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Infinite-dimensional Representations of
Algebras

Rosanna Laking

The aim of these lecture notes is to give an example-driven introduction to a
class of modules called pure-injective modules, as well as the techniques that
allow us to study them systematically. In particular, we will focus on modules
over a K-algebra A, where K is a field. Every A-module has an in-built K-vector
space structure and this approach will give us access to many interesting exam-
ples of modules where this underlying K-vector space is infinite dimensional.
These are known as infinite-dimensional modules or infinite-dimensional rep-
resentations.

Studying infinite-dimensional modules in general contains some obvious
challenges. It is not easy to make use of the underlying linear algebra – for
example, we can prove that any K-vector space has a basis (see Example 4.11)
but, since the proof is not constructive, it can be difficult to identify a basis in
a given example. It is therefore useful to study K-subspaces of modules, called
finite matrix subgroups or pp-definable subgroups, that are controlled by some
finite data. The pure-injective modules are those that behave well with respect
to these K-subspaces.

The isomorphism classes of indecomposable pure-injective modules form
the underlying set of a topological space, known as the Ziegler spectrum. The
final part of these notes contains an account of the basic properties of this topo-
logical space in the case where A is a finite-dimensional algebra. We will end by
making use of these basic properties to characterise finite representation type
in terms of the Ziegler spectrum.

We do not assume any prior knowledge of representation theory or category
theory. A significant majority of references approaching these topics make use
of categorical techniques, often focusing on the connection with functor cate-
gories. The idea of these lectures is to demonstrate the usefulness of a more
computational viewpoint.
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4 Infinite-dimensional Representations of Algebras 147

4.1 Algebras and Modules

This section is dedicated to examples of K-algebras and modules over them.
This will pave the way to Sections 4.2 and 4.3, which contain some concrete
examples of infinite-dimensional modules that will allow us to illustrate the
definitions and results covered in the later sections.

4.1.1 K-algebras

Definition 4.1 A K-algebra is a K-vector space A with a K-bilinear multipli-
cation A×A→ A, (a,b) 7→ ab such that there exists an element 1 ∈ A (called
the unit) such that 1a = a = a1.

From now on, we will use A to denote an arbitrary K-algebra.

Example 4.2 The one-dimensional vector space K with multiplication given
by the field multiplication and the unit given by the multiplicative identity in
the field.

Example 4.3 Consider the set

K[X ] := {k0 + k1X + k2X2 + · · ·+ knXn | n> 0,ki ∈ K for 06 i6 n}

of polynomials with one free variable X and with coefficients in K. This is a
K-vector space with a countably infinite basis {1,X ,X2,X3, . . .} and we de-
fine multiplication in K[X ] to be the usual multiplication of polynomials. The
element 1 is the unit.

Example 4.4 Consider the following finite directed graph Q (in this context Q
is known as a quiver).

•1
α 88

β // •2
δ

ww

Let KQ be the vector space with basis given by the paths in Q (including a
path of length zero for each vertex denoted by ei for each vertex i). That is, the
elements of KQ are formal K-linear combinations of elements of the set

Pa := {e1,e2,β ,α
n,δ m,βα

n,δ m
β ,δ m

βα
n | n,m ∈ N}.

If p,q are paths in Pa, then we define their product p · q to be the concate-
nation of the paths if this is possible and 0 otherwise. Extending this product
K-linearly allows us to define a multiplication in KQ. There is a unit element
given by e1 + e2. This algebra is called the path algebra of Q.
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Example 4.5 Consider the algebra KQ described in Example 4.4 and the ideal
I generated by the set ρ := {δβα,α2,δ 2}. This is an example of an admissible
ideal of KQ (see [1, Def. II.2.1]) and a pair (Q, I) consisting of a quiver and an
admissible ideal of KQ is called a bound quiver.

The quotient algebra KQ/I is called the path algebra of the bound quiver
(Q, I). Note that the underlying K-vector space of the quotient algebra KQ/I
has the following basis:

{e1,e2,β ,α,β ,βα,δβ}.

To learn more about general path algebras of bound quivers see [1].

4.1.2 Modules over a K-algebra

Definition 4.6 Let A be a K-algebra. Then a (left) A-module is a K-vector
space M with an A-action, that is, a K-bilinear map A×M→M, (a,m) 7→ am
such that, for any a,b ∈ A and any m ∈ M, we have that (ab)m = a(bm) and
1m = m.

Unless otherwise specified, the terminology “A-module”, will mean “left
A-module”.

Example 4.7 The definition of a K-module coincides with the definition of a
K-vector space.

Example 4.8 Consider the algebra K[X ] defined in Example 4.3. By defini-
tion, a K[X ]-module M is a K-vector space together with a K[X ]-action. Let
p = k0 + k1X + k2X2 + · · ·+ knXn be an arbitrary element of K[X ]. Then, for
any element m ∈M, we have that

pm = (k0 + k1X + k2X2 + · · ·+ knXn)m

= k0m+ k1(Xm)+ k2(X
2m)+ · · ·+ kn(X

nm).

It follows that the action of K[X ] is determined by the K-vector space structure
of M as well as the K-linear endomorphism Φ : M → M given by
m 7→ Xm. Conversely, a K-vector space M together with a K-linear endomor-
phism Φ uniquely determines a K[X ]-module. In other words, we can view
K[X ]-modules as representations of the one-loop quiver.

