BOUNDED SOLUTIONS OF A FUNCTIONAL INEQUALITY

BY
MICHAEL ALBERT AND JOHN A. BAKER ${ }^{(1)}$

Abstract

It is known that if f is a real valued function on a rational vector space $V, \delta>0$, $$
\begin{equation*} |f(x+y)-f(x) f(y)| \leq \delta \quad \text { for all } \quad x, y \in V \tag{1} \end{equation*}
$$ and if f is unbounded then $f(x+y)=f(x) f(y)$ for all $x, y \in V$. In response to a problem of E. Lukacs, in this paper we study the bounded solutions of (1). For example, it is shown that if f is a bounded solution of (1) then $-\delta \leq f(x) \leq\left(1+(1+4 \delta)^{1 / 2}\right) / 2$ for all $x \in V$ and these bounds are optimal.

Let V be a rational vector space and let R denote the set of real numbers. In [1] it was shown that if $\delta>0$ and $f: V \rightarrow R$ such that

$$
\begin{equation*}
|f(x+y)-f(x) f(y)| \leq \delta \quad \text { for all } \quad x, y \in V \tag{1}
\end{equation*}
$$

then either f is bounded or $f(x+y)=f(x) f(y)$ for all $x, y \in V$. A short proof of a more general result appears in [2]. In this paper we study the bounded solutions of (1).

Note that any function $f: V \rightarrow R$ which is sufficiently uniformly close to either 0 or 1 is a solution of (1). In fact if $\varepsilon>0$ and $\varepsilon+\varepsilon^{2}=\delta$ then (1) holds provided $|f(x)| \leq \varepsilon$ for all $x \in V$. If $\varepsilon>0,3 \varepsilon+\varepsilon^{2}=\delta$ and $|f(x)-1| \leq \varepsilon$ for all $x \in V$ then (1) holds.

Observe that (1) has many constant solutions. Indeed, any $c \in R$ with $\left|c-c^{2}\right| \leq \delta$ determines a constant solution of (1). If $\delta \geq \frac{1}{4}$, then $\left|c-c^{2}\right| \leq \delta$ if and only if $\left(1-(1+4 \delta)^{1 / 2}\right) / 2 \leq c \leq\left(1+(1+4 \delta)^{1 / 2}\right) / 2$. If $0<\delta<\frac{1}{4}$, then $\left|c-c^{2}\right| \leq \delta$ if and only if

$$
\left(1-(1+4 \delta)^{1 / 2}\right) / 2 \leqslant c \leqslant\left(1-(1-4 \delta)^{1 / 2}\right) / 2
$$

or

$$
\left(1+(1-4 \delta)^{1 / 2}\right) / 2 \leq c \leq\left(1+(1+4 \delta)^{1 / 2}\right) / 2 .
$$

We shall see that these bounds for the constant solutions are, except for one, the optimal bounds for the bounded solutions.

[^0]Inequality (1) arose in the work of E . Lukacs in probability theory (personal communication). He was interested in real functions f satisfying (1) and the conditions $f(0)=1$ and $|f(x)| \leq 1$ for all real x.

In this paper it is shown that if $0<\delta<\frac{3}{4}, f: V \rightarrow R$ satisfies (1), $f(0)=1$ and $|f(x)| \leq 1$ for all $x \in V$ then $1-\delta \leq f(x) \leq 1$ for all $x \in V$; moreover the bounds are optimal.

Theorem 1. Suppose $\delta>0, f: V \rightarrow R$ satisfies (1) and f is bounded. Then $-\delta \leq f(x) \leq\left(1+(1+4 \delta)^{1 / 2}\right) / 2$ for all $x \in V$. Moreover these bounds are optimal.

Proof. For any $x \in V$

$$
-\delta \leq f(x)-f(x / 2)^{2} \leq \delta
$$

so that

$$
f(x) \geq f(x / 2)^{2}-\delta \geq-\delta
$$

To demonstrate the other inequality, suppose on the contrary that there exists $\varepsilon>0$ and $a \in V$ such that, $|f(a)|=\rho+\varepsilon$ where $\rho=\left(1+(1+4 \delta)^{1 / 2}\right) / 2$. (Notice $\rho^{2}-\rho=\delta$.) Then

$$
|f(2 a)| \geq\left|f(a)^{2}\right|-\delta=(\rho+\varepsilon)^{2}-\delta=\left(\rho^{2}-\delta\right)+2 \varepsilon \rho+\varepsilon^{2}=\rho+2 \varepsilon \rho+\varepsilon^{2}>\rho+2 \varepsilon
$$

since $\rho>1$. It follows by induction that $\left|f\left(2^{n} a\right)\right| \rightarrow+\infty$ as $n \rightarrow+\infty$ contradicting the boundedness of f.

