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Abstract The method of deriving scaling limits using Dirichlet-form techniques has already been suc-
cessfully applied to a number of infinite-dimensional problems. However, extracting the key tools from
these papers is a rather difficult task for non-experts. This paper meets the need for a simple presenta-
tion of the method by applying it to a basic example, namely the convergence of Brownian motions with
potentials given by n multiplied by the Dirac delta at 0 to Brownian motion with absorption at 0.
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1. Introduction

We study Brownian motion in R with a Dirac delta potential δ0 at 0, scaled by n ∈ N.
Because of the singular nature of the potentials, the Dirichlet forms

En(f, g) = 1
2

∫
R

f ′g′ dx + nf̃(0)g̃(0), f, g ∈ D(En),

D(En) = W 1,2(R),

provide a natural approach to constructing these stochastic processes (here f̃ and g̃ denote
the continuous versions of the functions f and g, respectively, from the Sobolev space
W 1,2(R) of square-integrable functions on R having square-integrable weak derivatives).
We use Dirichlet-form techniques not only to construct but also to characterize these
processes, and finally to show convergence in law to Brownian motion with absorption
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at 0 in the limit n → ∞ for all starting points x ∈ R \ {0}. Our proof that the laws are
weakly convergent is based on Mosco convergence of the corresponding Dirichlet forms
and strong Feller properties of the associated semigroups (Tn

t )t�0, which are uniform
in n in the following sense: for each bounded f ∈ L2(R) and each t > 0 the sequence
(Tn

t f)n∈N is equicontinuous. In characterizing the processes and for proving tightness,
the family of martingales provided by the Dirichlet-form approach is of great importance.

We do not claim that the results in this paper cannot be shown by purely probabilistic
methods (see § 5.5), or that the strategy for performing the limiting procedure is new. The
method is used in a number of papers treating limits of finite- and infinite-dimensional
systems of stochastic differential equations (see, for example, [10–12]). However, due to
the advanced technical background used there, the key tools are not accessible to non-
experts. (In this paper we even prove a result on convergence for any initial point, using
sufficient regularity of the associated semigroups; even in infinite-dimensional settings,
it is sometimes possible to obtain such regularity results [5].) In the elementary case
treated here, the road map for identifying properties of the processes and for proving
convergence is easy to follow. The technical problems that occur here can be solved in
detail without greatly inconveniencing the reader. We consider the present paper to be a
guideline for treating scaling limits of stochastic processes by Dirichlet-form techniques.

The paper is structured as follows: in § 2 we verify that (En, D(En)), n ∈ N, are local,
regular Dirichlet forms, and derive that the corresponding infinitesimal generator is given
by Lnf = 1

2f ′′ with domain

D(Ln) = {f ∈ W 1,2(R) ∩ W 2,2(R \ {0}) | f̃ ′
+(0) − f̃ ′

−(0) = 2nf̃(0)},

where the subscripts + and − denote the derivative from the right and left, respectively.
Looking at the corresponding semigroups (Tn

t )t>0, we show that each Tn
t f has a (unique)

continuous version, and that

{T̃n
t f | n ∈ N, f ∈ L2(R), ‖f‖L2 � R}

is equicontinuous for any 0 < t < ∞ and all constants 0 � R < ∞.
We then turn to the question of convergence. Mosco convergence of (En, D(En)), n ∈ N,

is shown in § 3. We can describe the limit (E , D(E)) explicitly by

E(f, f) = sup
n∈N

En(f, f), f ∈ D(E),

D(E) =
{

f ∈ W 1,2(R)
∣∣∣ sup

n∈N

En(f, f) < ∞
}

= {f ∈ W 1,2(R) | f̃(0) = 0}.

Mosco convergence of (En, D(En)), n ∈ N, is equivalent to strong convergence of the
semigroups (Tn

t )t�0, and convergence of the infinitesimal generators (Ln, D(Ln)) in both
the strong resolvent and the strong graph sense.

The remaining sections are centred on the stochastic processes associated with the
forms (En, D(En)), and weak convergence of their laws P

n
x , pointwise for every starting

point x ∈ R \ {0}. There exists a Hunt diffusion process Mn properly associated with
(En, D(En)). This is proved in § 4, using locality and regularity of the Dirichlet forms.
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In Lemma 4.2 we prove that there is no non-empty set which is En-exceptional and
that every En-quasi-continuous function is continuous. This also implies that, if (Pn

t )t>0

denotes the transition semigroup of the associated process, Pn
t f is the continuous version

of Tn
t f for all f ∈ L2(R), t > 0.

Section 5 is concerned with the properties of the associated Hunt diffusion process. First
we prove by semigroup techniques that the process is not conservative. Then, by using
the martingales provided by the associated martingale problem, it turns out that Mn

is a Brownian motion with possible absorption at 0. Whenever the process approaches
0, it does not die immediately (as it would do if there was absorption at 0). Instead, it
hits 0 almost surely. However, afterwards it might get killed instead of escaping from 0
again (see Lemmas 5.4 and 5.7 and § 5.3). As n increases, it becomes more likely that the
process gets killed at 0 (see § 5.4). The proof follows from the Burkholder–Davis–Gundy
inequality and the fact that the process M [id] is a martingale, where

M
[f ]
t = f(Xt) − f(X0) − 1

2

∫ t

0
f ′′(Xr) dr.

The latter is proved by approximating the identity ‘id’ by functions fk ∈ C2
c (R) that

vanish at 0, and showing that each M [fk] is a martingale with quadratic variation process

〈M [fk]〉t =
∫ t

0
|f ′

k(Xr)|2 dr, t � 0.

In § 5.5 we give an alternative description of the process in terms of Brownian motion.
In the last section we prove weak convergence of the laws P

n
x as n → ∞, pointwise

for all x ∈ R \ {0}. Finally, we show that the limiting process is properly associated
with the limiting Dirichlet form (E , D(E)) and is a Brownian motion with absorption
at 0 (Theorem 6.6). The proof of convergence of the laws relies on convergence of the
finite-dimensional distributions and tightness of the laws P

n
x , n ∈ N.

As mentioned above, our aim is to give a guideline on how to use Dirichlet-form tech-
niques to treat scaling limits of stochastic processes. The essential techniques are Mosco
convergence of the associated Dirichlet forms, strong Feller properties of the correspond-
ing semigroups and the martingales provided by the associated martingale problem. The
latter, in particular, are essential for proving tightness. In this context we note also that
in the situation with an invariant measure, the Lyons–Zheng decomposition [15,16] for
processes in the Dirichlet space is an additional, very powerful, tool for proving tightness,
especially in very singular situations [11], at least when the initial distribution equals
the invariant measure. Here we are interested in tightness of the processes for each ini-
tial point. (In addition, an invariant measure does not even exist.) Hence, for proving
tightness we had to develop a different strategy.

1.1. Notation

We denote by B(R) the Borel σ-field on R, and by Bb(R), B+(R) the set of all B(R)-
measurable functions f : R → R that are bounded or non-negative, respectively. Ck(R),
k ∈ N∪{0,∞}, is the set of all k-times continuously differentiable real-valued functions on
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R. Subscripts ‘c’ and ‘b’ denote compact support and boundedness, respectively. Further,
for p ∈ [1,∞] let Lp(R) = Lp(R; dx) be the set of all real-valued Borel functions f on R

such that

‖f‖Lp := p

√∫
R

|f(x)|p dx < ∞ or ‖f‖L∞ = ess sup
x∈R

|f(x)| < ∞.

The set of equivalence classes of Lp-functions with respect to the Lebesgue measure dx

is denoted by Lp(R). If f ∈ Lp(R) has a continuous representative, we denote it by f̃ .
For the Sobolev space of all k-times weakly differentiable L2-functions such that their
derivatives are L2-integrable, we write W k,2(R). The corresponding norm is given by

‖f‖2
W k,2 :=

∑
0�m�k

‖dmf‖2
L2 , f ∈ W k,2(R),

where dm, m ∈ N0, denotes the mth (weak) derivative. We sometimes also consider
function spaces on open subsets of R, which are then defined analogously. Moreover, we
consider the space C1/2(K) of all functions on a bounded subset K ⊂ R that are Hölder
continuous with parameter 1

2 . The usual norm on this space is given by

‖f‖C1/2(K) := sup
x∈K

|f(x)| + sup
x,y∈K
x�=y

|f(x) − f(y)|
|x − y|1/2 , f ∈ C1/2(K).

