
J. Aust. Math. Soc. 116 (2024), 68–95
doi:10.1017/S144678872300006X

WIENER TAUBERIAN THEOREMS FOR CERTAIN BANACH
ALGEBRAS ON REAL RANK ONE SEMISIMPLE LIE GROUPS

TAPENDU RANA

(Received 28 October 2022; accepted 6 June 2023; first published online 18 July 2023)

Communicated by Ji Li

Abstract

We prove Wiener Tauberian theorem type results for various spaces of radial functions, which are Banach
algebras on a real-rank-one semisimple Lie group G. These are natural generalizations of the Wiener
Tauberian theorem for the commutative Banach algebra of the integrable radial functions on G.
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1. Introduction

The celebrated Wiener Tauberian theorem states that given a function f ∈ L1(R),
the span of translations fa(x) = f (x − a) (a ∈ R), or the span of { f ∗ g : g ∈ L1(R)}
is dense in L1(R) if and only if the Fourier transform of the function f has no
real zeros. This theorem has been extended to locally compact abelian groups. In
1955, Ehrenpreis and Mautner observed that the exact analogue of the theorem
above fails for the commutative algebra of the integrable K-biinvariant functions on
the group G = SL(2,R), where K = SO(2) is a maximal compact subgroup of G.
Moreover, the Wiener Tauberian theorem does not hold for any noncompact connected
semisimple Lie group [8, 9]. Nonetheless, the authors (in [8]) realized that in addition
to the nonvanishing condition of the Fourier transforms, a condition on the rate of
decay of Fourier transforms at infinity is also necessary. Generally, when f is a
K-biinvariant integrable function on G, its Fourier transform is well defined on the strip
S1 = {λ ∈ C : |Imλ| ≤ 1}. However, for technical reasons, it was necessary for the
authors to impose various smoothness conditions and nonvanishing conditions of the
Fourier transforms on the extended strip S1,δ := {λ ∈ C : |Imλ| ≤ 1 + δ} for δ > 0. Their
theorem is the following.
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THEOREM 1.1 [8, Theorem 6]. Let f be a K-biinvariant integrable function on
G = SL(2,R) such that:

(1) the spherical transform f̂ is a continuous function on the extended strip S1,δ for
δ > 0 and holomorphic on the interior of S1,δ;

(2) lim|λ|→∞ f̂ (λ) = 0 in S1,δ;
(3) f̂ does not vanish on the extended strip S1,δ and
(4) lim sup|t|→∞ | f̂ (t)|eKe|t| > 0 for all K > 0.

Then the ideal generated by f in L1(G//K) is dense in L1(G//K).

Using the nonvanishing condition of the Fourier transforms on the extended strip,
the result has been generalized to the full group SL(2,R) (see [23]) and to the rank-one
symmetric spaces (see [3, 24, 25]). For the Wiener Tauberian theorem on symmetric
spaces of arbitrary rank, we refer to [18, 19].

In 1995, Ben Natan et al. (in [2]) proved an analogue of the Wiener Tauberian
theorem in L1(SL(2,R)//SO(2)) without any superfluous smoothness conditions or
nonvanishing conditions in the extended strip. The main ingredient of their proof is
the resolvent transform method developed by Carleman [4] and Domar [7]. In [21],
the authors extended the result of [2] to a real-rank-one semisimple Lie group in the
K-biinvariant setting.

In 2006, Dahlner (in [6]) gave a qualitative generalization of the result of Ben Natan
et al. [2] to L1(SL(2,R)//SO(2),ω) – the convolution algebra of SO(2)-biinvariant
functions on SL(2,R) that are integrable with respect to certain weights ω, where the
weight function ω behaves like a Legendre function of the first kind. Our aim is to
extend this result to any connected noncompact semisimple real-rank-one Lie group
G with finite centre. More precisely, extending the result in [6] to all rank-one cases
and enlarging the class of weight functions at the same time, we show that the Wiener
Tauberian theorem holds for weighted spaces of K-biinvariant integral functions on
the group G, where K is a maximal compact subgroup of G.

For λ ∈ C, let φλ denote the Harish-Chandra spherical functions on G. We define
Sα = {λ ∈ C : |Imλ| ≤ α} for α > 0, r ≥ 0, and

ωα,r(x) = φiα(x)(1 + x+)r for all x ∈ G.

Then L1(G//K,ωα,r) are Banach algebras under convolution, and on these algebras,
we prove the following analogue of Wiener Tauberian theorem.