We have observed that the upper bound actually determines a constant solution to (1) and hence this bound is optimal. To see that the lower bound is optimal, let $\delta>0,0 \neq x_{0} \in V$ and define $f: V \rightarrow R$ by letting $f(x)=-\delta$ if $x=x_{0}$ and $f(x)=0$ if $x_{0} \neq x \in V$. It is easy to check that this f satisfies (1).

Theorem 2. Suppose $0<\delta<\frac{1}{4}$ and $f: V \rightarrow R$ is a bounded solution of (1). Then either
(a)

$$
-\delta \leq f(x)<\left(1-(1-4 \delta)^{1 / 2}\right) / 2, \quad x \in V
$$

or
(b) $\quad\left(1+(1-4 \delta)^{1 / 2}\right) / 2 \leq f(x) \leq\left(1+(1+4 \delta)^{1 / 2}\right) / 2, \quad x \in V$.

Moreover these bounds are optimal.
Proof. Since $\left|f(0)-f(0)^{2}\right| \leq \delta<\frac{1}{4}$ either

$$
\begin{equation*}
\left(1-(1+4 \delta)^{1 / 2}\right) / 2 \leq f(0) \leq\left(1+(1+4 \delta)^{1 / 2}\right) / 2 \tag{i}
\end{equation*}
$$

or
(ii)

$$
\left(1+(1-4 \delta)^{1 / 2}\right) / 2 \leq f(0) \leq\left(1+(1+4 \delta)^{1 / 2}\right) / 2 .
$$

If (i) holds then

$$
|f(x)(1-f(0))|=|f(x+0)-f(x) f(0)| \leq \delta
$$

and

$$
1-f(0) \geqslant 1-\left\{\left(1-(1-4 \delta)^{1 / 2}\right) / 2\right\}=\left(1+(1-4 \delta)^{1 / 2}\right) / 2
$$

so

$$
|f(x)| \leq \delta /(1-f(0)) \leq 2 \delta /\left(1+(1-4 \delta)^{1 / 2}\right)=\left(1-(1-4 \delta)^{1 / 2}\right) / 2
$$

for all $x \in V$. But $f(x) \geq-\delta$ for all $x \in V$ by Theorem 1. Since $\delta<$ ($\left.1-(1-4 \delta)^{1 / 2}\right) / 2$, it follows that (a) holds.

Now suppose (ii) holds but $f\left(x_{0}\right) \leq 0$ for some $x_{0} \in V$. Now $|f(x) f(-x)| \geq$ $f(x) f(-x) \geq f(0)-\delta>\frac{1}{2}-\frac{1}{4}=\frac{1}{4}>0$ for all $x \in V$ so $f\left(-x_{0}\right)<0$ as well. But $\left|f\left(x_{0}\right)\right| \leq \frac{1}{4}$ since $-\frac{1}{4} \leq-\delta \leq f\left(x_{0}\right) \leq 0$ so $\left|f\left(-x_{0}\right)\right| \geq \frac{1}{4}\left|f\left(x_{0}\right)\right| \geq 1$, a contradiction. Thus, if (ii) holds then $f(x)>0$ for all $x \in V$.