M Φff

Example 4.9 Consider the bound quiver (Q, I) given in Example 4.5. Modules
over the path algebra KQ/I are determined by representations of the bound
quiver (Q, I) (see, for example, [1, Thm. III.1.6]). That is, a pair of vector
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4 Infinite-dimensional Representations of Algebras 149

spaces U1 and U2, together with K-linear maps Uα , Uβ and Uδ arranged in the
following configuration

U1Uα 77
Uβ // U2 Uδ

ww

such that U2
α = 0, U2

δ
= 0 and UδUβUα = 0.

Given such a representation, we define a KQ/I-module with underlying vec-
tor space U1⊕U2. Since every element of KQ/I is a K-linear combination of
elements of the set {e1,e2,β ,α,β ,βα,δβ}, it is enough to specify the action
of these basis elements.

• The action of e1 is given by the matrix

Ç
idU1 0

0 0

å
.

• The action of e2 is given by the matrix

Ç
0 0
0 idU2

å
.

• The action of α is given by the matrix

Ç
Uα 0
0 0

å
.

• The action of β is given by the matrix

Ç
0 0

Uβ 0

å
.

• The action of δ is given by the matrix

Ç
0 0
0 Uδ

å
.

The action of the remaining two paths in the basis (βα and δβ ) is given by the
composition of the relevant matrices

4.1.3 Infinite-dimensional A-modules

Definition 4.10 Let A be a K-algebra. An A-module M is called
finite-dimensional if the underlying vector space of M is finite-dimensional.
An A-module that is not finite-dimensional is called infinite-dimensional.

There is a very broad and well-developed body of research devoted to the
study of finite-dimensional modules over finite-dimensional algebras. In these
lecture notes, however, we will look at certain classes of infinite-dimensional
modules. These modules arise naturally in the representation theory of alge-
bras and in future lectures we will begin to explore some of the rich theory
surrounding infinite-dimensional pure-injective modules. Before we enter into
this framework, we will consider how infinite-dimensional modules over the
algebras given in Section 4.1.1 look.
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Example 4.11 By definition, any finite-dimensional K-module V of dimension
n∈N has a basis with n elements in it. It follows from this that V is isomorphic
to Kn.

Now let us consider an infinite-dimensional K-module W . It is well known
that, despite not being finite-dimensional, the vector space W has a basis. Let us
sketch an argument to prove this claim. Let L be the set of linearly independent
sets contained in W ordered by inclusion. It is clear that, for any chain L1 ⊂
L2 ⊂ L3 ⊂ ·· · ⊂ Lα ⊂ . . . in L indexed by an ordinal β , the union

⋃
α6β Lα

is an upper bound in L. Thus we may apply Zorn’s lemma to obtain a maximal
linearly independent set M. If M does not span W , then choose an element
w ∈W \Span(M). The set M∪{w} is linearly independent, contradicting the
maximality of M. We have shown that M spans W and so is a basis. It follows
that W is isomorphic to the direct sum K(M) of copies of K indexed by the
set M.

From this perspective, the infinite-dimensional K-modules are not much
more interesting than the finite-dimensional ones. This kind of behaviour is
typical of semi-simple rings (in fact, K is even a simple ring); see [6, Sec. 1.2]
for more information about this family of rings.

Example 4.12 In Example 4.8, we saw that a representation (M,Φ) uniquely
determines a K[X ]-module. This is an infinite-dimensional K[X]-module if and
only if M is an infinite-dimensional K-vector space.

Example 4.13 In Example 4.9, we saw that KQ/I-modules are determined
by representations of the quiver with relations. Such a representation corre-
sponds to an infinite-dimensional KQ/I-module if and only if the K-vector
space U1⊕U2 is infinite-dimensional.

4.1.4 Homomorphisms between A-modules

Definition 4.14 Let M and N be A-modules. Then an A-homomorphism is a
K-linear map f : M → N such that, for any a ∈ A and m ∈ M, we have that
f (am) = a f (m).

Example 4.15 The definition of a K-homomorphism coincides with the defi-
nition of a K-linear map.

Example 4.16 Let M and N be K[X ]-modules and suppose Φ : M → M and
Ψ : N→ N are the K-linear endomorphisms determined by the actions of X on
M and N respectively (see Example 4.8). Then a K-linear map f : M→ N is a
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4 Infinite-dimensional Representations of Algebras 151

K[X ]-homomorphism if and only if, for any m ∈M and p = k0 +k1X +k2X2 +

· · ·+ knXn ∈ K[X ], we have that

k0 f (m)+ · · ·+ knXn f (m) = p f (m)

= f (pm)

= k0 f (m)+ · · ·+ kn f (Xnm)

if and only if we have X f (m) = f (Xm) for all m ∈M, i.e. Φ◦ f = f ◦Ψ.

Example 4.17 Consider representations

U1Uα 77
Uβ // U2 Uδ

ww
V1Vα 77

Vβ // V2 Vδ

ww

of (Q, I). We saw in Example 4.9 that these representations determine KQ/I-
modules with underlying vector spaces U1 ⊕U2 and V1 ⊕V2 respectively. It
follows from the definition that a K-linear mapÇ

a b
c d

å
: U1⊕U2→V1⊕V2

is a KQ/I-homomorphism if and only if we have that b = 0 = c and the follow-
ing diagrams commute:

U1
a //

Uα

��

V1

Vα

��
U1 a

// V1

U1
a //

Uβ

��

V1

Vβ

��
U2

d
// V2

U2
d //

Uδ

��

V2

Vδ

��
U2

d
// V2

4.2 Direct Limits

In this section we will introduce direct limits as a means to build examples
of infinite-dimensional A-modules. The notion of a direct limit allows you to
build a new module out of a given family of modules. The word “direct” refers
to the fact that the family of modules must form a direct system, i.e. there are
A-homomorphisms between the modules that satisfy the next definition.

