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A lower bound for Garsia’s entropy for certain
Bernoulli convolutions

Kevin G. Hare and Nikita Sidorov

ABSTRACT

Let 8 € (1, 2) be a Pisot number and let Hg denote Garsia’s entropy for the Bernoulli convolution
associated with (. Garsia, in 1963, showed that Hg <1 for any Pisot 8. For the Pisot
numbers which satisfy z™ =z™ ' 4+ 2™ 2 +.. .+ x4+ 1 (with m >2), Garsia’s entropy has
been evaluated with high precision by Alexander and Zagier for m = 2 and later by Grabner,
Kirschenhofer and Tichy for m > 3, and it proves to be close to 1. No other numerical values for
Hg are known. In the present paper we show that Hg > 0.81 for all Pisot (3, and improve this
lower bound for certain ranges of 5. Our method is computational in nature.

1. Introduction and summary

Representations of real numbers in non-integer bases were introduced by Rényi [19] and first
studied by Rényi and Parry [16, 19]. Let 8 be a real number > 1. A S-expansion of the real
number x € [0, 1] is an infinite sequence of integers (a1, az, as, .. .) such that x =3 -, a,87".
The reader is referred to Lothaire [15, Chapter 7] for more on these topics. For the purposes
of this paper, we assume 1 < < 2 and a; € {0, 1}.

Let p1g denote the Bernoulli convolution parameterized by 8 on Ig:=[0,1/(8 — 1)], that is,

Mﬂ(E) :P{(al, as, . . ) € {0, 1}N : i akﬁ_k S E}
k=1

for any Borel set E C Iz, where P is the product measure on {0, 1} with P(a; =0)=
P(a; =1) =1/2. Since 3 < 2, it is obvious that supp (ug) = I.

Bernoulli convolutions have been studied for decades (see for example Peres, Schlag and
Solomyak [17] and Solomyak [22]), but there are still many open problems in this area. The
most significant property of pg is the fact that it is either absolutely continuous or purely
singular (see Jessen and Wintner [12]); Erdds showed that if 5 is a Pisot number, then it is
singular (see [5]). No other § with this property have been found so far.

Recall that a number §>1 is called a Pisot number if it is an algebraic integer whose
Galois conjugates h # 3 are less than 1 in modulus. Such is the golden ratio 7 = (1 + v/5)/2
and, more generally, the multinacci numbers T,,, the positive real root satisfying 2™ =
™4 2m=2 4 42+ 1 with m > 2. The set of Pisot numbers is typically denoted by S. It
has been proved by Salem that S is a closed subset of (1, 00) (see [20]). Moreover, Siegel has
proved that the smallest Pisot number is the real cubic unit satisfying z3 =z + 1 (see [21]).
Amara [2] gave a complete description of the set of all limit points of the Pisot numbers in
(1,2). In particular, we have the following theorem.

THEOREM 1 (Amara). The limit points of S in (1, 2) are the following:

C1=P1 < P2 <Y< P3 <X <WY3<Pg < ... <Yp<Pry1<...<2,
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where
the minimal polynomial of ¢, is ®, () =2" ™1 — 22" + x — 1,
the minimal polynomial of 1, is ¥,.(z) = 2"t — 2" — ... —x — 1,

the minimal polynomial of y is X (z) = 2* — 2% — 222 + 1.

A description of the Pisot numbers approaching these limit points was given by
Talmoudi [23]. Regular Pisot numbers are defined as the Pisot roots of the polynomials in
Table 1. Pisot numbers that are not regular Pisot numbers are called irregular Pisot numbers.
For each of these limit points (¢, 1, or x), there exists an e (dependent on the limit point)
such that all Pisot numbers in an e-neighborhood of this limit point are these regular Pisot
numbers. The Pisot root of the defining polynomial approaches the limit point as n tends
to infinity. It should be noted that these polynomials are not necessarily minimal, and may
contain some cyclotomic factors. Also, they are only guaranteed to have a Pisot number root
for sufficiently large n.

