖H p(2.5)

for all f ∈ D ′(Rn). These facts can be easily proved by the use of the atomic decomposition
for H p; cf. [U, Lemma 7].

For 0 � λ <∞, m ∈ N ∪ {0}, x ∈ Rn, and 0 < t , ε <∞, we define the set Tλm,ε(x, t) as
the set of all those C∞ functions ϕ on Rn such that

|∂αϕ(y)| � tλ−n−|α|

(
1 +
|x − y|

t

)λ−n−|α|−ε

for |α| � m.

Let 0 � λ <∞, m ∈ N ∪ {0}, and 0 < ε <∞. Then, for locally integrable functions f
on Rn such that

∫
(1 + |y|)λ−n−ε| f (y)| dy <∞ and for all x ∈ Rn, we have

sup

{∣∣∣∣∫ f (y)ϕ(y) dy

∣∣∣∣ ∣∣∣ ϕ ∈ ⋃
∞>t>0

Tλm,ε(x, t)

}
� cMλ

m( f )(x).(2.6)

Proof of this fact reads as follows.

Proof Take functions η, δ ∈ C∞0 (Rn) such that

supp η ⊂ {x | |x| < 2}, supp δ ⊂ {x | 1/2 � |x| < 2},

and

η(y) +
∞∑
j=1

δ(2− j y) = 1 for all y ∈ Rn.

Let ϕ ∈ Tλm,ε(x, t) and set

ϕ0(y) = ϕ(y)η

(
x − y

t

)
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and

ϕ j(y) = ϕ(y)δ

(
x − y

2 jt

)
( j ∈ N).

Then, for j ∈ N ∪ {0}, we have ϕ j ∈ c2− jεTλm(x, 2 j+1t). (Here, and in the sequel, we use
the notation ATλm(x, t), 0 < A <∞, to denote the set {Aϕ | ϕ ∈ Tλm(x, t)}; we also use the
notation ATλm,ε(x, t) in the similar meaning.) Hence∣∣∣∣∫ f (y)ϕ j (y) dy

∣∣∣∣ � c2− jεMλ
m( f )(x).

Thus∣∣∣∣∫ f (y)ϕ(y) dy

∣∣∣∣ = ∣∣∣∣ ∞∑
j=0

∫
f (y)ϕ j(y) dy

∣∣∣∣ �
∞∑
j=0

c2− jεMλ
m( f )(x) � cεM

λ
m( f )(x).

This implies the desired estimate.

3 Lemmas

Lemma 3.1 Let K,m ∈ N ∪ {0}. Suppose f ∈ L∞, supp f ⊂ B(x0, t), and f ⊥ PK . Then:

(a) f can be written as

f =
∞∑
i=1

bi in D ′(Rn)(3.1)

with bi (i = 1, 2, . . . ) such that bi ∈ L∞, supp bi ⊂ B(wi, ρi) ⊂ B(x0, 2t), bi ⊥ PK,
and (

∞∑
i=1

‖bi‖
r
∞χB(wi ,ρi )(x)

)1/r

� crM
0
m( f )(x) (∀x ∈ Rn)

for every 0 < r <∞.
(b) If p is a real number such that n/(K + 1 + n) < p <∞, then f ∈ H p, the series in (3.1)

converges in H p, and ‖ f ‖H p � c‖M0
m( f )‖p,B(x0,2t).

For a proof of this lemma, see [M1, Lemmas 2.3 and 2.5].
Let f ∈ D ′(Rn), K ∈ N ∪ {0}, and 0 < t < ∞. Let P be the unique polynomial in PK

such that φ(·/t)( f − P) ⊥ PK . (For the function φ, see Section 2.1.) We define

gK,t ( f ) = φ
( ·

t

)
( f − P),

θK,t ( f ) = φ
( ·

t

)
P,

hK,t ( f ) =
(

1− φ
( ·

t

))
f .

Lemma 3.2 Let f , K, and t be as mentioned above. We simply write g = gK,t ( f ), θ = θK,t ( f ),
and h = hK,t ( f ). Let m ∈ N ∪ {0}. Then:
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(a) f = g + θ + h;
(b) supp g ⊂ B(0, 2t), g ⊥ PK, and

M0
m(g)(x) � cM0

m( f )(x) for x ∈ B(0, 4t);

(c) θ ∈ C∞0 (Rn), supp θ ⊂ B(0, 2t), and

‖∂αθ‖∞ � cαt−|α| inf
B(0,4t)

M0
m( f )

for every multi-index α;
(d) supp h ⊂ {x ∈ Rn | |x| � t} and

M0
m(h)(x) � cM0

m( f )(x) for x ∈ B(0, 4t).

Proof The estimate of ∂αθ as given in (c) can be easily proved by the well known techniques
used in the atomic decomposition ; cf., e.g., [S, Chap. III, Section 2.1.4]. For the proof of
the inequalities in (b) and (d), see [M1, Lemma 2.4]. Other claims are obvious. Details are
left to the reader.

Lemma 3.3 Let T ∈ K(λ), 0 � λ < ∞, and K ∈ N ∪ {0}. Suppose b ∈ L∞, supp b ⊂
B(w, ρ), b ⊥ PK, and K + 1 + n > λ. Then:

(b) For n/(K + 1 + n− λ) < q <∞, we have Tb ∈ Hq and

‖Tb‖Hq � cq‖b‖∞ρ
λ+n/q;

(b) With L = K + n− [λ], we have

|(Tb)(x)| � c‖b‖∞ρ
λ

(
ρ

|x − w|

)L

for |x − w| > 2ρ.

Proof (a) Let q be in the range as mentioned in the lemma. Define p by 1/p = 1/q +λ/n.
Then λ/n < 1/p < (K + 1 + n)/n and ‖b‖H p � c‖b‖∞ρn/p (since (c‖b‖∞ρn/p)−1b is a
p-atom). Hence the desired estimate of ‖Tb‖Hq follows from (1.2).

(b) By the translation invariance, we may and shall assume w = 0.
We first consider the case 0 � λ < n. In this case, as mentioned in Section 2.2, (Tb)(x)

for |x| > ρ can be written as

(Tb)(x) =

∫
|y|<ρ

A(x − y)b(y) dy

with a function A ∈ G(n− λ). Since b ⊥ PK , we have

(Tb)(x) =

∫
|y|<ρ

(
A(x − y)− P(y)

)
b(y) dy (|x| > ρ)
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for every P ∈ PK . We choose P to be the degree K Taylor polynomial of A(x− ·) expanded
about 0. Then, for |x| > 2ρ, we have

|(Tb)(x)| �
∫
|y|<ρ
|A(x − y)− P(y)| |b(y)| dy

� c

∫
|y|<ρ
|x|λ−n−K−1 |y|K+1 |b(y)| dy

� c‖b‖∞ρ
λ(|x|−1ρ)K+1+n−λ

� c‖b‖∞ρ
λ(|x|−1ρ)L

(the last inequality holds because L < K + 1 + n− λ).
Next suppose n � λ <∞. (The argument to be given below can actually cover the case

n/2 < λ <∞.) Let a ∈ G(λ) be the multiplier of T.
Since b ⊥ PK and since b is a compactly supported bounded function, we have b̂(ξ) =

O(|ξ|K+1) as ξ → 0. Hence a(ξ)b̂(ξ) = O(|ξ|−λ+K+1) as ξ → 0, which implies that a(ξ)b̂(ξ)
is integrable in a neighbourhood of ξ = 0. On the other hand, a(ξ)b̂(ξ) is also integrable in
|ξ| > δ for every δ > 0, since |a(ξ)| � c|ξ|−λ, λ � n, and since b̂ ∈ L2. Thus ab̂ ∈ L1(Rn).
It is easy to see that Tb (here T is the extended operator as mentioned in Section 2.2) is
given by the absolutely covergent integral

(Tb)(x) =

∫
Rn

a(ξ)b̂(ξ)e2πixξ dξ (x ∈ Rn).