Definition 4.18 A directed set is a nonempty set I with a reflexive and tran-
sitive binary relation 6 such that, for every i, j ∈ I, there exists k ∈ I such that
i6 k and j 6 k.

Definition 4.19 Let I be a directed set. A collection of A-modules {Mi | i ∈ I}
together with a collection of A-homomorphisms

{ fi j : Mi→M j | i, j ∈ I, i6 j}
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is called a direct system of A-modules if fii = idMi for all i ∈ I and f jk fi j = fik

for all i6 j 6 k.

Mi

fi j

��

fik

''
Mk fkk=idMkii

M j

f jk

88

Remark The direct limit (as we define it in Definition 4.20 below) satisfies
a universal property that means it is isomorphic to the colimit of the diagram
F = { fi j : Mi → M j | i, j ∈ I, i 6 j} in the category of A-modules. See, for
example, [11, Sec. IV.8] for more details.

We will usually refer only to the set { fi j : Mi→M j | i, j ∈ I, i6 j} of mor-
phisms as a direct system of A-modules since the existence of the modules
{Mi | i ∈ I} is implied by this. Define an equivalence relation on the disjoint
union

⊔
i∈I Mi by declaring that mi ∼ m j whenever mi ∈Mi, m j ∈M j and there

exists k > i, j such that fik(mi) = f jk(m j).

Definition 4.20 The direct limit lim−→I
Mi of a direct system F = { fi j : Mi →

M j | i, j ∈ I, i6 j} is the A-module given by the set
⊔

i∈I Mi/∼ with the unique
A-module operations such that, for every k∈ I, the canonical map Mk→ lim−→I

Mi

is an A-homomorphism.

Remark An explicit description of the operations defining the A-module struc-
ture of lim−→I

Mi can be found in [11, Sec. I.5].

4.2.1 Examples of Direct Limits

Next we will introduce some examples of infinite-dimensional modules that
arise as direct limits of finite-dimensional modules.

Remark It is important to observe that a direct limit is not necessarily an
infinite-dimensional module. For example, if we take any finite-dimensional
module M, then we can define a direct system

{idMnm : Mn→Mm |Mn
∼= M,Mm

∼= M for all n6 m}

where the associated directed set is I = N. Then the direct limit lim−→I
Mi is iso-

morphic to M and hence is finite-dimensional.
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Example 4.21 Consider the K-algebra K[X ] given in Example 4.3 and let
k ∈ K. For each n ∈ N, consider the vector space Kn and the K-linear endo-
morphism given by the Jordan block

Jk,n =

â
k 1 0 · · · 0 0
0 k 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · k 1
0 0 0 · · · 0 k

ì
.

In Example 4.8, we saw that this defines a K[X ]-module which we will denote
by Mk,n. The (n+1×n)-matrixÇ

In

0 · · · 0

å
(where In is the (n× n)-identity matrix) defines a K[X ]-homomorphism fn :
Mk,n→Mk,n+1. We consider the directed set N and the direct system

{gnm := fm−1 ◦ · · · ◦ fn : Mk,n→Mk,m | n < m in N}∪{gnn := In | n ∈ N}.

The direct limit Mk,∞ := lim−→N
Mk,n is called the k-Prüfer module over K[X ].

Proposition 4.22 The k-Prüfer module Mk,∞ is isomorphic to the module with
underlying vector space K(N) and with the action of X given by the K-linear
endomorphism Jk,∞ : K(N)→ K(N) defined by (kn)n∈N 7→ (kkn + kn+1)n∈N.

Proof Let Φ : lim−→N
Mk,n → lim−→N

Mk,n denote the K-linear endomorphism in-
duced by the action of X on lim−→N

Mk,n. Consider the map

h : lim−→
N

Mk,n→ K(N)

that takes an equivalence class [(ki)
m
i=1] with (ki)

m
i=1 ∈ Mk,m to the element

(k′i)i∈N in K(N) with k′i := ki for i 6 m and k′i = 0 for i > m. It is straightfor-
ward to check that h is a well-defined K[X ]-isomorphism.

Example 4.23 Consider the periodic sequence

z = (. . .β−1
δ
−1

βαβ
−1

δ
−1

βαβ
−1

δ
−1

βα)

of arrows in (Q, I) and their formal inverses. We may represent this sequence
in the following diagram:
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v1

α

��

v3

β
��

α

��

v5

β
��

α

��v2

β
��

w2

δ
��

v4

β
��

w4

δ
��

w1 w3

. . . . . .

The labels on the starting and ending points of the arrows correspond to basis
elements of a representation

U1Uα 77
Uβ // U2 Uδ

ww

of (Q, I), which is defined as follows. Define U1 to be the K-vector space with
basis {vi | i∈N} and define U2 to be the K-vector space with basis {wi | i∈N}.
Intuitively, we think of the labels on the arrows in the above diagram as corre-
sponding to the K-linear maps that make up this representation. More precisely,
define Uα : U1→U1 to be the K-linear map that takes vi to vi+1 when i is odd
and takes vi to zero when i is even. Define Uβ : U1 → U2 to be the K-linear
map that take v1 to zero and vi to wi−1 when i > 2. Define Uδ : U2 → U2 to
take wi to zero when i is odd and takes wi to wi−1 when i is even. The mod-
ule M(z) determined by this representation is called an infinite string module
over KQ/I.