THEOREM 1.2. Suppose { fβ : β ∈ Λ} is a collection of functions in L1(G//K,ωα,r) for
fixed α and r, such that { f̂β : β ∈ Λ} have no common zero in Sα and inf

β∈Λ
δα±∞ ( f̂β) = 0,

where

δα±∞ ( f̂ ) := lim sup
t→∞

e−π/2αt log | f̂ (±t)|.

Then the ideal generated by { fβ : β ∈ Λ} in L1(G//K,ωα,r) is dense in L1(G//K,ωα,r).
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Next, let G be a connected noncompact semisimple real-rank-one Lie group with
a finite centre. Then by the Kunze–Stein phenomenon (see [5], [20, Remark 6.11]),
the Lorentz space Lp,1(G) is a Banach algebra for 1 ≤ p < 2. Hence, in particular,
Lp,1(G//K) is a commutative Banach algebra. It is of interest to know whether
the Wiener Tauberian theorem holds for the spaces above. The author in [22]
answered this affirmatively by proving an analogue of the Wiener Tauberian theorem
for Lp,1(SL(2,R)) (1 ≤ p < 2). Our next result is a Wiener Tauberian theorem for
Lp,1(G//K) (1 ≤ p < 2), where G is a complex semisimple Lie group of real rank one;
that is, G = SL(2,C).

THEOREM 1.3. Let 1 ≤ p < 2 and γp = (2/p − 1). Suppose { fβ : β ∈ Λ} is a subset
of Lp,1(G//K) such that the collection { f̂β : β ∈ Λ} has no common zero in Sγp and
inf
β∈Λ
δ
γp±
∞ ( f̂ ) = 0. Then the ideal generated by { fβ : β ∈ Λ} in Lp,1(G//K) is dense in

Lp,1(G//K).

1.1. Overview of the proof. We mention that to prove our main results, we follow
the approach in [2, 21], which uses the resolvent transform method. The outline
of the proof of Theorem 1.2 is as follows. We first determine the maximal ideal
space of the Banach algebra L1(G//K,ωα,r). Then the most crucial step in the
proof of Theorem 1.2 is to construct a family of K-biinvariant eigenfunctions of the
Laplace–Beltrami operator L that spans a dense subspace of L1(G//K,ωα,r). These
eigenfunctions we denote by bλ for λ ∈ C+ = {λ ∈ C : Imλ > 0}. We show for Imλ > α
that bλ ∈ L1(G//K,ωα,r) and the spherical transform of bλ is

b̂λ(z) =
1

z2 − λ2 for all z ∈ Sα.

Using the spherical transform of bλ, we show the collection {bλ : Imλ > α} spans a
dense subspace of L1(G//K,ωα,r). Suppose I is the ideal generated by the functions
{ fβ : β ∈ Λ} in L1(G//K,ωα,r). Then for each g ∈ L∞(G//K, 1/ωα,r) that annihilates I,
we define its resolvent transform R[g] by

R[g](λ) = 〈bλ, g〉, Imλ > α.

For a fixed λ0 ∈ Cwith Imλ0 > α, using Banach algebra theory, we show that for λ ∈ C,

Bλ = (δ − (λ2 − λ2
0)bλ0 + I)−1 ∗ (bλ0 + I)

is a L1(G//K,ωα,r)/I-valued even entire function. Again, crucially using the spherical
transform of bλ, we show

Bλ = bλ for Imλ > α.
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This implies the formula

R[g](λ) = 〈Bλ, g〉 for λ ∈ C

extends R[g] analytically to the entire complex plane. Next, we find the representatives
of the cosets Bλ for 0 < Imλ < α to get the explicit formula of R[g]. With this intent,
we show that for every f ∈ L1(G//K,ωα,r) and 0 < Imλ < α, there is a function Tλ f in
L1(G//K,ωα,r) such that

T̂λ f (z) =
f̂ (λ) − f̂ (z)

z2 − λ2 for all z ∈ Sα\{±λ}.

Then we show, for f ∈ I and f̂ (λ) � 0, Tλ f / f̂ (λ) is a representative of Bλ. Since
the spherical transforms of the elements of I have no common zero in Sα, such a
representation will always exist. Later, we use the expressions of R[g] to find estimates
for the growth of R[g](λ) outside and inside the boundary of Sα. We also have that
R[g](λ) vanishes at infinity from the estimate of ‖bλ‖L1(ωα,r).

Finally, using a log–log-type theorem, we show R[g] is the zero polynomial. So by
the denseness of the span of {bλ ∈ C : Imλ > α}, we conclude g = 0.

