AN ELEMENTARY PROOF OF THE FROBENIUS FACTORIZATION THEOREM FOR DIFFERENTIAL EQUATIONS

BY
E. W. KENNEDY

Consider the $1^{\text {st }}$ order linear system

$$
\begin{equation*}
x^{\prime}=A_{n}(t) x, \quad t \in I \text { (interval) } \tag{1}
\end{equation*}
$$

$A_{n}(t)=\left(a_{i j}(t)\right)_{i, j=1}^{n}$, when $A_{n}(t)$ is real valued and continuous on $I, a_{i, i+1}(t) \neq 0$, $a_{i j}(t) \equiv 0$ for $j \geq i+2, t \in I$ and $i=1, \ldots, n-1$. In what follows, components c^{j} of a vector c will be identifiable by the superscript. The purpose of this note is to give a simple induction proof of the following theorem of Frobenius [1].

Factorization Theorem. If the system (1) possesses n solutions $\mu_{1}(t), \ldots, \mu_{n}(t)$ such that

$$
\begin{equation*}
W_{k}(\mu) \equiv \operatorname{det}\left(\mu_{j}^{i}(t)\right) \neq 0, \quad i, j=1, \ldots, k, \quad k \leq n \tag{2}
\end{equation*}
$$

$t \in I$, then (1) is equivalent to the single differential equation of $n^{\text {th }}$ order for $\mu=x^{1}$ of the form

$$
\begin{equation*}
D\left(\alpha_{n-1} \cdots D\left(\alpha_{2} D\left(\alpha_{1} D\left(\alpha_{0} \mu\right)\right)\right) \cdots\right)=0 \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{j}=\frac{W_{j}^{2}(\mu)}{a_{j, j+1} W_{j-1}(\mu) W_{j+1}(\mu)}, \quad j=0, \ldots, n-1, \tag{4}
\end{equation*}
$$

$D=d / d t, W_{-1} \equiv W_{0} \equiv a_{01} \equiv 1$.
A rather long and complicated proof of the Factorization Theorem is given by Hartman [2, pp. 51-54].

Suppose μ_{1}, \ldots, μ_{n} are linearly independent solutions of (1) with $\mu_{1}^{1}(t) \neq 0$ on I. The change of variable $x=U w$ in (1) where $w=\left(w^{0}, w^{1}, \ldots, w^{n-1}\right)$,

$$
U=\left(\begin{array}{cc}
\mu_{1}^{1}(t) & 0 \\
\cdot & \\
\cdot & I_{n-1} \\
\cdot & \\
\mu_{1}^{n}(t) &
\end{array}\right)
$$

$$
379
$$

and I_{n-1} is the identity matrix of order $n-1$, has the simple consequence of transforming (1) into a similar system which is essentially of only the $(n-1)^{\text {st }}$ dimension. That is, the vectors $\left(v_{1}, \ldots, v_{n-1}\right)$, where

$$
\begin{equation*}
v_{j-1}^{i}=-\left(\mu_{1}^{i+1} / \mu_{1}^{1}\right) \mu_{j}^{1}+\mu_{j}^{i+1}, \quad j=2, \ldots, n \tag{5}
\end{equation*}
$$

$i=1, \ldots, n-1$, are linearly independent solutions of the system

$$
\begin{equation*}
v^{\prime}=B_{n-1}(t) v \tag{6}
\end{equation*}
$$

where if $B_{n-1}(t)=\left(b_{i j}(t)\right)$, then

$$
\begin{equation*}
b_{i j}(t)=a_{i+1, j+1}(t), \quad i=1, \ldots, n-1, \quad j=2, \ldots, n-1 \tag{7}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
W_{k+1}\left(\mu_{1}, \ldots, \mu_{k+1}\right)=\mu_{1}^{1} W_{k}\left(v_{1}, \ldots, v_{k}\right), \quad k=1, \ldots, n-1 \tag{8}
\end{equation*}
$$

Proof of Theorem. The proof is by induction on the dimension of the system. If $n=1$, the result is immediate. Suppose $n>1$, since $W_{1}(\mu)=\mu_{1}^{1}(t) \neq 0$, the change of variable is applicable. Furthermore, (2) and (8) imply

$$
W_{k}(v) \neq 0, \quad k=1, \ldots, n-1
$$

Hence, the induction hypothesis applied to (6) implies

$$
\begin{equation*}
D\left(\beta_{n-2} \cdots D\left(\beta_{2} D\left(\beta_{1} D\left(\beta_{0} v\right)\right)\right) \cdots\right)=0 \tag{9}
\end{equation*}
$$

where

$$
\beta_{j}=\frac{W_{j}^{2}(v)}{b_{j, j+1} W_{j-1}(v) W_{j+1}(v)}
$$

However, (7) and (8) imply

$$
\begin{equation*}
\beta_{j}=\frac{W_{j}^{2}(v)\left(\mu_{1}^{1}\right)^{2}}{b_{j, j+1} W_{j-1}(v) W_{j+1}(v)\left(\mu_{1}^{1}\right)^{2}}=\frac{W_{j+1}^{2}(\mu)}{a_{j+1, j+2} W_{j}(\mu) W_{j+2}(\mu)}=\alpha_{j+1} \tag{10}
\end{equation*}
$$

$j=0, \ldots, n-2$. Furthermore

$$
\begin{equation*}
D\left(\beta_{0} v\right)=D\left(\alpha_{1} D\left(\alpha_{0} \mu\right)\right) \tag{11}
\end{equation*}
$$

since $v^{1}=-\left(\mu_{1}^{2} / \mu_{1}^{1}\right) x^{1}+x^{2}$ and $\left(x^{1}\right)^{\prime}=a_{11} x^{1}+a_{12} x^{2}$. Substituting (11) and (10) into (9), we obtain (3). Hence the induction is complete.

Bibliography

1. G. Frobenius, Ueber die Determinante mehrerer Funktionen einer Variablen, J. Reine Angew. Math. 77 (1874), 245-257.
2. P. Hartman, Ordinary differential equations, Wiley, New York, 1964.

Department of Mathematics
Calif. Polytechnic State University
San Luis Obispo, ca 93401, usa