The module described in Example 4.23 arises as the direct limit of a direct
system of finite-dimensional modules. For each n ∈N, consider the submodule
M(zn) of M(z) spanned by the basis elements

{vi | 16 i6 2n}∪{wi | 16 i6 2n−1}.

The module M(zn) therefore has an underlying vector space that is isomor-
phic to K2n⊕K2n−1. We will represent a typical element of M(zn) by ((ki)

2n
i=1,

(li)
2n−1
i=1 ). Consider the direct system of canonical inclusions denoted by

{ιnm : M(zn)→M(zm) | n 6 m}. For example, the inclusion ι12 is represented
by the following diagram

v1

α

��
v2

β
��
w1

ι12 //

v1

α

��������������

v3

β

��
α

��
v2

β
������������

w2

δ
��

v4

β

��
w1 w3

where the bold text indicates the image of ι12.
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Proposition 4.24 The string module M(z) described in Example 4.23 is iso-
morphic to lim−→N

M(zn).

Proof Consider the map

h : lim−→
N

M(zn)→M(z)

that takes an equivalence class [((ki)
2n
i=1,(li)

2n−1
i=1 )] to the element ((k′i)i∈N,

(l′i)i∈N) where k′i = ki for 16 i6 2n, k′i = 0 for i > 2n; l′i = li for 16 i6 2n−1
and l′i = 0 for i > 2n−1. It is straightforward to check that h is a well-defined
KQ/I-isomorphism.

4.3 Duality

In this section we will describe a duality, induced by the usual K-vector space
duality, that will allow us to construct new (left) A-modules from right A-
modules.

4.3.1 Right A-modules and the Opposite Algebra

The definition of a right A-module is analogous to Definition 4.6 with A acting
on the right instead of the left. Another way of viewing right A-modules is as
left Aop-modules, where Aop is the opposite algebra. This perspective will be
useful for us when computing examples in this section.

Definition 4.25 Let A be a K-algebra with multiplication A×A→ A sending
(a,b) to ab. Define the opposite algebra Aop to be K-algebra with the same
underlying vector space as A and K-bilinear multiplication ∗ : Aop×Aop→ Aop

sending (a,b) to a∗b := ba.

Suppose M is a left Aop-module. Then, by definition, M is a K-vector space
with an Aop-action · : Aop×M→M such that, for any a,b∈Aop and any m∈M,
we have that (a ∗ b) ·m = a · (b ·m) and 1 ·m = m. We can then define a right
A-action M×A→ M on M to be ma := a ·m for all m ∈ M and a ∈ A. Then
we have m(ab) = m(b ∗ a) = (b ∗ a) ·m = b · (a ·m) = (a ·m)b = (ma)b and
m1 = 1 ·m = m. We have shown that any left Aop-module determines a right
A-module. A similar argument yields the converse statement.

Example 4.26 Both K and K[X ] are commutative algebras and so they coincide
with their opposite algebra. In particular, every right module over K or K[X ] is
also a left module and vice versa.
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Example 4.27 Consider the algebra KQ/I from Example 4.5. The opposite
algebra (KQ/I)op is given by the path algebra of the opposite quiver Q∗

•1∗
α∗

))
•2∗

δ ∗ff
β ∗oo

with relation ρ∗ := {α∗β ∗δ ∗,(α∗)2,(δ ∗)2}. That is, take the K-vector space
KQ∗ with basis

Pa∗ := {e∗1,e∗2,α∗,β ∗,δ ∗,α∗β ∗,β ∗δ ∗,α∗β ∗δ ∗}

together with the multiplication induced by concatenation of paths. Then
(KQ/I)op = KQ∗/I∗ where I∗ is the ideal of KQ∗ generated by ρ∗. By an anal-
ogous argument to the one given in Example 4.9, the left KQ∗/I∗-modules (i.e.
right KQ/I-modules) are given by representations of (Q∗, I∗).

4.3.2 Dual Modules

We know that any right A-module has an underlying K-vector space struc-
ture and so we may consider the dual K-vector space. The following defini-
tion yields a canonical way of equipping the dual K-vector space with a left
A-module structure.

Definition 4.28 Let A be a K-algebra and let M be a right A-module (equiv-
alently a left Aop-module). Then the K-dual M∗ of M is defined to be the left
A-module consisting of the usual K-dual vector space M∗ and the A-action
A×M∗→M∗ given by (a, f ) 7→ a f where (a f )(m) = f (ma) for each m ∈M.

Example 4.29 Consider a K-vector space V with basis B. We have already
observed that V ∼= K(B). Then the dual K-module coincides with the dual K-
vector space, which is given by the direct product KB of copies of K indexed
by B.

Example 4.30 Let k ∈ K and consider the k-Prüfer module Mk,∞ as a right
K[X ]-module. Then the dual module M∗k,∞ is called the k-adic module over
K[X ] and will be denoted Mk,−∞. Moreover, Mk,−∞ is isomorphic to the module
with underlying vector space given by KN and with the action of X given by the
endomorphism Jk,∞ : KN→ KN defined by (kn)n∈N 7→ (kkn + kn−1)n∈N where
k0 is defined to be zero.
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4 Infinite-dimensional Representations of Algebras 157

Example 4.31 Consider the infinite string module over KQ∗/I∗ given by peri-
odic sequence

y∗ = (. . .(β ∗)−1(α∗)−1
β
∗
δ
∗(β ∗)−1(α∗)−1

β
∗
δ
∗(β ∗)−1(α∗)−1

β
∗
δ
∗),

represented by the following diagram:

v1

δ ∗
��

v3

β ∗
��

δ ∗
��

v5

β ∗
��

δ ∗

��v2

β ∗
��

w2

α∗
��

v4

β ∗
��

w4

α∗
��

w1 w3

. . . . . .