For 0 < ε < N <∞, we set χε,N (ξ) =
(
1− φ(ε−1ξ)

)
φ(N−1ξ) and

fε,N (x) =

∫
a(ξ)b̂(ξ)χε,N (ξ)e2πixξ dξ.

Then, for every x ∈ Rn, fε,N (x) converges to (Tb)(x) as ε ↓ 0 and N → ∞. If x �= 0, then
by integration by parts we have

fε,N (x) =

∫
e2πixξ

( n∑
j=1

−x j

2πi|x|2
∂ξ j

)L

[a(ξ)b̂(ξ)χε,N (ξ)] dξ.(3.2)

Since a ∈ G(λ), we have

|∂αξ [a(ξ)χε,N (ξ)]| � cα|ξ|
−λ−|α|(3.3)

with cα independent of ε and N . If |α| � K + 1, then

|∂αξ b̂(ξ)| � c|ξ|K+1−|α|
∑
|β|=K+1

‖∂β b̂‖∞ (since b ⊥ PK)

� c|ξ|K+1−|α|
∑
|β|=K+1

‖xβb(x)‖1

� c‖b‖∞|ξ|
K+1−|α|ρK+1+n (since supp b ⊂ B(0, ρ)).
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If |α| > K + 1 and |ξ| � 1/ρ, then

|∂αξ b̂(ξ)| � ‖(−2πix)αb(x)‖1 � cα‖b‖∞ρ
|α|+n

� cα‖b‖∞ |ξ|
K+1−|α|ρK+1+n.

Thus the estimate

|∂αξ b̂(ξ)| � cα‖b‖∞|ξ|
K+1−|α|ρK+1+n if |ξ| � 1/ρ(3.4)

holds for every multi-index α. We also have

‖∂αb̂‖2 = ‖(−2πix)αb(x)‖2 � cα‖b‖∞ρ
|α|+n/2.(3.5)

Now using (3.2), (3.3), (3.4), and (3.5), we obtain

| fε,N (x)| � c|x|−L
∑
|α+β|=L

∫
|ξ|−λ−|α| |∂βξ b̂(ξ)| dξ

� c|x|−L
∑
|α+β|=L

∫
|ξ|�1/ρ

|ξ|−λ−|α| ‖b‖∞ |ξ|
K+1−|β|ρK+1+n dξ

+ c|x|−L
∑
|α+β|=L

(∫
|ξ|>1/ρ

(|ξ|−λ−|α|)2 dξ

)1/2

‖b‖∞ρ
|β|+n/2

� c‖b‖∞|x|
−Lρλ+L.

Taking limit as ε ↓ 0 and N →∞, we obtain the desired estimate. Lemma 3.3 is proved.

Lemma 3.4 Let {bi} be a sequence in L∞, let {B(wi , ρi)} be a sequence of balls, and let
K ∈ N ∪ {0}. Suppose supp bi ⊂ B(wi, ρi), ‖bi‖∞ = ai <∞, and bi ⊥ PK. Let T ∈ K(λ),
0 � λ < ∞, and K ′ ∈ R, and suppose K + 1 + n > λ and K ′ < K − [λ]. Finally let
1 � r <∞ and 0 � s <∞. Then∥∥∥∥∥∑

i

ρs
i

(
1 +
| · −wi |

ρi

)K ′

|Tbi |

∥∥∥∥∥
r

� c
∥∥∥∑

i

aiχB(wi ,ρi )

∥∥∥
p

with 1/p = 1/r + s/n + λ/n.

Proof We write Bi = B(wi, ρi), 2Bi = B(wi , 2ρi), and

Fi = ρ
s
i

(
1 +
| · −wi|

ρi

)K ′

|Tbi |.

We decompose Fi as
Fi = Fiχ2Bi + Fiχ(2Bi )c = fi + gi.

https://doi.org/10.4153/CJM-2000-018-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-018-2


392 Akihiko Miyachi

The function fi is supported on 2Bi and, by Lemma 3.3 (a), we have

‖ fi‖q � cqaiρ
s+λ
i |2Bi |

1/q for 0 <
1

q
<

K + 1 + n− λ

n
.

From these facts, it follows that∥∥∥∑
i

fi

∥∥∥
r
� c
∥∥∥∑

i

aiρ
s+λ
i χ2Bi

∥∥∥
r
� c
∥∥∥∑

i

aiχBi

∥∥∥
p
.

(For the former inequality, see [StT, Chap. VIII, Lemma 5]; for the latter, see [M4,
Lemma 3.2, (2)].)

For gi , we have

|gi(x)| � caiρ
s+λ
i

(
|x − wi|

ρi

)K ′−L

χ(2Bi )c (x)

with L = K + n− [λ] (by Lemma 3.3 (b)). Thus

∥∥∥∑
i

gi

∥∥∥
r
� c

∥∥∥∥∥∑
i

aiρ
s+λ
i

(
1 +
|x − wi|

ρi

)K ′−L
∥∥∥∥∥

r

� c
∥∥∥∑

i

aiχBi

∥∥∥
p
.

(For the last inequality, see [M4, Lemma 3.2, (2)].) Lemma 3.4 is proved.

Lemma 3.5 Let a ∈ G(λ), 0 � λ <∞, 0 < t <∞, and let

At =
((

1− φ(tξ)
)
a(ξ)

)∨
∈ S ′.

Then At restricted to Rn \ {0} is a C∞ function, and for every multi-index α and for L ∈
N ∪ {0} satisfying L > −λ + n + |α|, we have

|∂αAt (x)| � cα,Ltλ−n−|α|+L|x|−L.

Proof Let α and L be as mentioned in the lemma. For multi-indices β with |β| = L, we
have

|∂βξ
[
ξα
(
1− φ(tξ)

)
a(ξ)

]
| � cα,β |ξ|

−λ+|α|−LχB(0,1/t)c (ξ),

where cα,β does not depend on t . The right hand side of the above inequality is integrable
on Rn. Hence, taking the inverse Fourier transform, we see that xβ∂αAt is a continuous
function and that

|xβ∂αx At (x)| � cα,β

∫
|ξ|>1/t

|ξ|−λ+|α|−L dξ = cα,βtλ−|α|+L−n.

Since this estimate holds for all β with |β| = L, the conclusion of the lemma follows.

