Imaging the Primary Cilium: Challenges and Approaches

Andrew Resnick

Department of Physics, Cleveland State University, Cleveland OH 44115

The primary cilium is an organelle hypothesized to be centrally important in many regulatory pathways driven by mechanosensation- typically involving sensing the apical fluid flow. Because the cilium is hypothesized to function based on its geometry- a slender cantilevered beam- obtaining knowledge of the dynamical shape is a key step in elucidating the physiological function. However, the cilium has a diameter well below the (optical) diffraction limit and grows parallel to the optical axis of a microscope. Both factors conspire to make imaging the living cilium a very challenging problem.

In my talk, I will discuss past and current methods used to increase the visibility of the primary cilium in live cell imaging. In addition, I will present reasons why obtaining data about the deformed shape of the cilium can be used to inform many disease models involving mechanosensation and/or muco-ciliary interactions. Finally, I will discuss my laboratory's use of optical trapping to both stimulate and measure the mechanical properties of the cilium.