For details on the considered function spaces, see, for example, [1].

2. Dirichlet form and generator with a scaled Dirac delta potential

We consider the sequence (En, D(En)), n ∈ N, of symmetric bilinear forms on L2(R):

D(En) = W 1,2(R),

En(f, g) = 1
2

∫
R

f ′g′ dx + nf̃(0)g̃(0), f, g ∈ D(En).

⎫⎬⎭ (2.1)

By Sobolev’s Embedding Theorem [1, Theorem 5.4], W 1,2((−k, k)), k ∈ N, can be con-
tinuously embedded to C1/2((−k, k)). So f, g ∈ W 1,2(R) have unique continuous versions
f̃ , g̃, and (En, D(En)) is well defined.

We need the following basic definitions.

Definition 2.1. Let (Ê , D(Ê)) be a densely defined (i.e. D(Ê) is dense in L2(R))
positive definite symmetric bilinear form on L2(R).

(i) (Ê , D(Ê)) is called regular if C0
c (R) ∩ D(Ê) is dense in (D(Ê), Ê1/2

1 ) and in
(C0

c (R), ‖ · ‖∞). Here Ê1/2
1 denotes the norm

f 
→ Ê1(f, f)1/2 :=
√

Ê(f, f) + ‖f‖2
L2 , f ∈ D(Ê).
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(ii) (Ê , D(Ê)) is called local if, for any u, v ∈ D(Ê) with disjoint compact supports, it
holds that Ê(u, v) = 0.

(iii) (Ê , D(Ê)) is a Dirichlet form if it is closed (i.e. (D(Ê), Ê1/2
1 ) is complete) and for

all f ∈ D(Ê) it holds that f+ ∧ 1 = min(max(f, 0), 1) ∈ D(Ê) and

Ê(f+ ∧ 1, f+ ∧ 1) � Ê(f, f).

In the following, we often use definitions or facts concerning Dirichlet forms, in par-
ticular the fact that each (En, D(En)), n ∈ N, is uniquely associated with a generator
(Ln, D(Ln)), a strongly continuous contraction semigroup (Tn

t )t�0 and a strongly con-
tinuous contraction resolvent (Gn

α)α>0. These are explained in [9,17].

Lemma 2.2. (En, D(En)), n ∈ N, are regular and local Dirichlet forms.

Proof. In [9, Example 1.2.2, pp. 8–9] it is proved that, for any positive Radon measure
κ on B(R), the bilinear form

Eκ(f, g) = 1
2

∫
R

f ′g′ dx +
∫

R

f̃ g̃ dκ,

D(Eκ) = F 0,

is a regular Dirichlet form on L2(R), where F 0 denotes the closure of C∞
c (R) with respect

to the (Eκ
1 )1/2-norm. Choosing κ = nδ with δ the Dirac delta, we see that (En, D(En)), n ∈

N, are special cases of (Eκ, D(Eκ)), since W 1,2(R) is the closure of C∞
c (R) in W 1,2-norm,

which is equivalent to the (En
1 )1/2-norm:

1
2‖f‖2

W 1,2 � En
1 (f, f) = 1

2‖f‖2
W 1,2 + nf̃(0)2

for any f ∈ C∞
c (R), and there exists C < ∞ such that

f̃(0)2 � ‖f̃‖2
C1/2((−1,1)) � C‖f‖2

W 1,2((−1,1)) � C‖f‖2
W 1,2 ,

by Sobolev’s Embedding Theorem.
Locality of (En, D(En)), n ∈ N, is immediate from the definition. �

Proposition 2.3. For any n ∈ N, the domain D(Ln) of Ln is given by

D(Ln) = D := {f ∈ W 1,2(R) ∩ W 2,2(R \ {0}) | f̃ ′
+(0) − f̃ ′

−(0) = 2nf̃(0)}.

Lnf = 1
2f ′′ holds for any f ∈ D(Ln).

Here f̃ ′
+(0) and f̃ ′

−(0) denote the right and left limits of f̃ ′ at 0, respectively. These
limits exist, since f ∈ W 2,2(R \ {0}) implies that f ′ ∈ W 1,2(R \ {0}), and by Sobolev’s
Embedding Theorem it follows that f̃ ′ ∈ C1/2((−1, 0)) and f̃ ′ ∈ C1/2((0, 1)).
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Proof. Fix n ∈ N. Let f ∈ D(Ln) ⊂ D(En) = W 1,2(R). Then for all g ∈ D(En) it
holds [17] that

En(f, g) = −
∫

R

Lnfg dx.

In particular, we find for g ∈ C∞
c (R \ {0}) that

−
∫

R

Lnfg dx = En(f, g) = 1
2

∫
R

f ′g′ dx + nf̃(0)g(0) = −1
2

∫
R

fg′′ dx.

So f ∈ W 2,2(R\{0}) and Lnf = 1
2f ′′ in L2(R\{0}), and hence in L2(R). Let g ∈ C∞

c (R),
g(0) �= 0. Using the fact that g is continuous at 0 and vanishes at ∞, we obtain

En(f, g) =
1
2

lim
ε→0

( ∫ −ε

−1/ε

f ′g′ dx +
∫ 1/ε

ε

f ′g′ dx

)
+ nf̃(0)g(0)

= −1
2

∫
R

f ′′g dx + nf̃(0)g(0)

+
1
2

lim
ε→0

(
f̃ ′g(−ε) − f̃ ′g

(
−1

ε

)
+ f̃ ′g

(
1
ε

)
− f̃ ′g(ε)

)
= −

∫
R

Lnfg dx + 1
2g(0)(f̃ ′

−(0) − f̃ ′
+(0) + 2nf̃(0)).

Thus,
f̃ ′

−(0) − f̃ ′
+(0) + 2nf̃(0) = 0.

So we have shown that D(Ln) ⊂ D.
Conversely, for any f ∈ D, g ∈ D(En), the same calculation as above yields

En(f, g) = −1
2

∫
R

f ′′g dx,

proving by [17, Proposition I.2.16] that D ⊂ D(Ln), so the assertion is shown. �

Finally, we verify some (uniform) regularity properties of the semigroups (Tn
t )t�0,

n ∈ N.

Lemma 2.4. Let n ∈ N, t > 0 and f ∈ L2(R). Then Tn
t f has a (unique) continuous

version T̃n
t f . Moreover, for each bounded set K ⊂ R, and any t > 0 and R < ∞, the set

of restrictions
{T̃n

t f |K | n ∈ N, f ∈ L2(R), ‖f‖L2 � R}

is equicontinuous.

Proof. Let t > 0 and n ∈ N. By [9, Lemma 1.3.3] and the fact that Tn
t is a contraction,

it holds for any f ∈ D(En) that Tn
t f ∈ D(En) = W 1,2(R) and

En
1 (Tn

t f, Tn
t f) � ‖Tn

t f‖2
L2 +

1
2t

(‖f‖2
L2 − ‖Tn

t f‖2
L2) �

(
1 +

1
2t

)
‖f‖2

L2 .
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Since D(En) ⊂ L2(R) is dense, this extends to any f ∈ L2(R), so by Sobolev embedding
we find that, for any such f , any bounded set K ⊂ R and any n ∈ N it holds that

‖T̃n
t f‖2

C1/2(K) � C‖Tn
t f‖2

W 1,2 � 2CEn
1 (Tn

t f, Tn
t f) � 2C

(
1 +

1
2t

)
‖f‖2

L2

for some constant C < ∞ depending only on K, and the assertions follow. �

Remark 2.5.

(i) One can easily prove a similar property for the strongly continuous contraction
resolvents associated with (En, D(En)), n ∈ N. However, we omit the proof because
we shall not use this result.