Lemma 3.6 Let T ∈ K(λ), 0 � λ < ∞, f ∈ S0, K ∈ N ∪ {0}, and 0 < t < ∞. Suppose
K + 1 + n > λ. Let θ = θK,10t ( f ) and h = hK,10t ( f ). Then T(θ + h) is a C∞ function and, for
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every multi-indexα, for every m ∈ N∪{0}, and for every p satisfying n/(K+1+n) < p <∞,
we have

sup
|x|<t
|∂αx T(θ + h)(x)| � cα,p,mt−|α|

((
M0

m( f )
)∗
λ,p

(0) + Mλ
m( f )(0) + M0

m(T f )(0)
)
.

Proof Let a ∈ G(λ) be the multiplier of T. We set g = gK,10t ( f ). By the same reason as in
the proof of Lemma 3.3 (b), the formula

Tϕ = (aϕ̂)∨ with aϕ̂ ∈ L1

holds for ϕ = f , g, and θ + h (notice that θ + h ∈ S and θ + h = f − g ⊥ PK ). We
decompose T(θ + h) as

T(θ + h) =
(
φ(tξ)a(ξ) f̂ (ξ)

)∨
−
(
φ(tξ)a(ξ)ĝ(ξ)

)∨
+
((

1− φ(tξ)
)
a(ξ)θ̂(ξ)

)∨
+
((

1− φ(tξ)
)
a(ξ)ĥ(ξ)

)∨
= I− II + III + IV .

The functions I and II are C∞ since these are inverse Fourier transforms of compactly
supported L1 functions. The functions III and IV are also C∞ since these belong to S.
Therefore T(θ + h) is C∞.

In the rest of the proof, we shall estimate the derivatives of I, II, III, and IV separately.

Estimate of ∂α I(x) We can write

I =
(
φ(tξ)(T f )∧(ξ)

)∨
=

1

tn
φ̌
( ·

t

)
∗ (T f )

and thus

∂α I(x) =

〈
T f ,

1

tn+|α|
(φ̌)(α)

(
x − ·

t

)〉
.

If |x| < t , then, as is easily seen,

1

tn+|α|
(φ̌)(α)

(
x − ·

t

)
∈ cα,εt

−|α|T0
m,ε(0, t)

for every ε > 0, where cα,ε can be taken independent of x so long as |x| < t . Hence, by (2.6),

|∂α I(x)| � cαt−|α|M0
m(T f )(0) for |x| < t.

Estimate of ∂α II(x) First assume (K +1+n)/n > 1/p > max{1, λ/n}. By Lemma 3.1 (b)
and Lemma 3.2 (b), we see that g ∈ H p and

‖g‖H p � cp‖M
0
m(g)‖p,B(0,40t) � cp‖M

0
m( f )‖p,B(0,40t).
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Hence
|ĝ(ξ)| � cp‖g‖H p |ξ|n/p−n � cp‖M

0
m( f )‖p,B(0,40t)|ξ|

n/p−n.

Thus

|∂α II(x)| =

∣∣∣∣∫ (2πiξ)αφ(tξ)a(ξ)ĝ(ξ)e2πixξ dξ

∣∣∣∣
�
∫
|ξ|<2/t

|(2πiξ)αa(ξ)ĝ(ξ)| dξ

� cp,α

∫
|ξ|<2/t

|ξ||α|−λ+n/p−n‖M0
m( f )‖p,B(0,40t) dξ,

which implies

|∂α II(x)| � cα,p‖M
0
m( f )‖p,B(0,40t)t

λ−|α||B(0, 40t)|−1/p (∀x ∈ Rn).(3.6)

The estimate (3.6) holds also for p with max{1, λ/n} � 1/p � 0 because, except
for the constant factor, the right hand side is a nondecreasing function in p (by Hölder’s
inequality).

The estimate (3.6) clearly implies

|∂α II(x)| � cα,pt−|α|
(
M0

m( f )
)∗
λ,p

(0) (∀x ∈ Rn).

Estimate of ∂α III(x) By Lemma 3.2 (c), we have

|(2πiξ)βθ̂(ξ)| � ‖∂βθ‖1 � cβtn−|β| inf
B(0,40t)

M0
m( f ).

Hence
|θ̂(ξ)| � cLtn−L|ξ|−L inf

B(0,40t)
M0

m( f )

for every L ∈ N. Thus

|∂α III(x)| =
∣∣∣((1− φ(tξ)

)
a(ξ)θ̂(ξ)(2πiξ)α

)∨
(x)
∣∣∣

�
∫
|ξ|>1/t

|a(ξ)θ̂(ξ)(2πiξ)α| dξ

� cα,Ltn−L

∫
|ξ|>1/t

|ξ|−λ+|α|−L dξ inf
B(0,40t)

M0
m( f ).

Taking L sufficiently large, we obtain

|∂α III(x)| � cαtλ−|α| inf
B(0,40t)

M0
m( f ) (∀x ∈ Rn),
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which a fortiori implies

|∂α III(x)| � cα,pt−|α|
(
M0

m( f )
)∗
λ,p

(0) (∀x ∈ Rn).

Estimate of ∂α IV(x) Using At of Lemma 3.5, we can write ∂α IV(x) for |x| < t as

∂α IV(x) =

∫
(At )

(α)(x − y)
(

1− φ
( y

10t

))
f (y) dy.

If |x| < t , then using Lemma 3.5 we see that

(At )
(α)(x − ·)

(
1− φ

( ·
10t

))
∈ cα,εt

−|α|Tλm,ε(0, t)

for every ε > 0. Hence by (2.6) we have

|∂α IV(x)| � cαt−|α|Mλ
m( f )(0) for |x| < t.

Combining the estimates of the derivatives of I ∼ IV, we obtain the estimate as stated
in Lemma 3.6. Lemma 3.6 is proved.

Lemma 3.7 Let Λ be defined by (1.3) with (1.4). Let N ∈ N∪{0} and 0 < t <∞. Suppose
Λ satisfies the vanishing moment condition up to order N − 1. Let f j ∈ L∞ ( j = 1, . . . , k)
and suppose supp f j ⊂ B(0, t) and f j ⊥ PK with

K = N + n + 2 + max{[λσj ] | σ ∈ A, j = 1, . . . , k}.

Letϕ ∈ T0
N (0, t). Let rσj and sσj (σ ∈ A, j = 1, . . . , k) be real numbers such that 1 � rσj <∞,

0 � sσj <∞,
∑k

j=1 1/rσj � 1, and
∑k

j=1 sσj � N. Finally let m ∈ N ∪ {0}. Then

∣∣∣∣∫ ϕΛ( f1, . . . , fk)

∣∣∣∣ � c
∑
σ∈A

k∏
j=1

t−n/rσj−sσj ‖M0
m( f j)‖vσj ,B(0,2t),

where 1/vσj = 1/rσj + sσj /n + λσj /n.