Computationally, Boyd [3, 4] has given an algorithm that will find all Pisot numbers in
an interval, where, in the case of limit points, the algorithm can detect the limit points and
compensate for them.

Garsia [9] introduced a new notion associated with a Bernoulli convolution. Namely, put

D,(3) = {x €lg:w=Y apf* with ax € {0, 1}}
k=1
and, for x € D, (0),

pn(m):#{(al,...,an)E{O, 1}”:z:Zakﬂk}. (1)

k=1

Finally, put

(n) _ pa() . pn()
Hﬁ - Z omn 10g on
IeDn(ﬁ)
and
H(")

Hp = li £
A nLH;o n log B
(it was shown in [9] that the limit always exists). The value Hg is called Garsia’s entropy.
Obviously, if § is transcendental or algebraic but not satisfying an algebraic equation with
coefficients {—1, 0, 1}, then all the sums Y_,_, ax3~" are distinct, whence p,(z) =1 for any
x € D, (6), and Hg =log 2/log 3 > 1.

TABLE 1. Regular Pisot numbers.

Limit points Defining polynomials
or O ()™ £ (z" — 2”1+ 1)
Dp(z)z™ £ (2" —z+ 1)
P, (z)z™ £ (" + 1)(x — 1)

Uy U, (2)z™ £ (27 — 1)
U (x)z™ £ (2" —1)/(x — 1)

X X+ (x3+ 22 —2-1)
X(z)z™ + (% — 22 + 1)
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However, if § is Pisot, then it was shown in [9] that Hg < 1: which means in particular that
[ does satisfy an equation with coefficients {0, +1}. Furthermore, Garsia also proved that if
Hg <1, then pg is singular.

In 1991 Alexander and Zagier [1] managed to evaluate Hg for the golden ratio § =7 with
an astonishing accuracy. It turned out that H. is close to 1: in fact, H, =~ 0.9957. Grabner,
Kirschenhofer and Tichy [10] extended this method to the multinacci numbers; in particular,
H,, ~0.9804, H;, ~0.9867 and so on. They also showed that H,  is strictly increasing for
m >3, and H,; — 1 as m — oo exponentially fast.

The method suggested in [1] has, however, its limitations and apparently cannot be extended
to non-multinacci Pisot parameters 3. Consequently, no numerical value for Hg is known for
any non-multinacci Pisot £, not even a lower bound.

The main goal of this paper is to present a universal lower bound for Hg for 3 a Pisot
number in (1, 2). We prove that Hz > 0.81 for all such 3 (Theorem 9) and improve this bound
for certain ranges of 3 (see discussion in Remark 7 and Proposition 10).

2. The maximal growth exponent

Denote by &, (x; 8) the set of all 0-1 words of length n which may act as prefixes of 8-expansions
of z. We first prove a simple characterization of this set.

LEMMA 2. We have

Enlz; B) = {(al, cooyan)€{0,1}7

51

n . ﬁ_n
0<z — Z apB~ " < .
k=1

Proof. Let (ai,...,an) € Ex(x; B); then the fact that there exists a (-expansion of z
beginning with this word implies

n n _n
Z afF<r< Z apB7" + -1
1 1
the second inequality following from Y | ax8~% < 87" /(8 — 1).
The converse follows from the fact that if 0 <y < 1/(8 — 1), where y = 8"(z — >_1_; ar~F),
then y has a [S-expansion (an41, dnta, - - ). ]

The following lemma will play a central role in this paper.