(ii) In fact, [1, Theorem 5.2] even implies global equicontinuity, i.e. the restriction to
bounded sets K is not necessary. However, such a strong property of the semigroup
is not needed for our further considerations.

3. Mosco convergence

In this section we prove Mosco convergence of the sequence (En, D(En)), n ∈ N, intro-
duced in § 2. We use the convention that any bilinear form (Ê , D(Ê)) is defined on the
entire underlying Hilbert space and takes the value +∞ outside D(Ê). We restrict the
following definition to the case of densely defined forms.

Definition 3.1. Let (Ê , D(Ê)) and (Ên, D(Ên)), n ∈ N, be densely defined positive def-
inite symmetric bilinear forms on a separable real Hilbert space (H, (·, ·)H). The sequence
(Ên, D(Ên))n∈N is said to be Mosco convergent to (Ê , D(Ê)) if

(i) for any sequence (un)n∈N ⊂ H weakly convergent to some u ∈ H, i.e. (un, v)H →
(u, v)H for all v ∈ H, it holds that

Ê(u, u) � lim inf
n→∞

Ên(un, un),

(ii) for every u ∈ H there exists a sequence (un)n∈N ⊂ H such that limn→∞ un = u in
H and

Ê(u, u) = lim
n→∞

Ên(un, un).

The proof of convergence in the following theorem applies elementary facts from func-
tional analysis to the particular situation under consideration. The convergence of an
increasing sequence of closed symmetric forms can also be treated in a general way (see
Remark 3.3).
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Theorem 3.2. The sequence (En, D(En))n∈N Mosco converges to the form (E , D(E)),
defined by

D(E) =
{

f ∈ L2(R)
∣∣∣ sup

n∈N

En(f, f) < ∞
}

= {f ∈ W 1,2(R) | f̃(0) = 0},

E(f, f) = sup
n∈N

En(f, f),

E(f, g) = 1
4 (E(f + g, f + g) − E(f − g, f − g)) = 1

2

∫
R

f ′g′ dx,

where f, g ∈ D(E). Moreover, (E , D(E)) is a Dirichlet form and D(E) is the closure of
C∞

0 (R \ {0}) in W 1,2(R).

Proof. Condition (ii) in Definition 3.1 holds with un := u for all n ∈ N. To prove (i)
let (un)n∈N ⊂ L2(R) be weakly convergent to some u ∈ L2(R) and assume that for some
subsequence (unk

)k∈N it holds that limk→∞ Enk(unk
, unk

) < ∞. We need to show that u ∈
W 1,2(R) and ũ(0) = 0. Applying the Banach–Alaoglu Theorem we may assume without
loss of generality that (unk

)k∈N converges weakly in W 1,2(R) to some û ∈ W 1,2(R).
The natural embedding W 1,2(R) ⊂ L2(R) is continuous; hence, it is also continuous
when considering both spaces together with their weak topologies, so u = û ∈ W 1,2(R).
Moreover, since supk∈N nkũnk

(0) < ∞ and since limk→∞ ũnk
(0) = ũ(0) due to the fact

that evaluation at 0 is a continuous linear functional on W 1,2(R), we obtain ũ(0) = 0.
The estimate in part (i) of Definition 3.1 now follows from lower semicontinuity of the
norm with respect to weak convergence in W 1,2(R).

Closedness of (E , D(E)) is immediate and the Dirichlet property follows as in [9, Exam-
ple 1.2.2]. The last assertion follows by standard approximation arguments. �

The limit Dirichlet form (E , D(E)) is associated with a Brownian motion with absorp-
tion at 0 (see Theorem 6.6).

Let (L, D(L)), (Gα)α>0 and (Tt)t�0 be the generator, resolvent and semigroup in
L2(R), respectively, corresponding to (E , D(E)). There are three more formulations of
convergence of non-negative symmetric closed bilinear forms that are equivalent to Mosco
convergence (cf. Corollary 2.6.1 and Theorem 2.4.1 of [18] and (the proof of) Theo-
rem VIII.26 in [19]):

(i) strong convergence of the corresponding semigroups, i.e.

lim
n→∞

Tn
t f = Ttf for all f ∈ L2(R), (3.1)

uniformly on every compact interval t ∈ [0, T ];

(ii) convergence of the corresponding generators in the strong resolvent sense, i.e.

lim
n→∞

Gn
αf = Gαf for all f ∈ L2(R), α > 0;
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(iii) convergence of Ln to L in the strong graph sense, i.e.

D(L) =
{

f ∈ L2(R)
∣∣∣ ∃fn ∈ D(Ln), n ∈ N : lim

n→∞
fn = f and ∃ lim

n→∞
Lnfn

}
,

Lf = lim
n→∞

Lnfn, f ∈ D(L) with (fn)n∈N as above,

is the generator of the limiting semigroup (Tt)t�0.

Remark 3.3. As mentioned above, Mosco convergence can also be shown by more
general arguments: in [20] (see also [13, § VIII.3.4]) it is shown that, for any increasing
sequence of closed positive definite symmetric forms dominated by a densely defined
positive definite symmetric form, the convergence in the above sense holds. It is also
possible to derive this in the more general framework of epiconvergence or Γ -convergence
(see, for example, [3,4]).

4. The associated diffusion process

In the following two sections, we keep n ∈ N fixed. We need the following notions from
the potential theory for Dirichlet forms.

Definition 4.1. Let (Ê , D(Ê)) be a Dirichlet form on L2(E; µ), where E is a Hausdorff
topological space and µ is a σ-finite measure on the Borel σ-field of E.

(i) An increasing sequence (Fk)k∈N of closed subsets of E is called an Ê-nest if⋃
k�1 D(Ê)Fk

is dense in (D(Ê), Ê1/2
1 ), where F c

k = E \ Fk and

D(Ê)Fk
= {f ∈ D(Ê) | f = 0 on F c

k}.

(ii) A subset N ⊂ E is called Ê-exceptional if N ⊂
⋂

k�1 F c
k for some Ê-nest (Fk)k∈N.

‘Ê-quasi-everywhere’ (Ê-q.e.) means ‘outside an Ê-exceptional set’.

(iii) An Ê-q.e. defined function f : A → R is called Ê-quasi-continuous if there exists
an Ê-nest (Fk)k∈N such that

⋃
k�1 Fk ⊂ A ⊂ E and f |Fk

is continuous for every
k ∈ N.

In the situation considered here we have E = R and µ equal to the Lebesgue measure.
For the reader unfamiliar with these notions we note that an E-exceptional set as

in the above definition always has measure 0 with respect to the underlying measure
µ. An exceptional set is, roughly speaking, a set which is not only almost surely not
‘hit’ by µ, but also almost surely not hit by a special standard process that is properly
associated (see below) with E when this process starts, e.g. in a probability distribution
that is absolutely continuous with respect to µ. (E-nests can also be described in this
way: the process almost surely dies after leaving all Fk, k ∈ N.) For instance, in the
case of a two-dimensional Brownian motion, a line segment is not exceptional, but a
singleton is, whereas one-dimensional Brownian motion hits every singleton. Since the
Dirichlet form En differs from that associated with Brownian motion only by the killing
term nf̃(0)g̃(0), the situation for En should be the same as for one-dimensional Brownian
motion; we give a proof in Lemma 4.2. For more details on the notions from Definition 4.1
see, for example, [17, Chapter III and § IV.5].
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Lemma 4.2. Only the empty set is En-exceptional. Moreover, En-quasi-continuity
reduces to ordinary continuity.

Proof. Let (Fk)k∈N be an En-nest. We first show that any compact interval [a, b] ⊂ R

is contained in some Fk. Let f ∈ D(En) be such that f̃(x) �= 0 for all x ∈ [a, b]. By
definition of an En-nest, there exists a sequence (fl)l∈N ⊂

⋃
k∈N

D(En)Fk
converging to

f in D(En) in the (En
1 )1/2-norm, and hence in the W 1,2-norm. Suppose [a, b] is not

contained in any of the Fk, k ∈ N. Then there exists for every l ∈ N some yl ∈ [a, b]
such that f̃l(yl) = 0. We may without loss of generality assume that (yl)l∈N converges to
some y ∈ [a, b]. By Sobolev’s Embedding Theorem, f̃l → f̃ uniformly on [a, b] as l → ∞;
hence, f̃(y) = 0: a contradiction.