Then the left KQ∗/I∗-module M(y∗) can be considered as a right KQ/I-
module. The dual infinite string module M(y∗)∗ can be described explicitly as
follows. Take the periodic sequence of dual arrows y = (. . .βαβ−1δ−1βαβ−1

δ−1βαβ−1δ−1) represented by the following diagram:

w1

α

��

β

��

w3

α

��

β

��
v2

δ

��

w2

β

��

v4

δ

��

w4

β

��
δ

��
v1 v3 v5

. . . . . .

Define a representation

V1Vα 77
Vβ // V2 Vδ

ww

of (Q, I) as follows. Define V1 to be the K-vector space KN where we label wi :=
(0, . . . ,0,1,0, . . .) with 1 in the ith position. Define V2 to be the K-vector space
KN and, similarly, we label vi := (0, . . . ,0,1,0, . . .) with 1 in the ith position..
The labels on the arrows correspond to the K-linear maps that make up this
representation. Define Vα : V1→V1 to be the K-linear map that takes wi to wi+1

when i is odd and take wi to zero when i is even. Define Vβ : V1→V2 to be the
K-linear map that takes wi to vi+1 for all i ∈ N. Define Vδ : V2→ V2 to take vi

to zero when i is odd and takes vi to vi−1 when i is even.
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4.4 Finite Matrix Subgroups and Pp-definable Subgroups

4.4.1 Finite Matrix Subgroups

In our setting, a matrix subgroup of an A-module M is a K-subspace of the
underlying K-vector space of M that can be realised as the trace of an element
x ∈ L in M for some A-module L. In this section we introduce the notion of
a finite matrix subgroup, which is a matrix subgroup where the module L is
finitely presented.

Definition 4.32 An A-module L is called finitely presented if there exist n,m∈
N such that L∼= An/im(Φ) where Φ : Am→ An and im(Φ) denotes the image of
Φ. Note that Φ can be represented by an (m×n)-matrix P = (a ji) with a ji ∈ A
for 16 i6 n and 16 j 6 m such that Φ :

(
a1 . . . am

)
7→
(
a1 . . . am

)
P.

Example 4.33 If A is a finite-dimensional algebra, then the finitely presented
modules coincide with the finite-dimensional modules. Since a finitely pre-
sented module is a quotient of the finite-dimensional module An, it must be a
finite-dimensional module itself. Conversely, if M is an n-dimensional module,
then the K-basis is also an A-generating set, so we may define an epimorphism
Ψ : An→M. Then the kernel ker(Ψ) of Ψ is finite-dimensional and so, by the
same argument, there exists an epimorphism Ω : Am→ ker(Ψ). Then the com-
position Φ := ι ◦Ω, where ι : ker(Ψ)→ An is the canonical embedding, is the
desired presentation of M.

Definition 4.34 Let M be an A-module and let L be a finitely presented A-
module. For a fixed l ∈ L, consider the K-subspace H(L,l)(M) := { f (l) | f : L→
M an A-homomorphism}. A K-subspace of this form is called a finite matrix
subgroup of M.

Remark Finite matrix subgroups are usually defined in the context of modules
over a ring (that is not necessarily a K-algebra). In that more general setting the
set H(L,l)(M) is a subgroup of the underlying abelian group structure of M. This
is why H(L,l)(M) is called a finite matrix subgroup rather than a finite matrix
subspace.

Example 4.35 Consider the KQ/I-module M(z) from Example 4.23 and the
finite-dimensional submodule M(z2) with the underlying vector space spanned
by {v1,v2,v3,v4,w1,w2,w3}. Then the finite matrix subgroup HM(z2),w2

(M(z))
is the K-subspace spanned by

{w2}∪{w2n−1 | n ∈ N}.
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This is witnessed by the fact that there are the following KQ/I-homomorphisms
from M(z2) to M(z):

• The embedding f0 : M(z2)→M(z) given by vi 7→ vi and w j 7→ w j for
i ∈ {1,2,3,4} and j ∈ {1,2,3}. Then f0(w2) = w2.

• For each n ∈ N, we have a KQ/I-homomorphism fn : M(z2)→M(z) given
by v3 7→ v2n, w2 7→ w2n−1, vi 7→ 0 and w j 7→ 0 for i ∈ {1,2,4} and
j ∈ {1,3}. Then fn(w2) = w2n−1.

It is an interesting exercise to prove that these KQ/I-homomorphisms { fn |
n > 0} form a basis for the K-vector space of KQ/I-homomorphisms from
M(z2) to M(z). Alternatively, we may apply the more general theorem proved
in [2, Sec. 1.4].

Remark In general, a finite matrix subgroup HL,l(M) is not an A-submodule
of M. Indeed, if we take the KQ/I-module, Ae1 = {a ∈ A | ∃b ∈ A such that
a = be1}. Then HAe1,e1(M(z)) coincides with the K-subspace spanned by the
set {vn | n odd}. This is not a KQ/I-submodule of M(z) since, for example,
w2 = βv3 is not contained in HAe1,e1(M(z)).

4.4.2 Pp-definable Subgroups

The notion of a pp-definable subgroup comes from the area of logic called
model theory. They are the sets of elements of a module that realise a given
positive primitive formula in the language of A-modules. We will not put too
much emphasis on the model theoretic perspective in these lectures; however,
if you are interested in this subject you can read more in [7].