Proof By Lemma 3.1, we can decompose f j as f j =
∑∞

i=1 b ji with the series converging in
H p for 0 < 1/p < (K + 1 + n)/n and with b ji such that

‖b ji‖∞ = a ji <∞, supp b ji ⊂ B ji = B(w ji, ρ ji) ⊂ B(0, 2t), b ji ⊥ PK ,

and

∞∑
i=1

a jiχB ji (x) � cM0
m( f j)(x) (∀x ∈ Rn).(3.7)
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By the boundedness (1.2), we have Tσ
j f j =

∑∞
i=1 Tσ

j b ji with the series converging in Hq

for 0 < 1/q < (K + 1 + n − λσj )/n; in particular it converges in Lq for every sufficiently
large q <∞. From this it follows that

Λ( f1, . . . , fk) = lim
L→∞

L∑
i1=1

· · ·
L∑

ik=1

Λ(b1i1 , . . . , bkik )

with the convergence holding with respect to Lq-norm for every sufficiently large q < ∞.
Hence ∫

ϕΛ( f1, . . . , fk) = lim
L→∞

L∑
i1=1

· · ·
L∑

ik=1

∫
ϕΛ(b1i1 , . . . , bkik ).

Therefore we have ∣∣∣∣∫ ϕΛ( f1, . . . , fk)

∣∣∣∣ �
∑

i1,...,ik

∣∣∣∣∫ ϕΛ(b1i1 , . . . , bkik )

∣∣∣∣.(3.8)

For the moment we shall estimate each term on the right hand side of (3.8), which we
shall simply write as ∣∣∣∣∫ ϕΛ(b1, . . . , bk)

∣∣∣∣
with ‖b j‖∞ = a j <∞, supp b j ⊂ B(w j , ρ j) ⊂ B(0, 2t), and b j ⊥ PK .

We assume ρ1 = min{ρ1, . . . , ρk}.
We first observe that ∫

PΛ(b1, . . . , bk) = 0 for all P ∈ PN−1.(3.9)

This can be deduced from the vanishing moment condition on Λ by a limiting argument;
here we omit the limiting argument but prove that PΛ(b1, . . . , bk) is integrable for all P ∈
PN−1. Indeed, using Lemma 3.3, we see that Λ(b1, . . . , bk) ∈ L1

loc and Λ(b1, . . . , bk)(x) =
O(|x|−M) as |x| → ∞ with

−M = max
σ∈A

{ k∑
j=1

([λσj ]− K − n)
}
< −(N − 1)− n,

from which the integrability of PΛ(b1, . . . , bk) for P ∈ PN−1 immediately follows.
We take P as follows: If N > 0, then let P be the degree N − 1 Taylor polynomial of ϕ

expanded about w1; if N = 0, then let P = 0. Then, using (3.9), we have∣∣∣∣∫ ϕΛ(b1, . . . , bk)

∣∣∣∣ = ∣∣∣∣∫ (ϕ− P)Λ(b1, . . . , bk)

∣∣∣∣
�
∑
σ∈A

∫
|ϕ− P| |Tσ

1 b1| · · · |T
σ
k bk|

� c
∑
σ∈A

∫
t−n−N |x − w1|

N |Tσ
1 b1| · · · |T

σ
k bk| dx
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(|Tσ
j b j | stands for |(Tσ

j b j)(x)|). Since B(w1, ρ1) ⊂ B(0, 2t), we have

1 +
|x|

t
� c

(
1 +
|x − w1|

ρ1

)
.(3.10)

Also, since 2t � ρ1 = min{ρ j} and since sσj � 0 and sσ1 + · · · + sσk � N , we have

t−NρN
1 � ct−sσ1−sσ2−···−sσk ρ

sσ1
1 ρ

sσ2
2 · · · ρ

sσk
k .(3.11)

Using (3.10) and (3.11), we have

t−n−N |x − w1|
N

� ct−n−NρN
1

(
1 +
|x − w1|

ρ1

)N

� ct−n−sσ1−sσ2−···−sσk

(
1 +
|x|

t

)−n−1

ρ
sσ1
1

(
1 +
|x − w1|

ρ1

)N+n+1

ρ
sσ2
2 · · · ρ

sσk
k .

Putting the above inequalities together, we obtain the following estimate: If ρ1 = min{ρ j},
then∣∣∣∣∫ ϕΛ(b1, . . . , bk)

∣∣∣∣
� c

∑
σ∈A

t−n−sσ1−sσ2−···−sσk

∫ (
1 +
|x|

t

)−n−1

ρ
sσ1
1

(
1 +
|x − w1|

ρ1

)N+n+1

|Tσ
1 b1|

× ρ
sσ2
2 |T

σ
2 b2| · · · ρ

sσk
k |T

σ
k bk| dx.

We now apply the above estimate to those terms in (3.8) for which ρ1i1 = min{ρ1i1 , . . . ,
ρkik} and take the sum of those terms to obtain

∑
ρ1i1=min

∣∣∣∣∫ ϕΛ(b1i1 , . . . , bkik )

∣∣∣∣ � c
∑
σ∈A

t−n−sσ1−sσ2−···−sσk

∫ (
1 +
|x|

t

)−n−1

×

(
∞∑
i=1

ρ
sσ1
1i

(
1 +
|x − w1i|

ρ1i

)N+n+1

|Tσ
1 b1i |

)

×
( ∞∑

i=1

ρ
sσ2
2i |T

σ
2 b2i |

)
· · ·
( ∞∑

i=1

ρ
sσk
ki |T

σ
k bki |

)
dx

= (∗).
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Define r ′ by 1/r ′ = 1−
∑k

j=1 1/rσj . Then, using Hölder’s inequality, Lemma 3.4, and (3.7),
we obtain

(∗) � c
∑
σ∈A

t−n−sσ1−sσ2−···−sσk

∥∥∥∥∥
(

1 +
|x|

t

)−n−1
∥∥∥∥∥

r ′

×

∥∥∥∥∥
∞∑
i=1

ρ
sσ1
1i

(
1 +
|x − w1i|

ρ1i

)N+n+1

|Tσ
1 b1i |

∥∥∥∥∥
rσ1

×
∥∥∥ ∞∑

i=1

ρ
sσ2
2i |T

σ
2 b2i |

∥∥∥
rσ2
· · ·
∥∥∥ ∞∑

i=1

ρ
sσk
ki |T

σ
k bki |

∥∥∥
rσk

� c
∑
σ∈A

t−n−sσ1−sσ2−···−sσk +n/r ′

×
∥∥∥ ∞∑

i=1

a1iχB1i

∥∥∥
vσ1
· · ·
∥∥∥ ∞∑

i=1

akiχBki

∥∥∥
vσk

� c
∑
σ∈A

k∏
j=1

t−sσj−n/rσj ‖M0
m( f j)‖vσj ,B(0,2t).

The same estimate holds also for the sum of the terms of (3.8) with ρmim = min{ρ1i1 ,
. . . , ρkik} for every m ∈ {2, . . . , k}. Lemma 3.7 is proved.

4 Proof of Theorem, Part (a)

We shall prove the part (a) of Theorem.
We use the following notation: For T ∈ K(λ), f ∈ S0, 0 < p < ∞, and m ∈ N ∪ {0},

we write
Gm( f ,T, p) =

(
M0

m( f )
)∗
λ,p

+ Mλ
m( f ) + M0

m(T f ).