LEMMA 3. Suppose there exists A € (1, 2) such that #&,(x; ) = O(A\") for all v € Ig. Then

2

Hz>1 —. 2
B Z 1083 \ (2)
Proof. Let (a1, as,...) be a S-expansion of z. Denote by p, (a1, ..., a,) the number of 0-1
words (a}, ..., a}) such that > ;_, apB~%=>"}_, a},87F. Then, as was shown by Lalley [14,

Theorems 1 and 2],
Vpn(ai, ..., a,) — 238 72 P-almost everywhere (a1, as, .. .) € {0, 1}". (3)
Since pn (a1, ..., an) < #Ep(z;B) for z =31 _, apB7%, we have ¥/p,(ay,...,a,) <e,A with
€, — 1, which, together with (3), implies (2). O

Define the maximal growth exponent as follows:

Mg := sup limsup { #En(x, ﬁ)

z€lg n—oo
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It follows from Lemma 3 that
2
Hg>1 — 4
B Z 1083 M (4)

Computing Mg explicitly for a given Pisot 8 looks like a difficult problem (unless 3 is
multinacci; see § 6), so our goal is to obtain good upper bounds for Mz for various ranges of
(. To do that, we will need the following simple, but useful, claim.

PROPOSITION 4. If #&,4r(x; 8) < R - #Ex(x; ) for all n > ng for some ng > 1 and some
r > 2, then My < v/R.

Proof. By induction,
#Enotrk (T3 B) < #Eny (w3 B)RF <2™RF.
Let n > ng, and choose k,, such that ng + r(k, — 1) <n <ng + rk,. Then

#gn(xa /6) < #€n0+rkn (.CL', /6) < 2nORkn.

The result follows from

lim (QnoRkn)l/n — lim 27o/nRkn/n — RUT — /R

n—oo n—0o0

by noticing that ng/n — 0 and k,/n — 1/r as n — oo. O

ExaMPLE 5. For the examples in this paper, we give only four digits of precision.
In fact, much higher precision was used in the computations (about 50 digits). Let us
consider a toy example showing how to apply (4) to 8= . ~ 1.6737, the largest root of
2% — 22* + 23 — 22 + x — 1 (which is a Pisot number).

Let us first determine #&s(x; By), dependent upon z. After that, we will determine
maxgeg, #E(x; Pi). For ease of notation, we will denote m,,(3) = maxyer, #E,(z; 3). Hence,
in this case, we are determining ms(03.). Consider the values of z such that z = (a1/5) +
(a2/?%) + ... for the initial string (a1, az). We see that

1 1 _(ll

a a a a a 1/33
S ST o+ o p=tg e, 1B

FTESTSE TR T E IR S V)
This gives us upper and lower bounds for possible initial strings of (a1, as) (see Table 2).

We next partition possible values of z in Ig=[0,1.4845] based on these upper and
lower bounds (see Table 3). This immediately shows that ms(3,) =2. Hence, by induction,
#En1o(w; Ba) < 2#E, (x5 i), whence, by Proposition 4, Ms, <v/2. By (4), Hg, > z logg, 2~
0.6729.

Obviously, this bound is rather crude, and in the rest of the paper we will refine this method
to obtain better bounds. One thing we need to do is show how we would use this for an entire
range of § values, instead of just for a specific value. For instance, in the example above, we
could show that mgo(8) =2 for all 3> 7 = (1 ++/5)/2. In addition, we will want to show how
we would perform this calculation for algebraic 8, where we can take advantage of the algebraic
nature of 3.

3. The algorithm

Let us consider our toy example of 3=, again. We see that for each initial string (a1, as),
we got a lower and an upper bound for possible z =a; 87" + as372 + . ... For example, for
(a1, a2) = (1, 0) these were approximately 0.5975 and 1.1275, respectively. We then used these
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lower and upper bounds to partition Ig into ranges. We next show that if the relative order of
these lower and upper bounds is not changed, then the partitioning of I3 into ranges can be
done in exactly the same way.

Put
k ) k ) ﬁ_k
(a1y...,ak)L zzl:ajﬁ_J and (ag,.. .,ak)Uzzl:ajﬁ_] + 51
that is, [(a1,...,ak)r, (a1,...,ax)u] is the interval of all possible values of x whose (-
expansion starts with (aq, ..., ax). For example, (1,0)r =0.5975 ... and (1,0)y =1.1275. ...

This says that if
(0’ O)L < (Oa 1)L < (O? O)U < (17 O)L < (07 1)U < (17 l)L < (17 O)U < (17 1)U7

then we have Table 4 as the equivalent table to Table 3. For fixed 3, these (a1, as, ..., ax)r
and (a1, ag, ..., ar)y are called critical points for 8 or simply critical points.