The first assertion follows by setting a = b, showing that no singleton is En-exceptional.
The second assertion follows without additional effort: the above considerations imply
that every En-quasi-continuous function f is necessarily continuous on any bounded
interval [a, b] ⊂ R, and hence on the whole of R. �

Let R
∆ = R∪{∆} be the one-point compactification of R. The Borel σ-algebra on R

∆

is given by B(R∆) = B(R) ∪ {B ∪ {∆} | B ∈ B(R)}.

Definition 4.3 (cf. [17, Chapter IV.1]). Let

M = (Ω, F , (Ft)t�0, (Xt)t�0, (Px)x∈R∆)

be a right process, i.e. a strong Markov process that has right-continuous paths and the
normal property, with state space R, cemetery ∆ and lifetime ζ. Here F = σ(

⋃
t�0 Ft),

where (Ft)t�0 is the natural filtration (or minimum completed admissible filtration) with
respect to X = (Xt)t�0.

(i) M is called a special standard process if it has the following properties for any
probability measure µ on (R∆,B(R∆)).

(a) (Left limits up to ζ.) Xt− = lims↑t Xs exists in R for all t ∈ (0, ζ) Pµ-almost
surely (a.s.). Here Pµ :=

∫
Px dµ(x).

(b) (Quasi-left continuity up to ζ.) Let τ and τk, k ∈ N, be stopping times with
respect to (Fµ

t )t�0, the completion of the natural filtration with respect to
Pµ. If τk ↑ τ , then Xτk

→ Xτ as k → ∞ Pµ-a.s. on {τ < ζ}.

(c) (Special.) If τ and τk, k ∈ N, are as in (b) and τk ↑ τ , then Xτ is measurable
with respect to

∨
k∈N

Fµ
τk

, the smallest σ-algebra that contains all Fµ
τk

, k ∈ N.

(ii) M is called a Hunt process if (i) holds with ζ replaced by ∞ and R replaced by
R

∆.

(iii) M is called a diffusion process if almost all paths are continuous up to ζ, i.e.

Px(t 
→ Xt is continuous on [0, ζ)) = 1 for all x ∈ R.
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Theorem 4.4. There exists a Hunt diffusion process

Mn = (Ωn,Fn, (Fn
t )t�0, (Xn

t )t�0, (Pn
x)x∈R∆)

that is properly associated with (En, D(En)), i.e. for its transition semigroup (Pn
t )t�0

and any f ∈ L2(R), Pn
t f is an En-quasi-continuous version of Tn

t f .

The transition semigroup is defined by Pn
t f(x) := E

n
xf(Xt), x ∈ R, f ∈ B(R) such

that the integration makes sense. Here one always defines f(∆) = 0.

Proof. By [17, Proposition V.2.12(ii)], the regularity of (En, D(En)) implies strict
quasi-regularity. By [17, Theorem V.2.13, Remark V.2.8], this is sufficient for (En, D(En))
to be (strictly) properly associated with a Hunt process Mn. Furthermore, the locality
of (En, D(En)) implies by [17, Theorem V.1.5] that

P
n
x(t 
→ Xt is continuous on [0, ζ)) = 1

holds for En-quasi-every initial point x ∈ R, i.e. for all x outside some En-exceptional set
N . But, by Lemma 4.2, only the empty set is En-exceptional, proving the assertion. �

Remark 4.5.

(i) Note that Lemma 4.2 implies that Pn
t f is continuous for any f ∈ L2(R), so Pn

t f =
T̃n

t f (cf. Lemma 2.4).

(ii) We may, and will, assume in the following that Ωn = D([0,∞), R∆), the space of
all càdlàg (right continuous with left limits) paths in R

∆.

5. Properties of the associated process

In this section, we show how we may obtain a description of the Hunt diffusion process

Mn = (D([0,∞), R∆),F , (Ft)t�0, (Xt)t�0, (Pn
x)x∈R∆)

from Theorem 4.4 by considerations based on the associated semigroup. After proving
that this semigroup is not conservative, which implies a possibly finite lifetime of the
process, we derive more precise results by using the fact that Mn solves the martingale
problem for the generator (Ln, D(Ln)). In particular, we find that the process describes
Brownian motion with possible absorption at 0 and obtain a quantitative result on the
rate of absorption. Finally, we give a complementary result showing how the process
can be described using methods from stochastic calculus, namely as a Brownian motion
which is killed when its local time at 0 exceeds an independent exponentially distributed
random variable with expectation value 1/n.
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5.1. Non-conservativity of the semigroup

By the Beurling–Deny Theorem [14, Proposition 1.8] there exists, for any p ∈ [1,∞), a
strongly continuous contraction semigroup (Tn

t,p)t�0 on Lp(R) such that Tn
t,p is an exten-

sion of Tn
t |L1(R)∩L∞(R) for each t � 0. We denote by (Ln,p, D(Ln,p)) the corresponding

generator for p ∈ [1,∞). For p = ∞, t � 0, we define Tn
t,∞ to be the adjoint operator

of Tn
t,1.

Proposition 5.1. The semigroup (Tn
t,∞)t�0 is not conservative, i.e. there exists t > 0

and a set A ⊂ R of positive Lebesgue measure such that Tn
t,∞1R(x) < 1 for (almost every

(a.e.)) x ∈ A.

Proof. Pick f ∈ D(Ln,2) such that f has compact support, f(0) �= 0 and Ln,2f =
1
2f ′′ ∈ L1(R) ∩ L∞(R). Then∥∥∥∥Tn

t f − f

t
− Ln,2f

∥∥∥∥
L1

=
∥∥∥∥1

t

∫ t

0
Tn

s Ln,2f − Ln,2f ds

∥∥∥∥
L1

� sup
0�s�t

‖Tn
s Ln,2f − Ln,2f‖L1 ,

(5.1)
which converges to 0 as t ↓ 0 by the strong continuity of (Tn

t,1)t�0. (Note that by the
assumptions on f the integral in (5.1) exists in the L2-sense as well as in the L1-sense.)
So f ∈ D(Ln,1) and Ln,1f = Ln,2f . Suppose (Tn

t,∞)t�0 is conservative. Then

d
dt

∫ ∞

−∞
1R(x)(Tn

t,1f)(x) dx

∣∣∣∣
t=0

=
d
dt

∫ ∞

−∞
(Tn

t,∞1R)(x)f(x) dx

∣∣∣∣
t=0

=
d
dt

∫ ∞

−∞
f(x) dx

∣∣∣∣
t=0

= 0,

hence we have

0 =
d
dt

∫ ∞

−∞
Tn

t,1f(x) dx

∣∣∣∣
t=0

=
∫ ∞

−∞
Lnf(x) dx

= 1
2

∫ ∞

−∞
f ′′(x) dx

=
1
2

(
lim
ε→0

f ′(−ε) − f ′
(

−1
ε

)
+ f ′

(
1
ε

)
− f ′(ε)

)
= −nf(0).

This contradicts f(0) �= 0. �

Non-conservativity of the semigroup implies that the associated process Mn may have
finite lifetime: by the symmetry of Pn

t with respect to Lebesgue measure, one finds that
Pn

t f = Tn
t,∞f dx-almost everywhere for any f ∈ Bb(R). Thus,∫

1R(Xt) dP
n
x = Pn

t 1R(x) = Tn
t,∞1R(x) < 1 for a.e. x ∈ A.
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So for any initial point x ∈ Ã, where Ã ⊂ A is a suitably chosen measurable subset of
positive Lebesgue measure, the process Mn leaves R with positive probability.

One way to obtain additional information about the process is potential theoretic
considerations. For a proof of the following proposition see [9, Example 4.5.1, p. 166].

Proposition 5.2. Let σy = inf{t � 0: Xt = y} be the first hitting time of y. Then

P
n
x(σy < ∞) > 0

for all x, y ∈ R.