We also write
N = [n/q− n] + 1

(q is the number as mentioned in Theorem).
In order to prove the part (a), we shall prove that there exist vσj (σ ∈ A, j = 1, 2) such

that

0 < vσj < p j(4.1)

and that the pointwise estimate

M0
N

(
Λ( f1, f2)

)
(x) � cm

∑
σ∈A

2∏
j=1

Gm( f j ,T
σ
j , v

σ
j )(x) (∀x ∈ Rn)(4.2)
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holds for all f1, f2 ∈ S0 and for every m ∈ N ∪ {0}. In the sequel we shall write

Fσj = Gm( f j ,T
σ
j , v

σ
j ).

Once the estimate (4.2) is obtained, the desired Hq estimate can be derived in the fol-
lowing way. We choose m ∈ N ∪ {0} so large that m > max{n/p j − n | j = 1, 2}. Then
(2.3), (2.4), (2.5), and (1.2) give

‖Fσj ‖qσj
� c‖ f j‖H p j with

1

qσj
=

1

p j
−
λσj

n
.

Hence (4.2) and Hölder’s inequality give

‖Λ( f1, f2)‖Hq � c‖M0
N

(
Λ( f1, f2)

)
‖q � c

∑
σ∈A

‖Fσ1 ‖qσ1 ‖F
σ
2 ‖qσ2 � c‖ f1‖H p1 ‖ f2‖H p2 ,

which is the desired estimate.
Since 1/p j − λσj /n > 0 and

1

p1
−
λσ1
n

+
1

p2
−
λσ2
n
=

1

q
< 1 +

N

n
,

we can take rσj and sσj (σ ∈ A, j = 1, 2) such that

0 <
1

rσj
< 1,

1

rσ1
+

1

rσ2
� 1, 0 � sσj <∞, sσ1 + sσ2 � N,

and
1

rσj
+

sσj
n
>

1

p j
−
λσj

n
.

As in Lemma 3.7, we define vσj by 1/vσj = 1/rσj + sσj /n + λσj /n. Then (4.1) is satisfied. We
shall prove the estimate (4.2) with these vσj .

By translation it is sufficient to prove (4.2) for x = 0.
Let ϕ ∈ T0

N (0, t). We shall estimate
∫
ϕΛ( f1, f2). As in Lemma 3.7, we set

K = N + n + 2 + max{[λσj ] | σ ∈ A, j = 1, 2}.

We decompose f j ∈ S0 ( j = 1, 2) as

f j = g j + u j(4.3)

with

g j = gK,10t ( f j), u j = θK,10t ( f j ) + hK,10t ( f j ).(4.4)
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We have∫
ϕΛ( f1, f2) =

∫
ϕΛ(g1, g2) +

∫
ϕΛ(g1, u2) +

∫
ϕΛ(u1, g2) +

∫
ϕΛ(u1, u2)

= I + II + III + IV .

Estimate of I By Lemma 3.7 and Lemma 3.2 (b), we have

| I | � c
∑
σ

2∏
j=1

t−n/rσj−sσj ‖M0
m(g j)‖vσj ,B(0,40t)

� c
∑
σ

2∏
j=1

t−n/rσj−sσj ‖M0
m( f j)‖vσj ,B(0,40t)

� c
∑
σ

2∏
j=1

(
M0

m( f j )
)∗
λσj ,v

σ
j
(0).

Estimate of II By Lemma 3.6, we have

ϕTσ
2 u2 ∈ cFσ2 (0)T0

N (0, t)

for each σ ∈ A. Hence, by Lemma 3.7 with k = 1 and by Lemma 3.2 (b), we have∣∣∣∣∫ ϕ(Tσ
1 g1)(Tσ

2 u2)

∣∣∣∣ � cFσ2 (0)t−n/rσ1−sσ1 ‖M0
m(g1)‖vσ1 ,B(0,40t)

� cFσ2 (0)t−n/rσ1−sσ1 ‖M0
m( f1)‖vσ1 ,B(0,40t)

� cFσ2 (0)
(

M0
m( f1)

)∗
λσ1 ,v

σ
1
(0)

for each σ ∈ A. Therefore

| II | � c
∑
σ∈A

(
M0

m( f1)
)∗
λσ1 ,v

σ
1
(0)Fσ2 (0).

Estimate of III In the same way as in the estimate of II, we obtain

| III | � c
∑
σ∈A

Fσ1 (0)
(

M0
m( f2)

)∗
λσ2 ,v

σ
2
(0).

Estimate of IV By Lemma 3.6, we have, for each σ ∈ A,

ϕ(Tσ
1 u1)(Tσ

2 u2) ∈ cFσ1 (0)Fσ2 (0)T0
N (0, t)
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and hence ∣∣∣∣∫ ϕ(Tσ
1 u1)(Tσ

2 u2)

∣∣∣∣ � cFσ1 (0)Fσ2 (0).

Thus
| IV | � c

∑
σ∈A

Fσ1 (0)Fσ2 (0).

Combining the estimates of I ∼ IV, we obtain∣∣∣∣∫ ϕΛ( f1, f2)

∣∣∣∣ � c
∑
σ∈A

Fσ1 (0)Fσ2 (0).

Since this holds for all ϕ ∈ T0
N (0, t), 0 < t < ∞, we have (4.2) for x = 0. The part (a) of

Theorem is proved.

5 Proof of Theorem, Part (b)

Throughout this section we write X = {1, . . . , k}.
In order to prove the part (b) of Theorem, we first rewrite the operator Λ. Let Λ be

given by (1.3) with (1.4). For each j ∈ X, take a maximal linearly independent subset of
{Tσ

j | σ ∈ A} and denote it by {Si
j | i = 1, . . . , L j}. (Here the linear independence refers

to that in the linear space of all the linear operators S0 → S0; for operators in
⋃
λ>0 K(λ),

this linear independence is the same as that of the corresponding multipliers in the linear
space C∞(Rn \ {0}).) Then, for each j, Tσ

j can be written as a linear combination of

{Si
j | i = 1, . . . , L j} and thus Λ can be written in the form as

Λ( f1, . . . , fk) =
∑
τ∈B

bτ (Sτ (1)
1 f1) · · · (Sτ (k)

k fk),(5.1)

where

B = {τ : X → N | τ ( j) � L j for all j ∈ X}(5.2)

and bτ are complex numbers. Let µi
j be the number such that

Si
j ∈ K(µi

j).(5.3)

We set

µ̄ j = max{µi
j | i = 1, . . . , L j}.(5.4)

Let J be a subset of X and let J = { j1, . . . , jm} with j1 < · · · < jm. Then we use the
following notations: | J| = m, Jc = X \ J,

B J = {ρ : J → N | ρ( j) � L j for all j ∈ J},
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and, for f1, . . . , fk ∈ S0,
f J = ( f j1 , . . . , f jm ).

Now let Λ be written as in (5.1)–(5.2). Suppose J is a subset of X with 1 � | J| � k− 1.
We can write Λ as

Λ(fX) =
∑
ρ∈B J

[∏
j∈ J

(Sρ( j)
j f j)

]
Λ J
ρ(f Jc )

with
Λ J
ρ(f Jc ) =

∑
τ∈B,τ | J=ρ

bτ
∏
j∈ Jc

(Sτ ( j)
j f j).