For each inequality, there are precise values of 3 where the inequality will hold. For example,
knowing that 3 > 1, we get that

1++5

B 1
5 = —

1-— -1
So, if 8> 7 =1.618. .., then (0,0)y < (1, 0),.
This observation means that we need to determine for which values of 3 we have (a1, a2) /v =
(af, ab)r . We will call these values of 3 the transitions points which will affect m,, ().
There are some immediate observations we can make that reduces the number of equations
to be checked.
o (a1,a9)r = (a}, dy)r and (a1, az)y = (af, ah)y have the same set of solutions.
e (a1, a2)r, = (a1, az)y has no solutions.

(0,000 <(1,0)L <~ < <B.

TABLE 2. Upper and lower bounds for x for initial strings of length 2 of its (3-expansion.

(a1, a2) Lower bound Upper bound
(0, 0) 0 0.5300
(0,1) 0.3570 0.8870
(1,0) 0.5975 1.1275
(1,1) 0.9545 1.4845

TABLE 3. Initial strings (a1, az2), depending on z € (0, 1.4875).

Range (approx.) Possible initial string of expansion
z € (0.0,0.3570) (0,0)

z € (0.3570, 0.5300) (0,0), (0,1)

z € (0.5300, 0.5975) (0,1)

z € (0.5975, 0.8870) (0,1),(1,0)

z € (0.8870, 0.9545) (1,0)

z € (0.9545,1.1275) (1,0),(1,1)

z € (1.1275, 1.4845) (1,1)

TABLE 4. Upper and lower bounds for = for initial strings of length 2 of its (3-expansion.

Range Possible initial string of 3-expansion of x
z€((0,0)r,(0,1)r) (0,0)
(S ((07 1)L1 (01 O)U) (07 0)7 (07 1)

J}E((O, O)Uv(lvo)L) (07 1)
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e If a1 < a} and az < df, then none of

(a17 a2)L = (alla a/2)L7
(a1, a2) = (a, ab)u,
(a1, az)v = (af, ah)u

have solutions in Ig.

The first two observations were used when finding all transition points. The last observation
was made by one of the referees after all of the computations were completed, and hence was
not used as a means of eliminating equations to check.

In our length-2 example again, we need to check (after elimination by the three observations
above) when

(07 O)U = (07 1)La (0’ O)U = (1’ O)L7 (07 O)U = (17 l)La (0’ 1

0,1 =(1,0v, (1,0)v=(1,1)r, (0,1)y=(1,0)r, (0,1
Solving all of these equations, we see that the only transition points in
V2~ 1.4142 and 7 ~ 1.6180.

So, given that we know m,(8,) =2, and that we have a transition point at 7=1.618 ...,
we can say for all 8 € (7,2) that ms(8) =2. Using a similar method, we can show that for
B € (V2,7) that ma(3) = 3, and that for 3 € (1, v/2) that ma(3) = 4.

It is worth noting that these results do not say what happens when 3= +/2 or 3 =17. The
transition points will need to be checked separately.

There is one not so obvious, but important, observation that should be made at this point.
It is possible for an inequality to hold for 3, where 3 is in a disjoint union of intervals.

For example, we have

)L = (13 O)L7
)U = (1a 1)L~
(1,2) for length 2 are

(07 1a 17 1a 1)L < (la 07 Oa 07 l)U

for 3 € (1,0) U (r,2), where 0® — 0% — 1 =0, with o ~ 1.4656. This means that it is possible
for m,(8) to not be a decreasing function with respect to (. For example, ms(1.81) =3,
m5(1.85) =4 and m5(1.88) = 3. This phenomenon appears to become more common for larger
values of n.