We know from Proposition 5.1 that for every initial point x ∈ A, where A is a set of
positive Lebesgue measure, there is a positive probability that Mn has finite lifetime.
Proposition 5.2 now implies that this extends to any initial point x ∈ R. Moreover, we
can conclude from Proposition 5.2 that there is no point in R such that the process gets
killed almost surely when approaching this point.

However, the probability of getting killed when approaching 0 increases as n → ∞. In
fact, as n → ∞, the processes Mn asymptotically behave as if being immediately killed
at 0. These facts are shown in § 5.4.

5.2. The martingale problem

As mentioned before, any real-valued function g on R is extended to R
∆ by defining

g(∆) = 0. Let us introduce the process

M
[f ]
t = f(Xt) − f(X0) − 1

2

∫ t

0
f ′′(Xr) dr

for any f ∈ C2(R) with f(0) = 0 and for t � 0 such that the integral exists, and

M
[f ]
t = f̃(Xt) − f̃(X0) −

∫ t

0
Lnf(Xr) dr, t � 0, (5.2)

for any f ∈ D(Ln) such that Lnf is bounded. By Remark 4.5 (i) for any g ∈ L2(R) which
equals 0 almost everywhere it holds that Pn

t g(x) = 0 for all x ∈ R, t > 0. This implies
that for x ∈ R the integral in (5.2) P

n
x-a.s. does not depend on the version of Lnf we

choose. By Proposition 2.3, the two definitions of M [f ] are consistent. Clearly, (M [f ]
t )t�0

is (Ft)t�0-adapted.

Lemma 5.3. Let x ∈ R and f ∈ D(Ln) such that f and Lnf are bounded. Then,
under P

n
x ,

M
[f ]
t = f̃(Xt) − f̃(x) −

∫ t

0
Lnf(Xr) dr, t � 0, (5.3)

is an (Ft)t�0-martingale starting at 0.
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Proof. Using Lebesgue’s Dominated Convergence Theorem, the boundedness of Lnf

and Remark 4.5 (i), we find that the function

R � x 
→
∫ t

0
Pn

r Lnf(x) dr

is continuous. It is therefore a continuous version of the L2-element∫ t

0
TrLnf dr = Ttf − f.

It follows that for all x ∈ R it holds that

Pn
t f̃(x) − f̃(x) =

∫ t

0
Pn

r Lnf(x) dr.

(See the proof of [2, Lemma 5.1] for a similar argument which works in cases where Lnf

is not essentially bounded.) The rest is now standard using the Markov property. Let
0 � s � t. For any bounded Fs-measurable function G : D([0,∞), R∆) → R we find that

E
n
x [(M [f ]

t − M [f ]
s )G(X)] = E

n
x

[
E

n
Xs

[
f̃(Xt−s) − f̃(X0) −

∫ t−s

0
Lnf(Xr) dr

]
G(X)

]
= E

n
x

[(
Pn

t−sf̃(Xs) − f̃(Xs) −
∫ t−s

0
Pn

r Lnf(Xs) dr

)
G(X)

]
= 0.

This proves the assertion. �

We now prove several lemmas that lead to a generalization of Lemma 5.3 to f = id;
see Theorem 5.9. The proof of the latter theorem requires that Mn does not explode,
but we can derive an even more general statement: the only state where Mn possibly
gets killed is 0 (see Lemma 5.7). Note that, by the existence of left limits up to ∞, on
{ζ < ∞} one can fix some point Xζ− ∈ R

∆ at which the process is killed.

Lemma 5.4. The process Mn cannot be killed at any non-zero state y ∈ R \ {0}.

Proof. Fix any initial point x > 0 and define

τm = inf{t � 0: Xt /∈ [1/m, m] ∪ {∆}}

for m ∈ N sufficiently large such that 1/m < x < m. Here we use the convention
inf(∅) = ∞. τm is a stopping time with respect to (Ft)t�0, because t 
→ Xt is right
continuous. We choose functions fk ∈ C2

c (R), k ∈ N, such that fk(0) = 0 and fk = −a

on [1/k, k] for some a > 0. For any k ∈ N, by Lemma 5.3 M [fk] is a martingale under
P

n
x starting at 0. For k > m we have that f ′′

k (Xr) = 0 on {r � τm}; hence, the stopped
process

M
[fk]
t∧τm

= fk(Xt∧τm) + a, t � 0,
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is a non-negative martingale starting at 0. Hence, M
[fk]
t∧τm

≡ 0 P
n
x-a.s. for all t � 0. There-

fore, we obtain, for all t � 0,

P
n
x(Xr∧τm = ∆ for some r � t) = P

n
x(Xt∧τm = ∆)

= P
n
x(M [fk]

t∧τm
= a)

= 0.

P
n
x-almost surely, the diffusion process Mn cannot enter the cemetery before leaving

[1/m, m]. Letting m tend to ∞, we find that Mn does not enter the cemetery before it
either explodes or approaches 0. Similarly, one can prove this result for any initial point
x < 0. Using the strong Markov property (and the existence of left limits), it can now
be verified that one can exclude the case that Mn starts at some x ∈ R, hits 0 without
being absorbed and is killed later at some y �= 0. So Mn cannot be killed at any state
y �= 0. �

Lemma 5.5. Let x ∈ R and f ∈ C2
c (R) with f(0) = 0. Then, under P

n
x ,

K
[f ]
t = (M [f ]

t )2 −
∫ t

0
|f ′(Xr)|2 dr, t � 0,

defines an (Ft)t�0-martingale. In particular,

〈M [f ]〉t =
∫ t

0
|f ′(Xr)|2 dr, t � 0,

is the quadratic variation of M [f ].

Proof. K
[f ]
t is Ft-measurable and bounded (hence, integrable) for any t � 0, since

f ∈ C2
c (R). Let s � 0 and g be some bounded Fs-measurable function. We consider

the map t 
→ E
n
x(gK

[f ]
t ), t � s. It is continuous by Lebesgue’s Dominated Convergence

Theorem, because Mn is continuous up to ζ and (f(Xt))t�0 continuously approaches 0
at time ζ (recall that f(∆) = 0 and that Mn can at most be killed at 0 or ∞, where
f vanishes). It is shown in the proof of [6, Theorem 4.6] that the right derivatives of
t 
→ E

n
x(gK

[f ]
t ), t � s, exist and equal 0. Thus, this function is constant and the assertion

follows. �

Lemma 5.6. For any 0 < p < ∞, x ∈ R, T > 0, there exists a constant C(p, T ) such
that

E
n
x

[
sup
t�T

|M [id]
t |p

]
� C(p, T ) for all T > 0. (5.4)

C(p, T ) is independent of n and goes to 0 as T → 0. Here id : R → R denotes the identity
function.

Proof. Let 0 < p < ∞, x ∈ R and T > 0. We approximate the identity map by
functions fk ∈ C2

c (R), k ∈ N, with fk = id on [−k, k] and |f ′
k|, |f ′′

k | � 1. By Lemma 5.3,
M [fk] are martingales. Define

τm = inf{t � 0: |M [id]
t | � m}, m ∈ N,
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which are stopping times due to the right continuity of t 
→ M
[id]
t on [0,∞). For any m ∈ N

there exists k ∈ N such that the stopped process (M [id]
t∧τm

)t�0 coincides with (M [fk]
t∧τm

)t�0.
In particular, (M [id]

t∧τm
)t�0 is a martingale. Using the Burkholder–Davis–Gundy inequality

and Lemma 5.5, we obtain

E
n
x

[
sup

t�T∧τm

|M [id]
t |p

]
= E

n
x

[
sup

t�T∧τm

|M [fk]
t |p

]
� CE

n
x [〈M [fk]〉p/2

T∧τm
]

� CT p/2

for some constant C < ∞. Letting m tend to ∞, the result follows from the Monotone
Convergence Theorem. �

Lemma 5.7. For any initial point x ∈ R, the process Mn does not explode. In
particular, it can only be killed at 0.