We call Λ J
ρ the ( J, ρ)-cofactor.

Lemma 5.1 Let Λ be given as in (5.1) with (5.2), (5.3), and (5.4). Suppose all Si
j are ho-

mogeneous operators. Also suppose Λ satisfies the vanishing moment condition up to order
K, K ∈ N ∪ {0}. Then the cofactor Λ J

ρ satisfies the vanishing moment condition up to order
K −mρ with

mρ =
[∑

j∈ J

(µ̄ j − µ
ρ( j)
j )
]
.

Proof We shall give the proof for the case k = 4 and J = {1, 2}. The argument can be
applied to the general case without essential change.

Let ai
j denote the multiplier of Si

j . We write

A(ξ1, ξ2, ξ3, ξ4) =
∑
τ∈B

bτaτ (1)
1 (ξ1)aτ (2)

2 (ξ2)aτ (3)
3 (ξ3)aτ (4)

4 (ξ4)

=
∑
ρ∈B J

aρ(1)
1 (ξ1)aρ(2)

2 (ξ2)Aρ(ξ3, ξ4),

where
Aρ(ξ3, ξ4) =

∑
τ∈B,τ | J=ρ

bτaτ (3)
3 (ξ3)aτ (4)

4 (ξ4).

We shall simply write
Aρ

(α)(ξ3, ξ4) = ∂αξ4
Aρ(ξ3, ξ4).

As we saw in Section 2.2, the vanishing moment condition of Λ which is assumed in the
lemma is equivalent to this condition (M): If ξ1, . . . , ξ4 ∈ Rn \{0} and ξ1 + ξ2 + ξ3 + ξ4 = 0
and if |α| � K, then

∂αξ4
A(ξ1, ξ2, ξ3, ξ4) =

∑
ρ∈B J

aρ(1)
1 (ξ1)aρ(2)

2 (ξ2)A(α)
ρ (ξ3, ξ4) = 0.

Also the vanishing moment condition of Λ J
ρ which we are going to prove is equivalent to

this condition (M*): If ξ3, ξ4 ∈ Rn \ {0} and ξ3 + ξ4 = 0 and if |α| � K − mρ, then

Aρ
(α)(ξ3, ξ4) = 0, where mρ = [µ̄1 + µ̄2 − µ

ρ(1)
1 − µρ(1)

1 ]. We write

µ̄ = µ̄1 + µ̄2 and µρ = µ
ρ(1)
1 + µρ(2)

2 (ρ ∈ B J).
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Thus mρ = [µ̄− µρ].
The set E = {µρ | ρ ∈ B J} is a finite set of real numbers in which the maximum element

is µ̄. We shall prove (M*) by an induction on this set E.
First we shall prove (M*) for those ρ ∈ B J with µρ maximum, i.e., with µρ = µ̄. For

such ρ, we have mρ = 0.
Let ξ3, ξ4 ∈ Rn \ {0} and ξ3 + ξ4 = 0 and let α be a multi-index with |α| � K.
Take arbitrary ξ1, ξ2 ∈ Rn \ {0}. Then for all sufficiently small ε > 0, the condition (M)

implies ∑
ρ∈B J

aρ(1)
1 (εξ1)aρ(2)

2 (εξ2)A(α)
ρ (ξ3, ξ4 − εξ1 − εξ2) = 0.

By the homogeneity of ai
j , we have∑

ρ∈B J

ε−µρaρ(1)
1 (ξ1)aρ(2)

2 (ξ2)A(α)
ρ (ξ3, ξ4 − εξ1 − εξ2) = 0.(5.5)

We multiply (5.5) by εµ̄ and take the limit as ε→ 0. Then, since µ̄ = max{µρ}, we get∑
ρ∈B J ,µρ=µ̄

aρ(1)
1 (ξ1)aρ(2)

2 (ξ2)A(α)
ρ (ξ3, ξ4) = 0.

Since the last equality holds for all ξ1, ξ2 ∈ Rn \{0} and since the functions ai
1(ξ1)a j

2(ξ2)
are linearly independent, we have A(α)

ρ (ξ3, ξ4) = 0 for each ρ ∈ B J with µρ = µ̄. This
proves (M*) for ρ ∈ B J with µρ maximum.

Next, we assume (M*) holds for all those ρ ∈ B J with µρ > ν and shall prove (M*) for
ρ ∈ B J with µρ = ν. Here ν is an element of the set E.

Fix ξ3 and ξ4 such that ξ3, ξ4 ∈ Rn \ {0} and ξ3 + ξ4 = 0. Also fix a multi-index α such
that |α| � K − [µ̄ − ν]. What we have to show is A(α)

ρ (ξ3, ξ4) = 0 for each ρ ∈ B J with
µρ = ν.

As above, the equality (5.5) holds for all ξ1, ξ2 ∈ Rn \ {0} and for all sufficiently small
ε > 0. For the moment, we shall simply write ε−µρ Ãε,ρ to denote each term on the left hand
side of (5.5), i.e.,

ε−µρ Ãε,ρ = ε
−µρaρ(1)

1 (ξ1)aρ(2)
2 (ξ2)A(α)

ρ (ξ3, ξ4 − εξ1 − εξ2).

We multiply (5.5) by εν and take the limit as ε→ 0.
For ρ with µρ = ν, we have, clearly,

εν−µρ Ãε,ρ −→ aρ(1)
1 (ξ1)aρ(2)

2 (ξ2)A(α)
ρ (ξ3, ξ4).

We shall show that εν−µρ Ãε,ρ → 0 for ρ ∈ B J with µρ �= ν. Since this is clear when µρ < ν,
it is sufficient to consider the case µρ > ν.

Suppose µρ > ν. The induction hypothesis implies that Aρ
(β)(ξ3, ξ4) = 0 for |β| �

K −mρ. Hence, by Taylor’s formula, we have

A(α)
ρ (ξ3, ξ4 − εξ1 − εξ2) = O(εK−mρ+1−|α|).
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(This estimate holds even if |α| > K−mρ, since in this case the estimate is weaker than the
obvious estimate O(1).) Thus

εν−µρ Ãε,ρ = O(εK+1+ν−µρ−mρ−|α|).

This implies εν−µρ Ãε,ρ → 0 since

|α| � K − [µ̄− ν] < K + 1− µ̄ + ν � K + 1 + ν − µρ −mρ.

Thus

εν × (the left hand side of (5.5)) −→
∑

ρ∈B J ,µρ=ν

aρ(1)
1 (ξ1)aρ(2)

2 (ξ2)A(α)
ρ (ξ3, ξ4).

Therefore we obtain ∑
ρ∈B J ,µρ=ν

aρ(1)
1 (ξ1)aρ(2)

2 (ξ2)A(α)
ρ (ξ3, ξ4) = 0.

By the linear independence of the functions ai
1(ξ1)a j

2(ξ2), we have A(α)
ρ (ξ3, ξ4) = 0 for each

ρ ∈ B J with µρ = ν, as desired. Lemma 5.1 is proved.

Proof of the Part (b) of Theorem The main idea is the same as in the proof of the part (a).
We write Λ as in (5.1) with (5.2), (5.3), and (5.4). We also write

B× = {τ ∈ B | bτ �= 0}.