Now suppose (ii) holds and let $M=\sup \{f(x): x \in V\}>0$ and choose $\left\{x_{i}\right\}_{i=1}^{\infty}$ in V such that $f\left(x_{i}\right) \rightarrow M$ as $i \rightarrow \infty$. Now

$$
\left|f\left(x_{i}\right)-f\left(\frac{x_{i}}{2}+x\right) f\left(\frac{x_{i}}{2}-x\right)\right| \leq \delta
$$

so

$$
\begin{equation*}
f\left(\frac{x_{i}}{2}+x\right) \geq\left(f\left(x_{i}\right)-\delta\right) / f\left(\frac{x_{i}}{2}-x\right) \geq\left(f\left(x_{i}\right)-\delta\right) / M \tag{2}
\end{equation*}
$$

for all $x \in V$ and all $i=1,2, \ldots$. Replacing x by $y-\left(x_{i} / 2\right)$ in (2) we find

$$
f(y) \geq\left(f\left(x_{i}\right)-\delta\right) / M \quad \text { for all } \quad y \in V \quad \text { and all } \quad i=1,2, \ldots
$$

Hence $f(y) \geq(M-\delta) / M$ for all $y \in V$ so $f\left(x_{i}\right) \geq(M-\delta) / M$ for all $i=1,2, \ldots$ and thus $M^{2} \geq M-\delta$. Thus $M \geq\left(1+(1-4 \delta)^{1 / 2}\right) / 2$ or $M \leq\left(1-(1-4 \delta)^{1 / 2}\right) / 2<\frac{1}{2}$. But $M \geq f(0)>\frac{1}{2}$ so $M \geq\left(1+(1-4 \delta)^{1 / 2}\right) / 2$. Thus $f(y) \geq(M-\delta) / M=1-(\delta / M) \geq$ $1-\left(2 \delta / 1+(1-4 \delta)^{1 / 2}\right)=\left(1+(1-4 \delta)^{1 / 2}\right) / 2$ for all $y \in V$ and so, by Theorem 1, (b) holds.

The bounds in Theorem 2 are optimal as has been observed.
Theorem 3. Suppose $0<\delta<1$ and $f: V \rightarrow R$ satisfies (1), $f(0)=1$ and $|f(x)| \leq 1$ for all $x \in V$.

If $\delta<\frac{3}{4}$ then $1-\delta \leq f(x) \leq 1$ for all $x \in V$.
If $\delta \geq \frac{3}{4}$ and $f(x) \geq 0$ for some $x \in V$ then $1-\delta \leq f(x) \leq 1$.
If $\delta \geq \frac{3}{4}$ and $f(x)<0$ for some $x \in V$ then

$$
-\frac{1}{2}-\left(\delta-\frac{3}{4}\right)^{1 / 2} \leq f(x) \leq-\frac{1}{2}+\left(\delta-\frac{3}{4}\right)^{1 / 2} .
$$

Proof. Since $|1-f(x) f(-x)|=|f(0)-f(x) f(-x)| \leq \delta$ it follows that

$$
\begin{equation*}
f(x) f(-x) \geq 1-\delta>0 \quad \text { for all } \quad x \in V \tag{*}
\end{equation*}
$$

Hence $f(x) \neq 0$ and

$$
\begin{equation*}
|f(x)| \geq(1-\delta) /|f(-x)| \geq 1-\delta>0 \quad \text { for all } \quad x \in V \tag{3}
\end{equation*}
$$

because $0<|f(-x)| \leq 1$.

Now suppose there exists $x \in V$ such that $f(x)<0$. Then, according to (*), $f(-x)<0$. Assume $f(x / 2)>0$ (and hence $f(-x / 2)>0$). Then

$$
|f(-x / 2)-f(-x) f(x / 2)| \leq \delta
$$

and hence, by (*),

$$
f(x / 2) f(-x) \geq f(-x / 2)-\delta \geq\{(1-\delta) / f(x / 2)\}-\delta
$$

Hence

$$
\begin{equation*}
f(-x) \geq(1-\delta-\delta f(x / 2)) /(f(x / 2))^{2} . \tag{4}
\end{equation*}
$$

It follows that $1-\delta-\delta f(x / 2)<0$ since $f(-x)<0$. From (*), since $f(-x)<0$, we deduce that

$$
f(x) \leq(1-\delta) / f(-x)
$$

and so, from (4),

$$
f(x) \leq(1-\delta) f(x / 2)^{2} /\{1-\delta-\delta f(x / 2)\}<0
$$

Thus

$$
\begin{aligned}
\delta & \geq f(x / 2)^{2}-f(x) \geq f(x / 2)^{2}-\left[(1-\delta) f(x / 2)^{2} /\{1-\delta-\delta f(x / 2)\}\right] \\
& =-\delta f(x / 2)^{3} /\{1-\delta-\delta f(x / 2)\} .
\end{aligned}
$$