We follow a similar strategy to prove Theorem 1.3.
This article is organized as follows. We introduce some basic notation and

well-known results in Section 2. Then in Section 3, we discuss some weighted
L1(G//K) spaces for which we prove the Wiener Tauberian theorem (Theorem 1.2).
Finally, in Section 4, we gather some features specific to the complex semisimple Lie
group and prove Theorem 1.3.

2. Preliminaries

2.1. Generalities. In this article, most of our notation is standard, which can be
found in [6]. We will denote C as a constant, and its value can change from one line
to another. For any two positive expressions f1 and f2, f1 � f2 stands for that there are
positive constants C1, C2 such that C1 f1 ≤ f2 ≤ C2 f1. For z ∈ C, we use Rez and Imz
to denote the real and imaginary parts of z, respectively.

2.2. Lorentz spaces. Let (X, m) be a σ-finite measure space. For f : X → C a
measurable function on X, the distribution function d f defined on [0,∞) is given by
d f (α) = m({x ∈ X : | f (x)| > α}). Define for p ∈ [1,∞), q ∈ [1,∞]

‖ f ‖p,q =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
( q

p

∫ ∞
0

[ f ∗(α)α1/p]q dα
α

)1/q
when q < ∞,

supα>0 α
1/p f ∗(α) when q = ∞,

(2-1)

where f ∗(s) = inf{s > 0 : d f (α) ≤ s} is the nonincreasing rearrangement of f (see [13,
page 45]). The Lorentz spaces Lp,q(X) consist of all measurable functions f for which
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‖ f ‖p,q is finite. For p, q ∈ [1,∞), the following identity gives an alternative expression
of ‖ · ‖p,q (see [13, Proposition 1.4.9]),

p1/q
( ∫ ∞

0
[d f (α)1/ps]q ds

s

)1/q
=

( q
p

∫ ∞
0

[ f ∗(α)α1/p]q dα
α

)1/q
.

We need the following lemma.

LEMMA 2.1. Suppose 1 ≤ p < q and r ∈ (p, q). Then for all f ∈ Lp(X) ∩ Lq(X), there
exists a positive constant C independent of f such that

‖ f ‖r,1 ≤ C(‖ f ‖p + ‖ f ‖q). (2-2)

PROOF. Suppose f ∈ Lp(X) ∩ Lq(X). From Equation (2-1),

‖ f ‖r,1 =
1
r

∫ ∞
0

f ∗(α)α1/(r−1) dα =
1
r

∫ 1

0
f ∗(α)α1/(r−1) dα +

1
r

∫ ∞
1

f ∗(α)α1/(r−1) dα.

Next, by Hölder’s inequality and 1/q < 1/r < 1/p, the lemma will follow. �

2.3. Result from complex analysis. Now we borrow a result from complex analysis,
which is a consequence of a log–log-type theorem. For any function F on R and α > 0,
we let

δα+∞ (F) = − lim sup
t→∞

e−π/2αt log |F(t)| and δα−∞ (F) = − lim sup
t→∞

e−π/2αt log |F(−t)|.

THEOREM 2.2. Let M : (0,∞)→ (e,∞) be a continuously differentiable decreasing
function with

lim
t→0+

t log log M(t) < ∞,
∫ ∞

0
log log M(t)dt < ∞.

Let Λ be a collection of bounded holomorphic functions on S◦α such that

inf
F∈Λ
δα+∞ (F) = inf

F∈Λ
δα−∞ (F) = 0.

Suppose H is a function that satisfies the following estimates for some nonnegative
integer N:

|H(z)| ≤(1 + |z|)NM(d(z, ∂Sα)), z ∈ C\Sα,
|F(z)H(z)| ≤(1 + |z|)NM(d(z, ∂Sα)), z ∈ S◦α for all F ∈ Λ.

(1) If, in addition, H is a holomorphic function on Sα\{±α}, then H is dominated by
a polynomial outside a bounded neighbourhood of {±α}.

(2) If H is an entire function, then it is a polynomial.