4. Numerical computations

In this section we will talk about the specific computations, and how they were done. The
process started with length n =2, and then progressively worked on n=3,4,5,... up to
n =14. We used this process to find the global minimum for all 3 € (1.6,2) minus a finite
set of transition points. The code for finding transition points, numerical lower bounds and
symbolic lower bounds can be found in the home page of the first author [11].

e For each length in order, find all solutions (3 to

(ag,ar, . .. ,anfl)L/U = (af:), @/17 ) a;l71>L/U

subject to the conditions mentioned in the previous section.

e For each of these solutions, check to see if the transition point is a Pisot number. If so,
we will have to check this transition point using the methods of § 5.

e Use these transition points to partition (1,2) into subintervals, upon which m,(3) is

constant.
e For the mid point of each of these subintervals, compute m,,(3).
To compute m,(8), we first consider all 0-1 sequences wi,ws,... of length n.
For each of these sequences, find their upper and lower bounds, say {ay,as,...}=

{wip, w1y, wap, way, . ..}. Here the o; are reordered such that «; < ;41 for all i. We then
loop through each interval (o, a; 1) and check how many of the w; are valid on this interval.
We keep track of the interval with the maximal set of valid w;.
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FIGURE 1. Lower bound for Hg, for Pisot 3 € (1.6, 2.0), and Pisot transition points.

It should be noted that the number of times we needed to run this algorithm was rather big.
At level 14, we had slightly more than 300 000 tests where we needed to find the maximal set.

These calculations were done in Maple on 22 separate 4-CPU, 2.8-GHz machines each with
8 GB of RAM. These calculations were managed using the N1 Grid Engine. This cluster was
capable of performing 88 simultaneous computations.

After this, we looked at all of these subintervals between transition points, and calculated
the lower bounds for Hg at the end points, to find a global minimum. This gives rise to the
main result of the paper.

THEOREM 6. If 3> 1.6, and (3 is not a transition point for n < 14, then Hg > 0.81.

REMARK 7. This theorem is weaker than necessary for most values of . For specific ranges
of values of 3, we actually get a number of stronger results.

e Most B € (1.6,2.0) have Hg > 0.82 (99.9%), and a majority (51.4%) have Hg > 0.87.
Here ‘most’ is a bit misleading. Almost every  has Hg =log 2/log 8. Of those that do not,
there is no result that shows that they should be evenly distributed (and they most likely are
not). So, by ‘most’ we mean that for some finite collection of intervals, that make up 99.9% of
(1.6,2.0), that all § in this finite collection of intervals have Hg > 0.82.

e The minimum occurs near 73 & 1.8392 (see Figures 1 and 2).

e For B €(1.6,1.7), we have Hg > 0.87 (Figure 3) and, for 5 near 2.0, we have Hg > 0.9
(Figure 4).

5. Calculations for symbolic 8

In the previous section, we showed for all but a finite number of Pisot numbers 8 in (1.6, 2)
that Hg > 0.81. To extend the result to all such 5 in (1, 2), there are still some Pisot numbers
that will need to be checked individually.

These include the finite set of Pisot numbers less that 1.6 (of which there are 12), and the
finite set of Pisot numbers that are also transition points (of which there are 427). In particular,
we get the following theorem.

THEOREM 8. For all Pisot numbers 5 < 1.6 and all Pisot transition points (for n < 14), we
have Hg > 0.81.

Combined, this theorem and Theorem 6 yield the following theorem.
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1.83  1.832 1.834 1.836 1.838 1.84 1.842 1.844 1.846 1.848 1.85
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FIGURE 2. Lower bound for Hg, for Pisot 3 € (1.83,1.85), and Pisot transition points.

0.91
0.90 4 . .

0.89 <

0.88

0.87 7

0.86
1.6 1.62 1.64 1.66 1.68 1.7

X

FIGURE 3. Lower bound for Hg, for Pisot 3 € (1.6,1.7), and Pisot transition points.
THEOREM 9. For any Pisot 3 we have Hg > 0.81.
As a corollary, we obtain a result on small Pisot numbers.
ProposITION 10. All Pisot < 1.7 have Garsia entropy Hg > 0.87.