Definition 4.36 Let M be an A-module and let ∑
n
i=1 a jixi = 0 where 16 j 6m

is a finite A-linear system. That is, the symbols xi denote free variables and
a ji ∈ A for each 1 6 i 6 n and 1 6 j 6 m. Note that the system depends on a
(m× n)-matrix P = (a ji) with a ji ∈ A for 1 6 i 6 n and 1 6 j 6 m. Consider
the K-subspace ϕP(M) defined by

{u1 ∈M | ∃u2, . . . ,un ∈M such that
n

∑
i=1

a jiui = 0 for all 16 j 6 m}.

A K-subspace of this form is called a pp-definable subgroup of M.

Remark The symbol ϕP refers to the first order formula

∃x2 . . .∃xn

Ç
n

∑
i=1

a1ixi = 0 ∧·· ·∧
n

∑
i=1

amixi = 0

å
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that should be read as “there exist x2 up to xn such that ∑
n
i=1 a1ixi = 0 and

∑
n
i=1 a2ixi = 0 . . .” and so on up to m. The notation ϕP(M) is then used for the

solution set of this formula in M. That is, the set of elements u1 in M such that,
when we replace x1 with u1, the statement above in quotation marks is true.
Note that this coincides with what is written in Definition 4.36.

In parallel to Remark 4.4.1, we observe that, if we made this definition for
a module M over a general ring, then ϕP(M) would form a subgroup of the un-
derlying abelian group structure of M. In our setting, this is even a K-subspace.

Example 4.37 Consider the following system of KQ/I-linear equations:

e1x1 = 0,

δx1− x2 = 0,

βx3− x2 = 0,

αx4− x3 = 0,

βx4 = 0.

We have the corresponding matrix

P =

à
e1 0 0 0
δ −1 0 0
0 −1 β 0
0 0 −1 α

0 0 0 β

í
.

Then the pp-definable subgroup ΦP(M(z)) of M(z) is the K-subspace spanned
by the set

{w2}∪{w2n−1 | n ∈ N}.

The pp-definable subgroup ΦP(M(y∗)∗) of M(y∗)∗ is given by the set of (pos-
sibly infinite) K-linear combinations of the set {v2n−1 | n ∈ N}.

If we look at Example 4.35 and Example 4.37, then we find that HM(z2),w2

(M(z)) = ΦP(M(z)). In the next proposition we will show that the set of finite
matrix subgroups of an A-module M coincides with the set of pp-definable
subgroups of M.

Proposition 4.38 Let U be a K-subspace of an A-module M. The following
statements are equivalent.

1 There exists a finitely presented A-module L and l ∈ L such that
U = HL,l(M).
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2 There exists a finite A-linear system determined by a matrix P such that
U = ϕP(M).

Proof Consider an (m× n)-matrix P = (a ji) with a ji ∈ A for 1 6 i 6 n and
16 j6m. We have already observed that P determines both an A-linear system
∑

n
i=1 a jixi = 0 where 16 j6m and a finitely presented module L := An/im(Φ)

where Φ : Am→An is the A-homomorphism
(
a1 . . . am

)
7→
(
a1 . . . am

)
P.

We fix the following notation. For each 16 j 6 m, let d j := (0 . . .010 . . .0) be
the element of Am with 1 in the jth position and zeroes elsewhere. For each
1 6 i 6 n, define ei := (0 . . .010 . . .0)T to be the element of An with 1 in the
ith position and zeroes elsewhere and let li := π(ei) where π : An → L is the
canonical quotient morphism. Observe that Φ(d j) = (a j1 . . .a jn)

T = ∑
n
i=1 a jiei.

We will show that HL,l1(M) = ϕP(M) for all A-modules M. First we show
that HL,l1(M)⊆ϕP(M) so let u1 = f (l1) for some A-homomorphism f : L→M.
Set ui := f (li) for 1 < i6 n. Then, for each 16 j 6 m, we have that

n

∑
i=1

a ji f (li) = f

Ç
n

∑
i=1

a jili

å
= f π

Ç
n

∑
i=1

a jiei

å
= f πΦ(d j) = 0

since πΦ = 0. We therefore have that u1 ∈ ϕP(M). Next we show the other in-
clusion ϕP(M)⊆HL,l1(M). Let u1 ∈ ϕP(M) and consider elements u2, . . . ,un ∈
M that satisfy the A-linear equations. The assignment ei 7→ ui extends uniquely
to an A-homomorphism f ′ : An→M. As

f ′Φ(d j) = f ′
Ç

n

∑
i=1

a jiei

å
=

n

∑
i=1

a jiui = 0,

there exists a unique A-homomorphism f : L→M such that f π = f ′. In partic-
ular, we have that u1 = f ′(e1) = f (l1) so u1 ∈ HL,l1(M) as desired.

4.5 Pure Submodules and Pure-injective Modules

The aim of this next section is to define and give examples of the modules that
give the points of the Ziegler spectrum. The first definition is that of a pure sub-
module. These are the submodules that respect the pp-definable (equivalently
the finite matrix) subgroups.

Definition 4.39 Let L and M be A-modules such that L⊆M is an A-submodule.
Then L is a pure submodule of M if ϕP(L) = ϕP(M)∩ L for all (m× n)-
matrices P with entries in A. A monomorphism f : L→M such that im( f )⊆M
is a pure submodule is called a pure monomorphism.
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A useful characterisation of a pure monomorphism makes use of the duality
defined in Definition 4.28. Notice that, for any A-homomorphism g : M→ N,
the usual K-linear map g∗ : N∗ → M∗ induced by K-vector space duality is
an Aop-homomorphism. It is well known that a monomorphism g : M→ N is
pure if and only if there exists an Aop-homomorphism h : M∗ → N∗ such that
g∗ ◦h = idM∗ . To see a proof of this, as well as other characterisations of pure
monomorphisms, see [3, Lem. 2.19].

