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BOUNDED SOLUTIONS OF A 
FUNCTIONAL INEQUALITY 

BY 

M I C H A E L A L B E R T A N D J O H N A. BAKER ( 1 ) 

ABSTRACT. It is known that if / is a real valued function on a 
rational vector space V, 8 > 0, 

(1) |/(x + y ) - / (x ) / (y ) |<ô for all x, y e V 

and if / is unbounded then f{x + y) = f(x)f(y) for all x, y e V. In 
response to a problem of E. Lukacs, in this paper we study the 
bounded solutions of (1). For example, it is shown that if / is a 
bounded solution of (1) then - ô < / ( x ) < ( l + (l + 4S)1/2)/2 for all 
xeV and these bounds are optimal. 

Let V be a rational vector space and let I? denote the set of real numbers. In 
[1] it was shown that if 8>0 and / : V-» R such that 

(1) \f(x + y)-f(x)f(y)\<8 for all x,yeV 

then either / is bounded or f(x + y) = f(x)f(y) for all x, y e V. A short proof of a 
more general result appears in [2]. In this paper we study the bounded 
solutions of (1). 

Note that any function / : V -* R which is sufficiently uniformly close to 
either 0 or 1 is a solution of (1). In fact if e > 0 and e + e2 = 8 then (1) holds 
provided |/(jc)|<e for all xe V. If e > 0 , 3e + s2 = 8 and | / ( x ) - l | < e for all 
xeV then (1) holds. 

Observe that (1) has many constant solutions. Indeed, any ceR with 
\c - c2\ < 8 determines a constant solution of (1). If 8 > | , then \c - c2\ < 8 if and 
only if ( l - ( l + 4ô) 1 / 2 ) /2<c<( l + (l + 4ô)1/2)/2. If 0 < 6 < i then \c-c2\<8 if 
and only if 

(1 - (1 + 4S)1/2)/2 *£ c ̂  (1 - (1 - 4S)1/2)/2 

or 

(1 + (1 - 4S)1/2)/2 < c < (1 + (1 + 4Ô)1/2)/2. 

We shall see that these bounds for the constant solutions are, except for one, 
the optimal bounds for the bounded solutions. 
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Inequality (l) arose in the work of E. Lukacs in probability theory (personal 
communication). He was interested in real functions / satisfying (1) and the 
conditions /(0) = 1 and | / (x ) |< l for all real JC. 

In this paper it is shown that i f 0 < 8 < | , / : V - » K satisfies (1), /(0) = 1 and 
|/(x)| < 1 for all x e V then 1 - 8 ^ / ( x ) < 1 for all x G V; moreover the bounds 
are optimal. 

THEOREM 1. Suppose 8 > 0 , / : V-^R satisfies (1) and f is bounded. Then 
- ô < / ( x ) < ( l + (l + 4S)1/2)/2 for all xeV. Moreover these bounds are optimal 

Proof. For any xeV 
- ô < / ( x ) - / ( x / 2 ) 2 < ô 

so that 
f(x)>f(x/2)2-8>-8. 

To demonstrate the other inequality, suppose on the contrary that there 
exists e > 0 and aeV such that, |/(a)| = p + e where p = (l + (l + 4Ô)1/2)/2. 
(Notice p2-p = 8.) Then 

\f(2a)\>\f(a)2\-8 = (p + e)2-8 = (p2-8) + 2ep + e2 = p + 2ep + e2>p + 2e 

since p > 1. It follows by induction that |/(2na)| —» +o° as n -» +oo contradicting 
the boundedness of /. 

We have observed that the upper bound actually determines a constant 
solution to (1) and hence this bound is optimal. To see that the lower bound is 
optimal, let 8 > 0, 0 ^ x0 e V and define / : V -> R by letting /(JC) = - 8 if x = x0 

and /(x) = 0 if x0 ^ x G V. It is easy to check that this / satisfies (1). 

THEOREM 2. Suppose 0<8<^ and f:V->R is a bounded solution of (1). 
Then either 

(a) -8 < / (x) < (1 - (1 - 4ô)1/2)/2, x G V 

or 

(b) (1 + (1 - 4S)1/2)/2 < /(x) < (1 + (1 + 4ô)1/2)/2, x G V. 

Moreover these bounds are optimal 

Proof. Since | / (0 ) - / (0 ) 2 |<ô <\ either 

(i) ( l - ( l + 4ô) 1 / 2 ) /2</ (0)<( l + (l + 4ô)1/2)/2. 

or 

(ii) (l + ( l - 4 ô ) 1 / 2 ) / 2 < / ( 0 ) < ( l + (l + 4ô)1/2)/2. 

If (i) holds then 

| / (x)( l - / (0)) | = |/(x + 0 ) - / (x ) / (0 ) |<o 
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and 

1 - /(0) ^ 1 - {(1 - (1 - 48)1/2)/2} = (1 + (1 - 48)1/2)/2 
so 

|/(x)| < 0/(1 - /(0)) < 28/(1 + (1 - 48)1/2) = (1 - (1 - 48)1/2)/2 

for all x e V . But / ( x ) > - 8 for all X G V by Theorem 1. Since 8 < 
( l - ( l - 4 8 ) 1 / 2 ) / 2 , it follows that (a) holds. 

Now suppose (ii) holds but / (x 0 )<0 for some x0eV. Now | / (x)/(-x) |> 
/ ( * ) / ( - * ) > / ( 0 ) - 8 > W = i > 0 for all xeV so / ( - x 0 ) < 0 as well. But 
|/(x0)|<± since - £ < - 8 < / ( x 0 ) ^ 0 so | / ( - x 0 ) | ^ i | / (x0) |^ 1, a contradiction. 
Thus, if (ii) holds then f(x)>0 for all x e V. 