There are actually a lot of advantages to doing a symbolic check as compared to the numerical
techniques of the previous section. Some of these include not requiring high-precision arithmetic
and the combining of equivalent strings, both of which have speed and memory advantages.
These are described in the example below.

To illustrate the (computer-assisted) proof of Theorem 8, consider as an example 3 = 7, the
golden ratio. As before, we wish to find the values of x that satisfy

ap | ay _ a1 ao 1/73
T o2 T T2 1-1/7

But now we can find exact symbolic values for these ranges. In particular, we notice that
(1/73)/(1 —1/7)) =7 — 1. Secondly, as (1/7) =7 — 1 and (1/72) =2 — 7, we obtain Table 6.
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0.94 4

0.92

0.90 e

0.88

0.86

198 1982 1984 1986 1988 1.99 1992 1994 199 1.998 2
X

FIGURE 4. Lower bound for Hg, for Pisot 3 € (1.98,2.0), and Pisot transition points.

So, in particular, it is possible for x to start with both (0,0) and (1, 0). But, if this is the
case, then x =(0,0,1,1,1,...)=(1,0,0,0,...) =7 — 1. So, it is not possible for  to have an
infinite number of expansions starting with (0, 0) and an infinite number of expansions starting
with (1, 0). Similar arguments can be used for the other critical point, z = 1.

So, we can discard the critical points and subdivide the possible values of x into the ranges
given in Table 7.

This immediately shows mqo(7) = 2. Hence, by induction, #&, 2(x; 7) < 2#E,(x; 7), whence
M, < V2. By (4), H; > % log, 2 =10.7202100.

The main advantage of this method comes when we have longer strings. In particular, it is
easy to see that (1,0,0) = (0,1, 1) (see Table 8). This allows us to compress information.

This gives that for « € (7 — 1,4 — 27) we have the initial string of (0, 1, 0), (0, 1, 1), (1, 0, 0),
and if x € (37 — 4, 1) we have the initial string of (1,0, 1), (0, 1, 1), (1,0, 0).

TABLE 5. Lower bounds for Garsia’s entropy for all Pisot numbers < 1.6.

Minimal polynomial of 3 Pisot number Length Lower bound for Hg
3 —x—1 1.3247 17 0.88219
xt — a3 —1 1.3803 16 0.87618
2 —at—xd 422 -1 1.4433 15 0.89257
3 —x2 -1 1.4656 15 0.88755
26 — b —pt 422 -1 1.5016 14 0.90307
b —ad—a2—x—1 1.5342 15 0.89315
a7 — a8 — P 422 -1 1.5452 13 0.90132
a8 —220 4t — a2+ —1 1.5618 15 0.90719
b —xt—x?2 -1 1.5701 15 0.88883
a8 —a —ab 422 -1 1.5737 14 0.90326
a7 —ad —at - a2 - —1 1.5900 15 0.89908
29 — a8 —xT 422 -1 1.5912 14 0.90023

TABLE 6. Upper and lower bounds for initial strings of length 2 for & = a17 > + aa7 2 +....

(a1, a2) Lower bound Upper bound
(0,0) 0 r—1~0.618
(0,1) 2 — 720.382 1
(1,0) T—1~0.618 21 —2~1.236
(1,1) 1 72 1.618
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Our implementation does not maintain a separate entry for (0,1, 1) and (1,0, 0), as they
are equivalent. Instead, the algorithm stores only one of these two strings, and indicates that
this has weight 2. For the general Pisot (3, this is checked by noticing that (a1, as, ..., ay,) is
equivalent to the same word as (by, be, ..., b,) if and only if

Az a1 =bpa by 12" i =gzt L ey (mod p(z))

for some ¢;, with p(x) the minimal polynomial for 3, of degree d. Given the large amount of
overlapping that we see for large lengths, this will have major cost savings, in both memory
and time.

6. The maximal growth exponent for the multinacci family and discussion

In this section we will compute the maximal growth exponent for the multinacci family and
compare our lower bound (4) with the actual values.