The conditions (1.5), (1.6), and (1.7) can now be written as follows:

k∑
j=1

µ
τ ( j)
j = λ for every τ ∈ B×,

∞ >
1

p j
>
µ̄ j

n
for every j ∈ X,

k∑
j=1

(
1

p j
−
µ
τ ( j)
j

n

)
=

1

q
for every τ ∈ B×.

As in Section 4, we write N = [n/q− n] + 1.
We shall prove that there exist real numbers vτj (τ ∈ B×, j ∈ X) satisfying

0 < vτj < p j (τ ∈ B×, j ∈ X)(5.6)

with which the pointwise estimate

M0
N

(
Λ( f1, . . . , fk)

)
(x) � cm

∑
τ∈B×

|bτ |
k∏

j=1

Gm( f j , S
τ ( j)
j , vτj )(x)(5.7)
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holds for every m ∈ N ∪ {0} and for all f1, . . . , fk ∈ S0. (As for the notation Gm(·, ·, ·),
see Section 4.) By the same reason as in the proof of the part (a), this pointwise estimate
implies the desired Hq estimate.

By translation invariance, it is sufficient to show (5.7) for x = 0. We set

K = N + n + 2 + max{[µ̄ j] | j ∈ X}.

We decompose f j ( j ∈ X) as in (4.3)–(4.4). Let ϕ ∈ T0
N (0, t). The integral∫

ϕΛ( f1, . . . , fk),

which we shall estimate, can be written as the sum of 2k terms each of which is the form∫
ϕΛ( f̃1, . . . , f̃k) with f̃ j = g j or u j .

We shall estimate each term separately.
We shall prove that for each one of the above 2k terms we can take vτj (τ ∈ B×, j ∈ X)

satisfying (5.6) and∣∣∣∣∫ ϕΛ( f̃1, . . . , f̃k)

∣∣∣∣ � (the right hand side of (5.7) with x = 0).

Our (vτj ) may be different for each term; i.e., our (vτj ) may depend on the set { j ∈ X |

f̃ j = g j}. This, however, is sufficient for our purpose. Indeed, the maximal function

(
M0

m( f j)
)∗
µ
τ( j)
j ,vτj

can only be bigger, except for a constant factor, when one replaces vτj by a bigger number
(by Hölder’s inequality). Hence we have only to fix vτj , for each (τ , j), to be the maximum

one of the possibly 2k different vτj ’s.

First we shall estimate the term with f̃ j = g j for all j ∈ X. We can choose rτj and sτj
(τ ∈ B×, j ∈ X) such that

0 <
1

rτj
< 1,

k∑
j=1

1

rτj
� 1, 0 � sτj <∞,

k∑
j=1

sτj � N,

and
1

rτj
+

sτj
n
>

1

p j
−
µ
τ ( j)
j

n
.

We define vτj by 1/vτj = 1/rτj + sτj /n + µτ ( j)
j /n (τ ∈ B×, j ∈ X).
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Then (5.6) holds and, by Lemma 3.7 and Lemma 3.2 (b), we have

∣∣∣∣∫ ϕΛ(g1, . . . , gk)

∣∣∣∣ � c
∑
τ∈B×

|bτ |
k∏

j=1

t−n/rτj−sτj ‖M0
m( f j)‖vτj ,B(0,40t)

� c
∑
τ∈B×

|bτ |
k∏

j=1

(
M0

m( f j )
)∗
µ
τ( j)
j ,vτj

(0).

Next we estimate the term with f̃ j = u j for all j ∈ X. We take vτj such that n/(K+1+n) <
vτj < p j . Then, by Lemma 3.6, we have

ϕΛ(u1, . . . , uk) ∈ c
∑
τ∈B×

|bτ |
[ k∏

j=1

Gm( f j , S
τ ( j)
j , vτj )(0)

]
T0

N (0, t)

and hence ∣∣∣∣∫ ϕΛ(u1, . . . , uk)

∣∣∣∣ � c
∑
τ∈B×

|bτ |
k∏

j=1

Gm( f j , S
τ ( j)
j , vτj )(0).

Finally we estimate the terms with f̃ j = u j for some j ∈ X and f̃ j = g j for some
other j ∈ X. As a typical example of such terms, we shall treat the case where k = 4 and
( f̃1, f̃2, f̃3, f̃4) = (u1, u2, g3, g4). (General case can be treated in a similar way.) We write
J = {1, 2}.

We can write

ϕΛ(u1, u2, g3, g4) =
∑
ρ∈B J

ϕ
[ 2∏

j=1

(Sρ( j)
j u j)

]
Λ J
ρ(g3, g4).

Fix a ρ ∈ B J .
By Lemma 3.6, we have

ϕ

2∏
j=1

(Sρ( j)
j u j) ∈ c

[ 2∏
j=1

Gm( f j , S
ρ( j)
j , pρj )(0)

]
T0

N (0, t),(5.8)

where we take pρj such that n/(K + 1 + n) < pρj < p j .

By Lemma 5.1, the operator Λ J
ρ satisfies the vanishing moment condition up to order

N − 1−mρ where mρ = [µ̄1 + µ̄2 − µ
ρ(1)
1 − µρ(1)

1 ]. Hence, by Lemma 3.7 and Lemma 3.2
(b), the estimate

∣∣∣∣∫ ψΛ J
ρ(g3, g4)

∣∣∣∣ � c
∑

τ∈B×,τ | J=ρ

|bτ |
4∏

j=3

t−n/rτj−sτj ‖M0
m( f j )‖vτj ,B(0,40t)(5.9)
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holds for all ψ ∈ T0
N (0, t) and for rτj , sτj , vτj (τ ∈ B×, τ | J = ρ, j = 3, 4) satisfying

0 <
1

rτj
< 1,

4∑
j=3

1

rτj
� 1,(5.10)

0 � sτj <∞,
4∑

j=3

sτj � max{N −mρ, 0},(5.11)

and 1/vτj = 1/rτj + sτj /n + µτ ( j)
j /n.

If τ ∈ B× and τ | J = ρ, then

2∑
j=1

(
1

p j
−
µ
ρ( j)
j

n

)
+

4∑
j=3

(
1

p j
−
µ
τ ( j)
j

n

)
=

1

q
< 1 +

N

n
.

We have

2∑
j=1

(
1

p j
−
µ
ρ( j)
j

n

)
=

2∑
j=1

(
1

p j
−
µ̄ j

n

)
+

2∑
j=1

µ̄ j − µ
ρ( j)
j

n

�
2∑

j=1

(
1

p j
−
µ̄ j

n

)
+

mρ

n
>

mρ

n
.

Hence, for τ ∈ B× with τ | J = ρ, we have

4∑
j=3

(
1

p j
−
µ
τ ( j)
j

n

)
< 1 +

N −mρ

n
.