PROOF. Proof of the theorem above follows as in [21, Theorem 6.3]. �
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2.4. Real variable theory on semisimple Lie groups of rank one. Let G be a
noncompact connected semisimple real-rank-one Lie group with finite centre, with
Lie algebra g. Let θ be a Cartan involution of g and g = k + p be the associated
Cartan decomposition. Let K = exp k be a maximal compact subgroup of G. Let a be a
maximal abelian subspace of p. Since the group G is of real rank one, dim a = 1. Let
Σ be the set of nonzero roots of the pair (g, a), and let W be the associated Weyl group.
For the rank-one case, it is well known that either Σ = {−α,α} or {−2α,−α,α, 2α},
where α is a positive root and the Weyl group W associated to Σ is {-Id, Id}, where Id
is the identity operator. Let a+ = {H ∈ a : α(H) > 0} be a positive Weyl chamber, and
let Σ+ be the corresponding set of positive roots. In our case, Σ+ = {α} or {α, 2α}.
For any root β ∈ Σ, let gβ be the root space associated to β. Let n =

∑
β∈Σ+ gβ and

N = exp n. Then the group G has an Iwasawa decomposition G = K(exp a)N and a
Cartan decomposition G = K(exp a+)K. These decompositions are unique. For each
g ∈ G, we denote H(g) ∈ a and g+ ∈ a+ as the unique elements such that

g = k exp H(g)n, k ∈ K, n ∈ N,

and

g = k1 exp(g+)k2, k1, k2 ∈ K. (2-3)

Let H0 be the unique element in a such that α(H0) = 1, and through this, we identify a
withR as t ↔ tH0 and a+ = {H ∈ a : α(H) > 0} is identified with the set of positive real
numbers. We also identify a∗ and its complexification a∗

C
with R and C, respectively,

by t ↔ tα and z↔ zα, t ∈ R, z ∈ C. Let A = exp a = {at := exp(tH0) : t ∈ R} and
A+ = {at : t > 0}. Let m1 = dim gα and m2 = dim g2α, where gα and g2α are the root
spaces corresponding to α and 2α. Let ρ = 1

2 (m1 + 2m2)α denote the half sum of the
positive roots. By abuse of notation, we denote ρ(H0) = 1

2 (m1 + 2m2) by ρ.
Let dg, dn, dk and dm be the Haar measures of G, N, K and M, respectively, where∫

K dk = 1 and
∫

m dm = 1. We have the following integral formula corresponding to the
Cartan decomposition, which holds for any integrable function f :∫

G
f (g)dg =

∫
K

∫
R+

∫
K

f (k1atk2)Δ(t) dk1 dt dk2,

where Δ(t) = (2 sinh t)m1+m2 (2 cosh t)m2 . A function f is called K-biinvariant if

f (k1xk2) = f (x) for all x ∈ G, k1, k2 ∈ K. (2-4)

For a class of functions F on G, we denote the corresponding subclass of K-biinvariant
functions by F (G//K).

2.5. Spherical function. Let D(G/K) be the algebra of G-invariant differential
operators on G/K. The elementary spherical functions φ are C∞ functions and are
joint eigenfunctions of all D ∈ D(G/K) for some complex eigenvalue λ(D). That is,

Dφ = λ(D)φ, D ∈ D(G/K).
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They are parametrized by λ ∈ C. The algebra D(G/K) is generated by the
Laplace–Beltrami operator L. Then we have, for all λ ∈ C, that φλ is a C∞ solution of

Lφ = −(λ2 + ρ2)φ. (2-5)

The A-radial part of the Laplace–Beltrami operator is given by

LA f (at) :=
d2

dt2 f (at) + ((m1 + m2) coth t + m2 tanh t)
d
dt

f (at), t > 0.

For λ � −i,−2i, . . . , we have another solution Φλ of Equation (2-5) on (0,∞) given by
(see [21, Equation (2.7)]),

Φλ(at) = (2 cosh t)iλ−ρ
2F1

(
ρ − iλ

2
,

m1 + 2
4
− iλ

2
; 1 − iλ; cosh−2 t

)
,

where 2F1 is the Gauss hypergeometric function.
The function Φλ has a series representation, called the Harish-Chandra series for

t > 0, and has a singularity at t = 0. Using the Cartan decomposition, we extend Φλ as
a K-biinvariant function on G/K \ {eK}. Therefore, Φλ is a solution of Equation (2-5)
on G/K \ {eK} and we also have for t → ∞,

Φλ(at) = e(iλ−ρ)t(1 + O(1)). (2-6)

For λ ∈ C \ iZ, Φλ and Φ−λ are two linearly independent solutions. Therefore, for
λ ∈ C \ iZ, φλ is a linear combination of both Φλ and Φ−λ; that is,

φλ = c(λ)Φλ + c(−λ)Φ−λ,

where c(λ) is the Harish-Chandra c-function given by

c(λ) =
2ρ−iλΓ

(m1+m2+1
2
)
Γ(iλ)

Γ
( ρ+iλ

2
)
Γ
(m1+2

4 + iλ
2
) .