Let, as above, 7, denote the largest root of 2™ — 2™~ ! — ... — 2 — 1 (hence 7 = 73). Define
the local dimension of the Bernoulli convolution pg as follows:

.. logug(x—h,z+h)
dﬁ(x)_%% log h

(if the limit exists). As was shown in Lalley [14], dg(z) = Hp for pug-almost everywhere z € Ig
for any Pisot (.

Notice that it is well known that the limit in question exists if it does so along the subsequence
h =B~ for any fixed ¢ > 0 (see for example [6]). We choose ¢ = (8 — 1)1, so

1 —n —-n
dﬂ(z)_nlinéonl()gﬂ'uﬂ<x;—17x+;—1)' (5)

Let 8 =7, for some m > 2.

LEMMA 11. Suppose that § is multinacci, and put

es(x) = lim 3/HE,(w: B).

TABLE 7. Initial string of T-expansion of x, depending on x.

Range Possible initial string of the T-expansion
z€(0,2—1) (0,0)
ze22—7,7—-1) (0,0),(0,1)
xe(T_lvl) (07 1)7(170)
ze (1,21 —2) (1,0), (1,1)
z€ (21 —2,7) (1,1)

TABLE 8. Upper and lower bounds for initial string of length 3 for &t = a17 "' + aa7 2 + a7 > +....

aiazas Lower bound Upper bound
(0,0,0) 0 5 — 372 0.1459
(0,0,1) 27 — 3~ 0.2361 2 — 720.3820
(0,1,0) 2 — 720.3820 4 — 27 ~0.7639
(0,1,1)=(1,0,0) 7 —1~0.6180 1

(1,0,1) 317 —4~0.8541 27 — 2~ 1.2361
(1,1,0) 1 3 — 72 1.3820
(1,1,1) 217 — 2~ 1.2361 7= 1.6180
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This limit exists if and only if dg(x) exists and, in this case,

2
dg(x) =log .
% epla)
Proof. Let x=3 72, af~* and consider (a1,...,a,), the first n terms of this sequence.
We see that
n
(a1, an)L =Y apB"
k=1
n oo
> a4 Y (e —1)57"
k=1 k=n-+1
o0 o0
>> a™t - ), 67
k=1 k=n-+1
/877,
- 3.1
and
n o0
(a1,...,an)u = Z ar~* + Z s
k=1 k=n-+1
o0 o0
S aptr S 5
k=1 k=n-+1
_ p"
=z+ -1
Further, this is true, regardless of which representation (ai, as, . ..) of x that we take. Hence,
if (a1,...,an) € Ey(x, B), then, for all a), |, a}, o, ...€{0,1}, we have

n oo
S a4+ Y a7 € ((araz, . an) (a1 as, - . an)u)
k=1 k=n-+1
Clxz— b , T+ s .
g—1 6—1

o= gpoa 57 ) 2w ) )

This in turn implies that

Now put

En(z; B) = {(al, ..y ay) €0, 13"

ﬂ—n n o Zﬂ_n
—ﬂ_lsx—;akﬁ <5—1}'

Our next goal is to prove the inequality

o= T+ 5 ) <2 ). ™
Let ye(z—(87"/(B—1)),z+(8"/(8—1))) have an expansion y=3 7, apBk. Tt
suffices to show that (@1, ..., dn) € En(x; 6).
By noticing that —(87"/(8—1)) <z —y <[ "/(8 —1), we get first that
_s" <x—y<x—2&kﬁ_k<$—zdk5_k
f-1 k=1 k=1
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and further that

/6—71
—y<
T—y 51
o0 ~ . ﬁ_n
= - Z agB" < 1
k=1 B
— e Yast o Y aste
k=1 k=n+1 p-
— e Yaste Y mst e
k=1 k=n+1 p-
n o0
— m—zakﬁik\ Z ﬁik—f‘ﬁ
k=1 k=n-+1
n 3 . ﬁ_n
== T - Z a7 <2 T
k=1 p-
Hence, (a1, ...,an) € En(x, B), as required.