Proof. By Lemma 5.4, it suffices to show that Mn does not explode. Estimate (5.4)
implies that, for any T > 0, k ∈ N,

P
n
x

[
sup
t�T

|M [id]
t | � k

]
� 1

k
E

n
x

[
sup
t�T

|M [id]
t |

]
� 1

k
C(1, T ) −−−−→

k→∞
0.

Thus, the probability that M [id] explodes before time T is 0 for all T > 0. �

Remark 5.8.

(i) Note that Lemma 5.7 implies continuity of M
[id]
t = id(Xt) − id(X0) at time ζ,

because id(∆) = 0 by definition. In this respect, M [id] is obviously different from
the actual process (Xt)t�0, which enters the cemetery discontinuously, though
Xζ− = 0 ∈ R. This continuity property of M [id] will become useful in § 6.

(ii) In § 6 we shall consider ∆ to be isolated instead of compactifying R
∆. This does

not change the σ-algebra B(R∆). Moreover, right continuity of the paths is not
lost. Hence, with respect to the new topology, Mn is still a diffusion process on
D([0,∞), R∆). The fact that the process does not explode shows that quasi-left
continuity and existence of left limits in R

∆ up to ∞ are preserved, so Mn is also
still a Hunt process in the modified setting.

We now prove the martingale property for M [id], which is clearly not covered by
Lemma 5.3.

Theorem 5.9. For any x ∈ R, M [id] is a continuous (Ft)t�0-martingale starting at 0
under P

n
x . The quadratic variation of M [id] is given by

〈M [id]〉t = t ∧ ζ, t � 0.
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Proof. As in the proof of Lemma 5.6, pick approximation functions fk of the identity
and stopping times τm, k, m ∈ N. Note that (τm)m∈N goes almost surely to ∞ as m → ∞,
because Mn does not explode by Lemma 5.7. Since (M [id]

t∧τm
)t�0 are martingales, M [id]

is a local martingale. By (5.4), we have for any T > 0 that

E
n
x

[
sup
t�T

|M [id]
t |

]
� C(1, T ) < ∞, (5.5)

so M [id] is a martingale by [7, Theorem 2.2.5]. The quadratic variation of the stopped
process (M [fk]

·∧τm
)t�0 is (by Lemma 5.5) given by

〈M [id]
·∧τm

〉t = 〈M [fk]
·∧τm

〉t = t ∧ τm ∧ ζ, t � 0.

So the quadratic variation of M [id] is 〈M [id]〉t = t ∧ ζ, t � 0. �

5.3. Brownian paths

We conclude from Theorem 5.9 that M [id] is a time change of Brownian motion (or
rather a stopped Brownian motion); in particular, it coincides with a Brownian motion
as long as the process Mn is alive. To be precise, let (Bt)t�0 be an R-valued Brownian
motion starting at 0 defined on some probability space (ΩB,FB, PB). On the set {ζ < ∞},

M [id]
∞ := lim

t→∞
M

[id]
t

exists P
n
x-almost surely for x ∈ R. Hence, we can define the process

Wu(ω1, ω2) =

{
M

[id]
u (ω1), u < ζ,

M
[id]
∞ (ω1) + Bu−〈M [id]〉∞(ω2), u � ζ,

(5.6)

for (ω1, ω2) ∈ Ω × ΩB. Then (Wt)t�0 is a Brownian motion on the product space
(D([0,∞), R) × ΩB,F ⊗ FB, Pn

x ⊗ P
B) by [7, Theorem 3.4.8].

5.4. A quantitative result on the killing of the process

For x ∈ R we know from (5.6) that Mn behaves P
n
x-almost surely like a Brownian

motion up to ζ, and killing can only take place at 0. But there is also the possibility
that the process passes through 0 without being killed immediately. Let us examine how
likely this is. Let x ∈ R, k � |x| and fn ∈ D(Ln) be a function with fn(y) = 1 + n|y|
for y ∈ [−k, k], going smoothly to 0 outside [−k, k] such that fn and Lnfn are bounded.
Then M [fn] + fn(x) is a martingale under P

n
x by Lemma 5.3, and so is the stopped

process (M [fn]
t∧τ + fn(x))t�0 = (fn(Xt∧τ ))t�0, where τ is the following (a.s. finite; see § 5.3)

stopping time
τ = inf{t � 0: |Xt| = k or Xt = ∆}.

Therefore,
1 + n|x| = fn(x) = E

n
x(fn(Xτ )) = (1 + nk)Pn

x(|Xτ | = k).
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Thus,

P
n
x(|Xτ | = k) =

1 + n|x|
1 + nk

. (5.7)

Hence, P
n
x-a.s. the process remains bounded (or reaches ∆ in finite time). Due to the

almost sure unboundedness of Brownian motion we conclude in view of § 5.3 that Mn

has a.s. finite lifetime with respect to all P
n
x , x ∈ R.

Moreover,

P
n
x(Xτ = ∆) =

n(k − |x|)
nk + 1

<
k − |x|

k
. (5.8)

As P
n
x(Xτ = ∆) is strictly increasing in n and converges to (k − |x|)/k, it becomes

more likely that the process gets killed when approaching 0 as n increases. By [7, The-
orem 3.1.4], (k − |x|)/k is the probability that (Xt)t�0 approaches 0 before hitting k.
Since (5.8) is a strict inequality, this is another proof that there is a positive probability
that (Xt)t�0 passes through 0 without being killed immediately (cf. Proposition 5.2).

In fact, the probability that (Xt)t�0 gets instantaneously killed when approaching
0 is null: Let (without loss of generality) 0 < x < k and define the stopping time
τ0 = inf{t � 0: Xt ∈ {0, ∆, k}}. Let p = P

n
x(Xτ0 = ∆ | Xτ0 ∈ {0, ∆}). Then we have by

(5.8) and the strong Markov property that

n(k − |x|)
nk + 1

= P
n
x(Xτ0 = ∆) + P

n
x(Xτ0 = 0)Pn

0 (Xτ = ∆)

= P
n
x(Xτ0 ∈ {0, ∆})p + P

n
x(Xτ0 ∈ {0, ∆})(1 − p)Pn

0 (Xτ = ∆)

=
k − |x|

k
p +

nk

nk + 1
k − |x|

k
(1 − p);

hence,

0 = p
k − |x|

k

(
1 − nk

nk + 1

)
,

so p = 0.

Remark 5.10. The last result can also be seen by the following argument. Without
loss of generality let x > 0. Consider the sequence of stopping times τn = inf{t � 0: Xt �
1/n}, n ∈ N. We set τ = limn→∞ τn; then P

n
x-a.s. it holds that τ = inf{t > 0 | Xt− = 0}.

Since {τ < ∞} is an almost sure event, quasi-left continuity of Mn up to ∞ implies that
Xτn = 1/n converges to Xτ as n → ∞, P

n
x-almost surely. Hence, Xτ = 0 with probability

1, i.e. (Xt)t�0 almost surely survives the first time it approaches 0. However, note that
the quantitative result (5.8) is rather unlikely to be seen from the abstract properties
of Mn.

5.5. Description of the process via stochastic calculus

In many applications (in particular for infinite particle systems; see, for example, [11])
the description of the process via the martingale problem is the only information one may
obtain about its behaviour. However, for the present process it is not difficult to derive
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a nice representation using the Meyer–Tanaka formula, independently of the previous
considerations in § 5.

For x ∈ R we denote by P
B
x the law of a Brownian motion starting in x with paths

denoted by (Bt)t�0. Let Ly
t , t � 0, be the local time of (Bt)t�0 in y ∈ R. Without loss of

generality we may assume that Ly
t is jointly continuous in y and t (see, for example, [7,

Theorem 2.11.8]).
The following lemma is the Feynman–Kac formula for a potential given by nδ0.