Since $1-\delta-\delta f(x / 2)<0$ we have

$$
1-\delta-\delta f(x / 2) \leq-f(x / 2)^{3}
$$

or

$$
\delta(1+f(x / 2)) \geq 1+f(x / 2)^{3}
$$

Since $f(x / 2) \geq 0$ we find from the last inequality that

$$
\delta \geq 1-f(x / 2)+f(x / 2)^{2}
$$

of

$$
\begin{equation*}
\left(f(x / 2)-\frac{1}{2}\right)^{2}+\left(\frac{3}{4}-\delta\right) \leq 0 \tag{**}
\end{equation*}
$$

from which it is clear that $\delta \geq \frac{3}{4}$.
Similarly, if $f(x / 2)<0$ we deduce by a similar argument that

$$
\left(f(x / 2)+\frac{1}{2}\right)^{2}+\left(\frac{3}{4}-\delta\right) \leq 0
$$

and again conclude that $\delta \geq \frac{3}{4}$.
We have shown that if $f(x)<0$ for some $x \in V$ then $\delta \geq \frac{3}{4}$. Thus the first assertion of the Theorem follows from (3) as does the second.

To check the third assertion, suppose $f(x)<0$ for some $x \in V$ and $f(x / 2)>0$.

Then (**) holds and so

$$
\left|f(x / 2)-\frac{1}{2}\right| \leq\left(\delta-\frac{3}{4}\right)^{1 / 2} .
$$

Hence

$$
f(x / 2) \geq \frac{1}{2}-\left(\delta-\frac{3}{4}\right)^{1 / 2}>0 \quad\left(\text { since } \frac{3}{4} \leq \delta<1\right) .
$$

But $f(x) \geq f(x / 2)^{2}-\delta$ so

$$
f(x) \geq\left(\frac{1}{2}-\left(\delta-\frac{3}{4}\right)^{1 / 2}\right)^{2}-\delta=-\frac{1}{2}-\left(\delta-\frac{3}{4}\right)^{1 / 2} .
$$

Similarly

$$
f(-x) \geq-\frac{1}{2}-\left(\delta-\frac{3}{4}\right)^{1 / 2} .
$$

But $f(-x)<0$ and so

$$
f(x) \leq(1-\delta) / f(-x) \leq(1-\delta) /\left(-\frac{1}{2}-\left(\delta-\frac{3}{4}\right)^{1 / 2}\right)=-\frac{1}{2}+\left(\delta-\frac{3}{4}\right)^{1 / 2} .
$$

A similar argument applies in case $f(x)<0$ and $f(x / 2)<0$ to complete the proof.

To see that the estimates in the first assertion are optimal consider the function $f: R \rightarrow R$ defined by letting $f(x)=1$ for $x \geq 0$ and $f(x)=1-\delta$ for $x<0$.

A continuous, monotonic example can be constructed by letting $f(x)=1$ for $x \geq 0$ and $f(x)=\delta \exp (x)+1-\delta$ for $x<0$ where $0<\delta<1$. This f satisfies (1) $f(0)=1,1-\delta<f(x) \leq 1$ for all $x \in R$ and $\inf \{f(x): x \in R\}=1-\delta$.

We doubt, but haven't been able to prove, that the bounds in the last assertion of Theorem 3 are optimal. However, if $\frac{3}{4} \leq \delta<1$ and $f: V \rightarrow R$ is defined by letting $f(0)=1$ and $f(x)=-\frac{1}{2}$ for $0 \neq x \in V$ then the assumptions of Theorem 3 are satisfied.

This shows that such functions may assume negative values.

References

1. John Baker, J. Lawrence and F. Zorzitto, The Stability of the Equation $f(x+y)=f(x) f(y)$, Proc. Amer. Math. Soc. 74 (1979), 242-246.
2. John A. Baker, The Stability of the Cosine Equation, Proc. Amer. Math. Soc. 80 (1980), 411-416.

Department of Pure Mathematics
University of Waterloo
Waterloo, Ontario
Canada, N2L 3G1

[^0]: Received by the editors January 6, 1981 and, in revised form, September 4, 1981.
 AMS Subject Classification Primary 39C05 Secondary 26D99, 39B20
 ${ }^{(1)}$ Research supported by NSERC Grant A7153