Combining (6) and (7), we obtain

Tm#&xmﬁ)gugG%—gilﬂ%%gil

) <2 HE (a3 B),

whence

1 . . 1 ﬁ—n ﬂ—n
IOgﬂ2_EIOgﬁ#gn(x76)< nlogﬁ#ﬁ<$ ﬂ—l’x—'_ﬁ—l)

1
< logg 2 — o logg #En(z; B). (8)

Notice that (8) in fact holds for any 3. Now we use the fact that § is multinacci. It
follows from [6, Lemma 2.11] that for a multinacci 8 one has {/p,(z) ~ {/p,(2’) provided
|z — 2’| <CB~™ for any fixed C' >0 and any z, 2’ € D, () which are not end points of Ig.
(Here p,(x) is given by (1).)

Observe that

#Eu(m:B)= Y paly),
yeDn(/B):

g—n
0<y71<ﬁ

#gn(xa B) = Z Pn(y)-
yeDn(ﬁ):

—n -
T <y—a2<?

B—1

TABLE 9. Lower bounds and the actual values for H,,, .

m log, (2/M%,) Hry,

2 0.9404 0.9957
3 0.8531 0.9804
4 0.8450 0.9869
5 0.8545 0.9926
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In view of the Garsia separation lemma (see [8, Lemma 1.51]), each sum runs along a finite set
whose cardinality is bounded by some constant (depending on 3) for all n.

Hence, {/#&,(x;B) ~ {/#E(x; 8) for all € (0, (1/(8—1))), and (8) together with (5)
yield the claim of the lemma. U

Consequently, for a multinacci 3,

. 2
;élff; dg(z) = 10%5 %7 9)

where [ = {z€(0,(1/(B—1))):ds(x) exists}. In [6, Theorem 1.5], Feng showed that

1
log. 2 — ok m=2,
ir}f dr,, (v) = m
xel*
Tm — 1 2 > 3.
m-+1 Ong , M

This immediately gives us the explicit formulae for the maximal growth exponent for the

multinacci family, namely,
M. = ﬁa m=2,
m 21/(777,Jr1)7 m>3.

In fact, one can easily obtain the values z at which 913 is attained. More precisely, for 5 = 7 the
maximum growth is attained at 2 with the S-expansion (1000)>°, that is, at 2 = (5 + v/5)/10
(this was essentially proved by Pushkarev [18], via multizigzag lattice techniques).

For m > 3 the maximal growth point is x with the S-expansion (10")°°. These claims can
be easily verified via the matrix representation for p,(x) given in [6], and we leave it as an
exercise for the interested reader. (Recall that the growth exponent for p,(z) is the same as
for #&, (x; 8) for the multinacci case.)

Finally, since we know the exact values of the maximal growth exponent for this family, we
can assess how far our estimate (that is, the smallest value of the local dimension) is from the
actual value of Hg (which is the average value of dg(z) for pg-almost everywhere ). Table 9
is the comparison table.

We see that for m > 3 our bounds are far below H3; moreover, our method cannot in principle
produce a uniform lower bound for all 3 better than 0.845. However, as a first approximation
it still looks pretty good.

REMARK 12.  We believe that (9) holds for all Pisot § € (1, 2). If this were the case, then (4)
would effectively yield a lower bound for the infimum of the local dimension of pg. This
may prove useful, as, similarly to the entropy, no lower bound for dg is known for the non-
multinacci 3. Furthermore, if one could compute the exact value of Mg, this would yield the
exact value of infyery dg(x).

7. Acknowledgements and additional comments

The authors would like to thank the two referees for many useful suggestions. In addition, we
would like to communicate a question asked to us from one of the referees, that the authors
feel would make an interesting question for possible future research.

In § 6, besides the multinacci, could you say something on 8= (a + va? + 4), with
an integer a > 2?7 (Maybe using results from Komatsu [13}1.) Or, more generally, on
numbers 3 that are roots of a polynomial X" — ap_1 X" —...—a1X — ao, where
an71>--4>a1>1?
We would also like to mention the recent paper by Feng and the second author [7], in which
the average growth exponent for S-expansions is studied for the Pisot parameters (.
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