Therefore we can choose rτj and sτj (τ ∈ B×, τ | J = ρ, j = 3, 4) which satisfy (5.10)

and (5.11) and also satisfy 1/rτj + sτj /n > 1/p j − µ
τ ( j)
j /n. Choosing rτj and sτj in this way,

we have 0 < vτj < p j (τ ∈ B×, τ | J = ρ, j = 3, 4).
Now, using (5.8) and (5.9), we obtain∣∣∣∣∫ ϕ

[ 2∏
j=1

(Sρ( j)
j u j)

]
Λ J
ρ(g3, g4)

∣∣∣∣
� c
[ 2∏

j=1

Gm( f j , S
ρ( j)
j , pρj )(0)

] ∑
τ∈B×,τ | J=ρ

|bτ |
4∏

j=3

tµ
τ( j)
j −n/vτj ‖M0

m( f j)‖vτj ,B(0,40t)

� c
[ 2∏

j=1

Gm( f j , S
ρ( j)
j , pρj )(0)

] ∑
τ∈B×,τ | J=ρ

|bτ |
4∏

j=3

(
M0

m( f j)
)∗
µ
τ( j)
j ,vτj

(0)

� (the right hand side of (5.7) with x = 0).
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The part (b) of Theorem is proved.

Remark In the arguments of this section, the homogeneity of Tσ
j was used only in the

proof of Lemma 5.1. Therefore the part (b) of Theorem still holds if we replace the assump-
tion “all the operators Tσ

j are homogeneous” by the following assumption: Λ is written as

in (5.1) with (5.2), (5.3), and (5.4), in which each cofactor Λ J
ρ with 1 � | J| � k−1 satisfies

the vanishing moment condition up to order[
n

q
− n

]
−
[∑

j∈ J

(µ̄ j − µ
ρ( j)
j )
]
.

6 Examples

In this section we give some examples of the operators Λ of Theorem with λ =
∑k

j=1 λ
σ
j >

0. Examples with λ = 0 can be found in [CRW, Theorem II], [M1], [CLMS], [CG],
and [G].

Example 1 (Product of functions in Sobolev spaces) For 0 < p < ∞ and m ∈ N, let
W p,m be the set of all those f ∈ D ′(Rn) for which ∂α f ∈ H p for all multi-indices α with
|α| = m. We shall consider the case m/n < 1/p < 1 + m/n. In this case, if f ∈W p,m, then
there exists a unique polynomial P f ∈ Pm−1 such that f − P f ∈ Lq with 1/q = 1/p−m/n
and

‖ f − P f ‖q � c
∑
|α|=m

‖∂α f ‖H p(6.1)

(see, e.g., [M4, Theorem 4.3 and Section 1, Remark (1◦)]). We define W p,m
0 as the set of all

f ∈W p,m with P f = 0.

Suppose f ∈ W p1,1
0 and g ∈ W p2,1

0 with 1/n < 1/pi < 1 + 1/n (i = 1, 2). We set
1/qi = 1/pi − 1/n (i = 1, 2) and 1/r = 1/p1 + 1/p2 − 1/n. Then formal application of
the Leibniz rule and Hölder’s inequality, together with (6.1), gives

‖∂ j( f g)‖r = ‖(∂ j f )g + f ∂ j g‖r � c(‖∂ j f ‖p1 ‖g‖q2 + ‖ f ‖q1 ‖∂ j g‖p2 )

� c
( n∑

j=1

‖∂ j f ‖H p1

)( n∑
j=1

‖∂ j g‖H p2

)
.

Thus we may well expect that ∂ j( f g) ∈ Lr . If r � 1, this is indeed true (rigorous proof is
easy). But, in the case r = 1, we have in fact a stronger conclusion that ∂ j( f g) ∈ H1.

More generally, the following is true: If m ∈ N, m/n < 1/p j < 1 + m/n ( j = 1, 2), and
1/r = 1/p1 + 1/p2 −m/n < 1 + m/n, and if f1 ∈W p1,m

0 and f2 ∈W p2,m
0 , then f1 f2 ∈ L1

loc
and f1 f2 ∈W r,m

0 and∑
|α|=m

‖∂α( f1 f2)‖Hr � c
(∑
|α|=m

‖∂α f1‖H p1

)(∑
|α|=m

‖∂α f2‖H p2

)
.(6.2)
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For this fact, see [F], [M3, Theorems 1.1 and 4.1], or [SiT].
Now, apart from limiting arguments, the above fact is a consequence of our theorem. To

see this, assume f1, f2 ∈ S0 and set

F j = |∇|
m f j =

(
|2πξ|m f̂ j(ξ)

)∨
( j = 1, 2).

Then
f j = |∇|

−mF j =
(
|2πξ|−mF̂ j(ξ)

)∨
and

‖F j‖H p j = ‖ |∇|m f j‖H p j ≈
∑
|α|=m

‖∂α f j‖H p j .

For |α| = m, the derivative ∂α( f1 f2) can be written as

∂α( f1 f2) =
∑
β�α

(
α

β

)
(∂β f1)(∂α−β f2)

=
∑
β�α

(
α

β

)
(∂β |∇|−mF1)(∂α−β |∇|−mF2),

which is the form Λ(F1, F2) with a bilinear operator Λ of (1.3)–(1.4). This Λ satisfies the
condition (1.5) with λ = m and also satisfies the moment condition

Λ(F1, F2) = ∂α( f1 f2) ⊥ Pm−1 (|α| = m).

Hence our theorem gives the estimate (6.2).
In the following examples, we give general methods to define the operator Λ satisfying

the vanishing moment condition.

Example 2 Let a j ∈ G(λ j), 0 � λ j < ∞ ( j = 1, . . . ,N). Define the bilinear operator Λ
by (

Λ( f , g)
)∧

(ξ) =

∫
Rn

f̂ (ξ − η)ĝ(η)
N∏

j=1

(
a j(ξ − η)− a j(−η)

)
dη

for f , g ∈ S0. It is easy to see that Λ is of the form (1.3)–(1.4) and the assumption (1.5)
is satisfied with λ =

∑N
j=1 λ j . It is also easy to see that Λ satisfies the vanishing moment

condition up to order N − 1 (observe that the integrand in the above integral is O(|ξ|N ) as
ξ → 0).

This operator was treated in [M1] and [M2] under the restriction 0 � λ < n.

Example 3 Suppose Λ is defined by (1.3). If there exists a closed half space

E = {ξ ∈ Rn | uξ � 0}, u ∈ Rn \ {0},

(where uξ denotes the usual inner product of two vectors in Rn) such that all the supports
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of the multipliers of Tσ
j are included in E, then Λ satisfies the vanishing moment condition

of all orders. This can be easily seen by checking the condition (2.2).

Example 4 For integers i, set

Di = {ξ ∈ Rn | 2i−1 � |ξ| � 2i+1}.

Take A,B ∈ N such that A > 10B and B > 10. Set

Em =
⋃

i≡mB (mod A)

Di (m = 1, . . . , 10).

If Λ is defined by (1.3) with k � 10 and if the support of the multiplier of Tσ
j is included in

E j for every σ ∈ A and for j = 1, . . . , k, then Λ satisfies the vanishing moment condition
of all orders. This is also easily checked by means of the condition (2.2).

To the above Λ, the part (b) of Theorem in its original form can not be applied except
for the trivial case Λ = 0, since homogeneous operator Tσ

j �= 0 does not satisfy the above
support condition. But, the modified (b) as given in Remark at the end of Section 5 can be
applied.
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