Now suppose (ii) holds and let M = sup{/(x):xG V}>0 and choose {xf}f=1 in 
V such that /(x() —> M as i -» oo. Now 

<8 

so 

A*)-/(f+.)/(f-

(2) /(|+x) = W«i)-»V/(f-») = (/ta)-8)/M 

for all x e V and all i = 1, 2 , . . . . Replacing x by y - (xJ2) in (2) we find 

/ (y)>(/(Xi)-5) /M for all y e V and all i = l , 2 , . . . . 

Hence /(y) > ( M - 8 ) / M for all y e V s o /(*,) > ( M - 8 ) / M for all i = 1, 2, 
and thus J V f ^ M - S . Thus M > ( l + ( l -45) 1 / 2 ) /2 or M < ( l - ( l - 4 S ) 1 / 2 ) / 2 < § . 
B u t M > / ( 0 ) > | s o M > ( l + ( l -45) 1 / 2 ) /2 . T h u s / ( y ) > ( M - S ) / M = 1-(S/M)> 
l - ( 2 8 / l + ( l -4S) 1 / 2 ) = (l + ( l-4S)1 / 2) /2 for all ye V and so, by Theorem 1, 
(b) holds. 

The bounds in Theorem 2 are optimal as has been observed. 

THEOREM 3. Suppose 0 < 8 < 1 and /:V—>i? satisfies (1), /(0) = 1 and 
| / (x ) |< l for allxeV. 

If 8 < f then 1 - S < / ( x ) < 1 for all xeV. 
I / 8 > | and f(x)>0 for some x e V then l - S < / ( x ) < l . 
/ / 8 > I and f(x) < 0 for some xeV then 

- i - ( 8 - ! ) 1 / 2 < / ( x ) < - | + ( 8 - | ) 1 / 2 . 

Proof. Since | l - / ( x ) / ( - x ) | = | / (0 ) - / (x ) / ( -x ) |<S it follows that 

(*) / ( x ) / ( - x ) > l - S > 0 for all x e V . 

Hence f(x) / 0 and 

(3) | / ( x ) | > ( l - S ) / | / ( - x ) | > l - 8 > 0 for all x e V 

because 0 < | / ( - x ) | < l . 
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Now suppose there exists xeV such that / ( x )<0 . Then, according to (*), 
/ ( - x ) < 0 . Assume / ( J C / 2 ) > 0 (and hence / ( -x /2 )>0) . Then 

|/(-x/2) - / ( -x ) / (x /2) | < S 

and hence, by (*), 

/(x/2)/(-x) > f(-x/2) - 8 => {(1 - 8)1 f (x/2)} - 8. 

Hence 

(4) f(-x)>(l-8-8f(xl2))/(f(x/2))2. 

It follows that 1 - 8 - 5/(x/2)<0 since / ( - x ) < 0 . From (*), since / ( - x ) < 0 , we 
deduce that 

/ (x)<( l -<5) / / ( -x) 

and so, from (4), 

/(x) < (1 - ô)/(x/2)2/{l - 8 - 8f(x/2)}< 0. 

Thus 

8 > /(x/2)2 - /(x) > /(x/2)2 - [(1 - 5)/(x/2)2/{l - 8 - 5/(x/2)}] 

= -6 / (x /2 ) 3 / { l -6 -5 /W2)} . 

Since 1 - S — 8f(x/2) < 0 we have 

1 - 5 - S/(x/2) < -/(x/2)3 

or 

5(l + / (x/2))>l + /(x/2)3. 

Since /(x/2)>0 we find from the last inequality that 

8 > l - / ( x / 2 ) + /(x/2)2 

of 

(**) (/(x/2)-4)2 + (i-<5)<0 

from which it is clear that 8 > | . 
Similarly, if /(x/2) < 0 we deduce by a similar argument that 

(/(x/2) + i)2 + ( f - S ) < 0 

and again conclude that S > | . 
We have shown that if / ( x ) < 0 for some xeV then ô > | . Thus the first 

assertion of the Theorem follows from (3) as does the second. 
To check the third assertion, suppose / ( x ) < 0 for some xeV and /(x/2)>0. 
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Then (**) holds and so 

|/(x/2)-!|<(ô-i)1/2. 

Hence 

/ ( x / 2 ) > | - ( 5 - | ) 1 / 2 > 0 ( s i n c e l < 5 < l ) . 

But f(x)>f(x/2)2-8 so 

/Ot)>(i-(s-I)1/2)2-s = -§-(s-i)1/2. 
Similarly 

/(-x)>-|-(s-!)1 /2 . 

But / ( - x ) < 0 and so 

/ W < ( l - Ô ) / / ( - x ) < ( l - 5 ) / ( - | - ( 6 - ! ) 1 / 2 ) = - è + (5- I ) 1 ' 2 . 

A similar argument applies in case f(x)<0 and f(x/2)<0 to complete the 
proof. 

To see that the estimates in the first assertion are optimal consider the 
function f:R->R defined by letting f(x)=l for x>0 and f(x)=l-8 for 
J C < 0 . 

A continuous, monotonie example can be constructed by letting f(x) - 1 for 
J C > 0 and f(x) = 8 exp(x) + 1-8 for J C < 0 where 0 < 5 < l . This /satisfies (1) 
/ ( 0 ) = 1 , l - S < / ( x ) < l for all xeR and inf{/(x) : x e R} = 1 - 8. 

We doubt, but haven't been able to prove, that the bounds in the last 
assertion of Theorem 3 are optimal. However, if | < S < 1 and / : V ^ i ? is 
defined by letting /(0) = 1 and f(x) = - | f o r 0 ^ x G V then the assumptions of 
Theorem 3 are satisfied. 

This shows that such functions may assume negative values. 
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