Lemma 5.11. For (Pn
t )t�0 as in Theorem 4.4 and any bounded measurable f : R → R

the following holds:
Pn

t f(x) = E
B
x (e−nL0

t f(Bt)). (5.9)

Proof. Denoting the right-hand side of the above equation by P̂n
t f(x), we find by the

Markov property of Brownian motion that the P̂n
t , t � 0, have the semigroup property

and map at least bounded continuous functions to continuous functions. To see the latter,
note that P̂n

t f(x) = E
B
0 (e−nL−x

t f(Bt + x)), x ∈ R, f bounded and continuous, and apply
Lebesgue’s Dominated Convergence Theorem. Moreover, as (P̂n

t )t�0 is dominated by the
classical heat semigroup, we find that it maps L2(R) into itself, respects L2-classes and
consists of L2-contractions.

Denote by D the set of real-valued functions of the form f = g + ng(0)| · |χ with
g ∈ C∞

0 (R) and χ ∈ C∞
0 (R) such that χ = 1 in a neighbourhood of 0. It is readily seen

that D is dense in the Ln-graph norm in D(Ln).
Let f ∈ D be as above and let h(x) = g′′(x) + 2ng(0)χ′(x) sgn(x) + ng(0)χ′′(x)|x|,

x ∈ R. Using the Meyer–Tanaka formula, Itô’s formula and [7, Theorem 2.11.7] we obtain

e−nL0
t f(Bt) − f(B0) =

∫ t

0
e−nL0

sf ′
−(Bs) dBs − n

∫ t

0
e−nL0

sf(Bs) dL0
s

+ 1
2

∫ t

0
e−nL0

sh(Bs) ds + n

∫ t

0
e−nL0

sf(0) dL0
s

=
∫ t

0
e−nL0

sf ′
−(Bs) dBs + 1

2

∫ t

0
e−nL0

sh(Bs) ds.

Taking the expectation with respect to P
B
x , x ∈ R, subtracting 1

2 th(x) (which equals
tLnf(x) almost everywhere) and dividing by t we arrive at

1
t
(P̂n

t f(x) − f(x)) − 1
2h(x) =

1
2t

E
B
x

∫ t

0
(e−nL0

sh(Bs) − h(x)) ds, (5.10)

x ∈ R. Note that

sup
t∈[0,1]

1
t

(
E

B
(·)

∫ t

0
|h(Bs)| ds

)
= sup

t∈[0,1]

1
t

∫ t

0

1√
2πs

∫
R

exp
{

− | · −y|2
2s

}
h(y) dy ds ∈ L2(R)

since this function is bounded and decays exponentially at ∞ due to the compact support
of h. Thus, by Lebesgue’s Dominated Convergence Theorem the right-hand side of (5.10)
tends to 0 in L2(R) as t → 0. Since D ⊂ L2(R) is dense, it follows that (P̂n

t )t�0 is strongly
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continuous in L2(R). Moreover, we see that it is generated by an extension of (Ln, D).
Since D is a core for (Ln, D(Ln)), this shows that (P̂n

t )t�0 equals (Pn
t )t�0 as a semigroup

on L2(R) and the assertion follows for bounded continuous f ∈ L2(R) from the continuity
of P̂n

t f and Pn
t f , and then for general f , e.g. using monotone convergence. �

Let T be an exponentially distributed random variable (the survival time at 0) with
expectation value 1/n which is independent of (Bt)t�0. We define, for t � 0,

X̂t :=

{
Bt if L0

t < T,

∆ if L0
t � T.

Using the above representation of (Pn
t )t�0 and the Markov property of Brownian motion,

it is readily verified that the finite-dimensional distributions of (X̂t)t�0 under P
B
x coincide

with the finite-dimensional distributions of (Xt)t�0 under P
n
x , proving that both coincide

as laws on D([0,∞); R∆). Thus, we obtained a complete description of the processes
corresponding to the En in terms of Brownian motion.

6. Tightness and convergence of the laws

6.1. Tightness

We now apply the following well-known tightness criterion to the families (Px
n)n∈N of

laws on D([0,∞), R∆), x ∈ R \ {0}.

Proposition 6.1. Let (E, r) be a complete separable metric space and let (Pn)n∈N

be a sequence of probability laws on D([0,∞), E). Assume that the following conditions
are satisfied:

(a) for all η > 0 and all T > 0 there exists a compact set Γη,T ⊂ E such that

inf
n∈N

P
n(XT ∈ Γη,T ) � 1 − η;

(b) for all T > 0 there exist β > 0, C < ∞ and θ > 1 such that for t ∈ [0, T ] and h � t

it holds that
sup
n∈N

E
n[r(Xt, Xt−h)β/2r(Xt+h, Xt)β/2] � Chθ

and
lim
δ→0

sup
n∈N

E
n[r(Xδ, X0)β ] = 0.

Proof. See [8, Theorems 3.7.2, 3.8.6 and 3.8.8]. �

In this section, we consider ∆ to be adjoined to R as an isolated point, as we may do
due to Remark 5.8 (ii). We define a metric r on R

∆ by setting r(x, y) := |x − y| ∧ 1 for
x, y ∈ R and r(x, ∆) := 1 for x ∈ R. Note that this metric is complete and generates the
correct topology on R

∆.
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Theorem 6.2. For every x ∈ R \ {0}, the sequence (Pn
x)n∈N of laws on D([0,∞), R∆)

is tight.

Proof. Before applying Proposition 6.1 we make two estimates. First, note that by
the Burkholder–Davis–Gundy inequality and Theorem 5.9, for any t, h � 0 and n ∈ N

the following holds:

E
n
x [| id(Xt+h) − id(Xt)|4] = E

n
x [|M [id]

t+h − M
[id]
t |4] � CE

n
x [〈M [id]

t+· − M
[id]
t 〉2h] � Ch2, (6.1)

where C < ∞ is independent of n and t.
The second observation concerns the probability that the process is killed after a short

time. Let (Wt)t�0 be as in (5.6). By Lemma 5.7 we know that

ζ � inf{t > 0: Wt = −x} =: τ0

holds P
n
x⊗P

B-a.s. and that (Wt)t�0 is a Brownian motion starting at 0 with respect to this
probability distribution. Suppose that x > 0 (for x < 0 one makes similar considerations).
By the reflection principle (see [7, Example 1.3.3]) and since Wδ is normally distributed
with mean 0 and variance δ we obtain, for any n ∈ N,

P
n
x(ζ � δ) � P

n
x ⊗ P

B(τ0 � δ) = 2P
n
x ⊗ P

B(Wδ < −x) =
2√
2π

∫ −x/
√

δ

−∞
e−z2/2 dz, (6.2)

which is independent of n ∈ N and converges to 0 as δ → 0.
For verifying assumption (a) in Proposition 6.1 we observe that, for k ∈ N, T > 0 and

n ∈ N, it holds by (6.1) that

P
n
x(XT /∈ [−k, k] ∪ {∆}) = P

n
x(| id(XT )| > k)

� 1
k4 E

n
x [| id(XT )|4]

� 8
k4 (x4 + E

n
x [| id(XT ) − id(X0)|4])

� 8
k4 (x4 + CT 2) → 0

as k → ∞. Thus, (a) holds with Γη,T := [−k, k] ∪ {∆}, if k is chosen large enough.

We now verify assumption (b). Let T > 0, 0 � h � t and n ∈ N. Observe that P
n
x-a.s.

the following holds:

r(Xt, Xt−h)4r(Xt+h, Xt)4 � r(Xt, Xt−h)41{Xt �=∆},

i.e. the expression on the left-hand side equals 0 if the process dies before time t and can
be estimated by r(Xt, Xt−h)4 otherwise. This implies that

sup
n∈N

E
n
x [r(Xt, Xt−h)4r(Xt+h, Xt)4] � sup

n∈N

E
n
x [r(Xt, Xt−h)41{Xt �=∆}]

� sup
n∈N

E
n
x [| id(Xt) − id(Xt−h)|4]

� Ch2,
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where we have used (6.1). Moreover, for δ > 0 the following holds:

sup
n∈N

E
n
x [r(Xδ, X0)4] � sup

n∈N

E
n
x [| id(Xδ) − id(X0)|4] + sup

n∈N

P
n
x(ζ � δ).

Using (6.1) and (6.2) we find that this converges to 0 as δ → 0. This completes the
proof. �

Proposition 6.3. The sequence (Pn
0 )n∈N is not tight; hence, it does not converge.