Example 4.40 For any A-module M, the morphism δM : M → M∗∗ given by
m 7→ evm where evm( f ) = f (m) for all f ∈M∗ is a pure monomorphism. This
follows from the discussion preceding this example since δ ∗M ◦δM∗ = idM∗ .

Definition 4.41 A non-zero A-module N is called pure-injective if, for every
pure monomorphism f : N→M, there exists an A-homomorphism g : M→ N
such that g f = idN .

Example 4.42 It follows from Example 4.40 that every pure-injective module
is a direct summand of a dual module. It turns out that this, in fact, characterises
pure-injective modules (see [3, Thm. 2.27]). In particular, any dual module is
pure-injective.

For any finite-dimensional A-module M, we have that M ∼= M∗∗. It therefore
follows that finite-dimensional A-modules are pure-injective.

Example 4.43 The modules defined in Examples 4.21, 4.23, 4.30 and 4.31 are
pure-injective modules. The fact that the infinite string module (Example 4.23)
and the dual infinite string module (Example 4.31) are pure-injective is proved
in [10]. The k-Prüfer module (Example 4.21) is an injective K[X ]-module and
so clearly it is also pure-injective. The k-adic module (Example 4.30) is a dual
module and so it is pure-injective by Example 4.42.

4.6 The Ziegler Spectrum

In this section we introduce a topological space called the Ziegler spectrum.
The points of the space are the indecomposable pure-injective modules.

Definition 4.44 A non-zero A-module M is called indecomposable if, when-
ever M ∼= N⊕L, either L = 0 or N = 0.

Remark The collection of isomorphism classes of indecomposable pure-
injective A-modules has cardinality at most 2κ+ℵ0 where κ is the cardinality
of A. In particular, the isomorphism classes of indecomposable pure-injective
modules form a set, which we denote by ZgA.
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The elements of ZgA are isomorphism classes [N] but we will drop the square
brackets and refer instead to the representative N as a point of ZgA. If N is a
finite-dimensional module we refer to it as a finite-dimensional point. Simi-
larly, if N is infinite-dimensional then we refer to N as an infinite-dimensional
point of ZgA.

The Ziegler topology on ZgA can be defined in many different ways (see,
for example, [8, Ch. 5.1]). In these lecture notes we will define the topology in
terms of pp pairs.

Definition 4.45 Let (P,Q) be a pair of matrices with entries in A (possibly
of different sizes). We will call (P,Q) a pp pair if ϕP(M) ⊆ ϕQ(M) for all
A-modules M.

According to Proposition 4.38, a pair (P,Q) of matrices with entries in A
determines a pair of pointed finitely presented modules (L, l) and (N,n) such
that ϕP(M) = HL,l(M) and ϕQ(M) = HN,n(M) for all A-modules M. Clearly
this means that (P,Q) is a pp pair if and only if HL,l(M) ⊆ HN,n(M) for all
A-modules M.

Definition 4.46 Let ZgA be the set of isomorphism classes of indecomposable
pure-injective A-modules. We call a set U⊆ ZgA basic open if there exists a pp
pair (P,Q) such that

U= {M ∈ ZgA | ϕP(M)( ϕQ(M)}.

Denote the basic open set corresponding to a pp pair (P,Q) by (ϕP/ϕQ).

Recall that a topological space Z is called quasi-compact if, whenever
Z =

⋃
i∈I Ui for Ui open sets, we have that there is a finite subset F ⊆ I such that

Z =
⋃

i∈F Ui. In other words, any open cover of Z has a finite subcover.

Theorem 4.47 (Ziegler, 1984) The basic open sets form a base of a topology
on ZgA and, moreover, the basic open sets are quasi-compact. This topological
space is called the Ziegler spectrum of A.

The proof of the above theorem is originally due to Ziegler and is contained
in his landmark paper [12] on the model theory of modules. A more algebraic
proof was given later by Herzog using functor categories [4]. See also Krause
[5]. Unfortunately, both the model theoretic and more algebraic arguments re-
quire material that is beyond the scope of these lectures and so we do not prove
the theorem here.

Corollary 4.48 The Ziegler spectrum of A is a quasi-compact topological
space.
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Proof By the theorem, it suffices to show that there is a pp pair (P,Q) such
that ZgA = (ϕP/ϕQ). If we take P to be the (1× 1)-matrix 0 and Q to be the
(1× 1)-matrix 1, then ϕP(M) = M and ϕQ(M) = 0 for any module M. Thus
ZgA = (ϕP/ϕQ) is quasi-compact.

In Example 4.49 we will describe the points of the Ziegler spectrum of the
algebra KQ/I introduced in Example 4.5. In order to do this we describe a way
of building a representation of the bound quiver (Q, I) from K[X ]-modules.
Recall from Example 4.8 that each K[X ]-module is determined by a K-vector
space M and a K-linear endomorphism Φ : M→M. Given such a pair (M,Φ),
we may define a representation of (Q, I) as follows:

W1Wα 66
Wβ // W2 Wδ

vv

where both W1 and W2 are isomorphic to M⊕M and the K-linear maps are

given by Wα :=

Ç
0 0

idM 0

å
, Wβ :=

Ç
Φ 0
0 idM

å
and Wδ :=

Ç
0 0

idM 0

å
. A

KQ/I-module of this kind is known as a band module because it can be visu-
alised as follows:

M
α

idM~~

β

Φ   
M

β

idM

  

M

δ

idM

~~
M

For every K[X ]-module M, we will denote the corresponding band module over
KQ/I by Ba(M).

Remark The assignment M 7→ Ba(M) extends to a functor from the category
of K[X ]-modules to the category of KQ/I-modules.

Example 4.49 Let K be an algebraically closed field. The following is a com-
plete list of the points of the Ziegler spectrum of KQ/I. This classification can
be found in [9]:

• The finite-dimensional KQ/I-modules; see Example 4.42.

• The infinite string module M(z) described in Example 4.23 corresponding
to the sequence
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v1

α

��

v3

β
��

α

��

v5

β
��

α

��v2

β
��

w2

δ
��

v4

β
��

w4

δ
��

w1 w3

. . . . . .

• The submodule of M(z) spanned by {wi | i> 2}∪{v j | j > 2}. This module
is the infinite string module M(w) associated to the sequence

v3

β
��

α

��

v5

β
��

α

��w2 v4

β
��

w4

δ
��

w3

. . . . . .

• The dual infinite string module M(y∗)∗ described in Example 4.31
corresponding to the dual sequence

y∗ = (. . .(β ∗)−1(α∗)−1
β
∗
δ
∗(β ∗)−1(α∗)−1

β
∗
δ
∗).

The module M(y∗)∗ can be visualised as

w1

α

��

β

��

w3

α

��

β

��
v2

δ

��

w2

β

��

v4

δ

��

w4

β

��
δ

��
v1 v3 v5

. . . . . .

• The submodule of M(y∗)∗ consisting of elements of the form

∑
n>2

kn+1vn+1 + lnwn

where kn, ln ∈ K. This module is the dual string module M(x∗)∗ where
x∗ = (. . .(β ∗)−1(α∗)−1β ∗δ ∗(β ∗)−1) that can be visualised as
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w3

α

��

β

��
w2

β

��

v4

δ

��

w4

β

��
δ

��
v3 v5

. . . . . .

• The following band modules:

– For each 0 6= k ∈ K, the module Ba(Mk,∞) where Mk,∞ is the k-Prüfer
module described in Example 4.21.

– For each 0 6= k ∈ K, the module Ba(Mk,−∞) where Mk,−∞ is the k-adic
module described in Example 4.30.

– The module Ba(K(X)) where K(X) denotes the field of rational
functions.

4.7 Finite-type and the Ziegler Spectrum

The finite-dimensional A-modules satisfy the following well-known decompo-
sition theorem known as the Krull–Remak–Schmidt Theorem. See, for exam-
ple, [1, Thm. 4.19].

Theorem 4.50 Let M be a finite-dimensional A-module. Then M ∼=
⊕n

i=1 Mi

where Mi is an indecomposable module for each 1 6 i 6 n. Moreover, this
decomposition is unique up to isomorphism and reordering of the direct sum-
mands.

This starting point suggests that, if we wish to know about the finite-
dimensional A-modules, then we should attempt to understand the indecompos-
able ones. By Example 4.42, the indecomposable finite-dimensional modules
form a subset U0 ⊆ ZgA of the Ziegler spectrum of A.

In this section we will consider the case where A is a finite-dimensional K-
algebra and consider the topological properties of the subset U0. We will make
use of the following three important results about finite-dimensional modules
over finite-dimensional algebras.

Proposition 4.51 ([8, Cor. 5.3.36, Cor. 5.3.37, Thm. 5.1.12]) Let A be a
finite-dimensional algebra.

1 The set U0 of finite-dimensional points in ZgA is dense in ZgA. In other
words, the closure U0 of U0 is equal to ZgA.
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2 The finite-dimensional points in ZgA are isolated. In other words, the set
{M} is an open set for all M ∈ U0.

3 The finite-dimensional points in ZgA are closed. In other words, the set {M}
is a closed set for all M ∈ U0.

Using these three facts, together with what we have learned in the previous
sections, we can now prove the final theorem of the course, which characterises
when the set U0 only has finitely many elements. A finite-dimensional algebra
A such that the set U0 ⊆ ZgA is finite is said to have finite-representation type.

Theorem 4.52 Let A be a finite-dimensional algebra. The following statements
are equivalent.

1 The algebra A has finite-representation type.
2 The Ziegler spectrum ZgA only has finitely many points.
3 The Ziegler spectrum ZgA does not contain any infinite-dimensional points.

Proof First we show that (1) and (2) are equivalent: The implication (2) im-
plies (1) is immediate because U0 ⊆ ZgA. Suppose that (1) holds. Then U0 =⋃

M∈U0
{M} is a finite union of closed sets by Proposition 4.51(3) and therefore

U0 is a closed set. In particular, we have that U0 = U0 = ZgA by Proposition
4.51(1). We have shown that ZgA is a finite set and so (2) holds.

Next we show that (1) and (3) are equivalent: Note that it was shown in the
above paragraph that, if (1) holds, then U0 = ZgA, i.e. (3) holds. To show the
converse, suppose that (3) holds. Then U0 = ZgA and so U0 is a quasi-compact
topological space by Corollary 4.48. We have that U0 =

⋃
M∈U0

{M} is an open
cover by Proposition 4.51(2) and clearly this open cover does not have a proper
subcover. Since U0 is quasi-compact, it follows that U0 is a finite set and so (1)
holds.
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