Proof. By [8, Theorems 3.7.2 and 3.8.6] a necessary condition for tightness of (Pn
0 )n

is that there exists β > 0 such that

sup
n∈N

E
n
0 [rβ(Xδ, X0)] → 0 as δ → 0. (6.3)

For 0 < ε, define the stopping time τ = inf{t � 0: |Xt| = ε or Xt = ∆}. Then we have,
by (5.6) and (5.7), for any δ > 0,

E
n
0 [rβ(Xδ, X0)] � P

n
0 (Xδ = ∆)

� P
n
0 ⊗ P

B(|Wδ| � ε) − P
n
0 (|Xτ | = ε)

= 2
∫ ∞

ε

1√
2πδ

e−y2/2δ dy − 1
1 + nε

Thus,

sup
n∈N

E
n
0 [rβ(Xδ, X0)] � 2

∫ ∞

ε

1√
2πδ

e−y2/2δ dy → 1 as ε → 0.

Since this holds for any δ > 0, it follows that limδ↓0 supn∈N E
n
0 [rβ(Xδ, X0)] = 1, contra-

dicting (6.3). �

6.2. Convergence of the laws

In order to prove weak convergence of the sequence (Pn
x)n∈N for any x ∈ R\{0}, it is now

sufficient to prove that it has at most one accumulation point. By [8, Proposition 3.7.1]
this reduces to proving that the finite-dimensional distributions of any two accumulation
points Px, P̂x coincide on a set D dense in [0,∞), i.e. for f1, . . . , fk ∈ C0

b(R∆) and 0 � t1 <

· · · < tk, t1, . . . , tk ∈ D, the expectation of f1(Xt1) · · · fk(Xtk
) is the same with respect to

Px and P̂x. Here fk(∆) �= 0 would be allowed. However, since fi = 1Rfi + (1 − 1R)fi(∆),
1 � i � k, and by a monotone convergence argument, we find that we only have to
consider f1, . . . , fk ∈ C0

c (R) (with fi(∆) = 0 for all 1 � i � k).

Lemma 6.4. For any x ∈ R\{0} the sequence (Pn
x)n∈N converges weakly to some law

Px on D([0,∞), R∆) =: Ω.

Proof. Let Px be an accumulation point of (Pn
x)n∈N, Px = limk→∞ P

nk
x . By [8, Theo-

rem 3.7.8.], the finite-dimensional distributions of P
nk
x converge to those of Px as k → ∞
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on a set DPx
⊂ [0,∞) having an at most countable complement in [0,∞). At first, we

consider one-dimensional distributions. Let t > 0, t ∈ DPx and f ∈ C0
c (R). Then∫

Ω

f(Xt) dP
n
x = Pn

t f(x) for all x ∈ R \ {0}, (6.4)

since (Pn
t )t�0 is the transition semigroup of Mn. Let K ⊂ R be compact. By Lemma 2.4,

Pn
t f |K , n ∈ N, are equicontinuous. So there is a subsequence of Pn

t f which converges
uniformly on K to some function g. Since Pn

t f is a continuous version of Tn
t f for any

n ∈ N and Tn
t f converges to Ttf in L2(R) by Theorem 3.2 and (3.1), we find that the

limit g is a continuous version of Ttf |K ; in particular, the limit is uniquely determined.
Therefore, Pn

t f converges locally uniformly to the continuous version Ptf of Ttf as
n → ∞ and

Ptf(x) =
∫

Ω

f(Xt) dPx.

We consider the step from one-dimensional to two-dimensional distributions. Let f, g ∈
C0

c (R) and 0 < s � t < ∞, s, t ∈ DPx . By the Markov property,∫
Ω

f(Xs)g(Xt) dP
n
x = E

n
x(f(Xs)g(Xt))

= E
n
x [f(Xs)En

x(g(Xt)|Fs)]

= E
n
x [f(Xs)En

Xs
(g(Xt−s))]

=
∫

Ω

f(Xs)
∫

Ω

g(Xt−s) dP
n
Xs

dP
n
x

= Pn
s (fPn

t−sg)(x). (6.5)

Furthermore, L2-convergence of (Pn
r h)n∈N for all h ∈ L2(R) and r � 0 implies that

(Pn
s (fPn

t−sg))n∈N converges in L2(R):

‖Pn
s fPn

t−sg − PsfPt−sg‖ � ‖Pn
s (fPn

t−sg − fPt−sg)‖ + ‖(Pn
s − Ps)fPt−sg‖

� ‖f‖∞‖(Pn
t−s − Pt−s)g‖ + ‖(Pn

s − Ps)fPt−sg‖ → 0

as n → ∞. Moreover, since ‖fPn
t−sg‖L2 � ‖f‖∞‖g‖L2 , using Lemma 2.4 we obtain

equicontinuity of (Pn
s (fPn

t−sg))n∈N on compact sets. So we can conclude as above and
obtain

Ps(fPt−sg)(x) =
∫

Ω

f(Xs)g(Xt) dPx.

A similar calculation can be done for all finite-dimensional distributions. Therefore,
and by the considerations preceding this lemma, the finite-dimensional distributions of
any two accumulation points Px and P̂x of (Pn

x)n∈N coincide on a dense set DPx ∩ D
P̂x

,
proving the assertion. �

Remark 6.5. There are two further important consequences of the above proof:

(i) for any f ∈ L2(R) there exist continuous versions Ptf of Ttf , t > 0;

(ii) the finite-dimensional distributions of the limiting law Px, x ∈ R \ {0}, are given in
terms of (Pt)t>0, similarly to (6.4) and (6.5), at least on a dense subset of [0,∞).
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Set P∆ := δ{Xt=∆ for all t}, P0 := δ{Xt=0 for all t}, i.e. these two laws put full measure
on constant paths at ∆ and 0, respectively. Define

M := (D([0,∞), R∆),F , (Ft)t�0, (Xt)t�0, (Px)x∈R∆).

Theorem 6.6. The limiting diffusion process M defined above is properly associated
with the Dirichlet form (E , D(E)) from Theorem 3.2. Moreover, each Px, x ∈ R \ {0}, is
the law of a Brownian motion starting in x with absorption at 0.

Proof. When considered on L2(R\{0}) instead of L2(R), the Dirichlet form (E , D(E))
is regular and local. (Both spaces are isomorphic; the difference lies in considering 0 not
to be an element of the state space.) As in Theorem 4.4 we find that (E , D(E)) is properly
associated with a Hunt diffusion process

M̄ = (Ω̄, (F̄t)t�0, (X̄t)t�0, (P̄x)x∈(R\{0})∆).

∆ is adjoined to R \ {0} as the one-point compactification. This clearly implies that the
process is killed as soon as it ‘approaches’ 0. Using the same arguments as in the proof
of Lemma 4.2 we find that any E-quasi-continuous function is continuous on R \ {0}.
Therefore, the arguments from § 5 are also valid for P̄x, x ∈ R \ {0}, and P̄x describes
a Brownian motion with absorption at 0. Considering ∆ again as an isolated point and
extending M̄ trivially to R

∆ (adding 0 to the state space and setting P̄0 := δ{Xt=0 for all t}
[17, p. 118]), we obtain a special standard diffusion process, which we also denote by

M̄ = (Ω̄, (F̄t)t�0, (X̄t)t�0, (P̄x)x∈(R)∆).

This process is properly associated with (E , D(E)) on L2(R), since it follows from the
last assertion in Theorem 3.2 and Definition 4.1 that 0 is an E-exceptional set and the
notion of E-quasi-continuity is not changed by this extension. We may without loss of
generality assume that Ω̄ = D([0,∞); R∆).

By definition, P0 = P̄0 and P∆ = P̄∆. Let us look at the initial points x ∈ R \ {0}.
Denote by (P̄t)t>0 the transition semigroup corresponding to M̄ . For f ∈ L2(R) we
find by continuity that P̄tf coincides with the continuous version Ptf of Ttf everywhere
on R \ {0}. Therefore, by Remark 6.5 and the considerations preceding Lemma 6.4, we
obtain Px = P̄x. �
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