We have the following asymptotic estimate of φλ (see [14]) for Imλ < 0 and t → ∞,

φλ(at) = c(λ)e(iλ−ρ)t(1 + O(1)). (2-7)

The c-function has neither a zero nor a pole in the region Imλ < 0 (see [16,
Theorem 6.4, Ch. IV]); so it follows that for any fixed λ ∈ C with Imλ < 0,

|φλ(at)| � e−(Imλ+ρ)t. (2-8)

For any λ ∈ C, the elementary spherical function φλ has the following integral
representation:

φλ(x) =
∫

K
e−(iλ+ρ)H(xk) dk for all x ∈ G. (2-9)

We now list down some well-known properties of the elementary spherical
functions which are important for us [11, Proposition 3.1.4 and Ch. 4, Section 4.6],
[17, Lemma 1.18, page 221].
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(1) φλ(g) is K-biinvariant in g ∈ G, φλ = φ−λ, φλ(g) = φλ(g−1).
(2) φλ(g) is C∞ in g ∈ G and holomorphic in λ ∈ C.
(3) The following inequality holds:

e−ρt ≤ φ0(at) ≤ (1 + |t|) e−ρt, t ≥ 0.

(4) |φλ(x)| ≤ 1 for all x ∈ G if and only if λ ∈ Sρ = {λ ∈ C : |Imλ| ≤ ρ}.

We also have the following proposition from [15, Ch. IV, Proposition 2.2].

PROPOSITION 2.3. Let f be a complex-valued continuous function on G, not identi-
cally 0. Then f is a spherical function if and only if∫

K
f (xky) dk = f (x) f (y)

for all x, y ∈ G.

The following proposition from [20, Proposition 2.1] will be useful.

LEMMA 2.4. The elementary spherical function φλ satisfies the following properties.

(1) For any λ1, λ2 ∈ C with |Imλ1| > |Imλ2| > 0 and for any r ≥ 0, |φλ2 (x)|(1 + x+)r ≤
C|φλ1 (x)| for all x ∈ G, where C is a constant depending on λ1, λ2 and r.

(2) For 1 ≤ p < 2, φλ ∈ Lp′,∞(G//K) if and only if λ ∈ Sγp .

2.6. Spherical Fourier transform. The spherical transform f̂ of a suitable
K-biinvariant function f is defined by the formula

f̂ (λ) =
∫

G
f (x)φλ(x−1) dx.

It is well known that if f ∈ L1(G//K), then f̂ is analytic on S◦ρ, continuous on Sρ and
| f̂ (λ)| → 0 as |λ| → ∞ in Sρ.

Let C∞c (G//K) be the set of all C∞ compactly supported K-biinvariant functions
on G. Also let PW(C) be the set of all entire functions h : C→ C such that h is of
exponential type T for some T > 0, that is, for each N ∈ N,

sup
λ∈C

(1 + |λ|)N |h(λ)|e−T |Imλ| < ∞

and let PW(C)e be the set of all even functions in PW(C). Then we have the following
Paley–Wiener theorem.

THEOREM 2.5 [1, Theorem 2]. The function f �→ f̂ is a topological isomorphism
between C∞c (G//K) and PW(C)e.

3. Wiener Tauberian theorem on weighted spaces

Let G be a connected, noncompact, real-rank-one semisimple Lie group with finite
centre, and K be a maximal compact subgroup of G. For fixed α > 0 and r ≥ 0,
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we define

ωα,r(x) = φiα(x)(1 + x+)r

for all x ∈ G, where we recall x+ from Equation (2-3). For α and r as above, we define
the weighted L1-spaces as

L1(G//K,ωα,r) := { f : G→C : f is measurable and K-biinvariant with ‖ f ‖L1
ωα,r
<∞},

where

‖ f ‖L1
ωα,r
=

∫
G
| f (x)|ωα,r(x) dx.

From the inequality in [11, Proposition 4.6.11], we have

(1 + y+)/(1 + x+) ≤ (1 + (xy)+) ≤ (1 + x+)(1 + y+).

Then it follows that L1(G//K,ωα,r) is a Banach algebra.
We note that L1(G//K,ωρ,0) = L1(G//K), and for convenience henceforth, we write

L1(ωα,r) for L1(G//K,ωα,r).
First, we determine the maximal ideal space of L1(ωα,r). Let Λ : L1(ωα,r)→ C be

a nonzero algebra homomorphism. Then by the Riesz representation theorem, there
exists a function gΛ ∈ L∞(G//K, 1/ωα,r), such that

Λ( f ) =
∫

G
f (x)gΛ(x) dx

for all f ∈ L1(wα,r). Since

Λ( f1 ∗ f2) = Λ( f1)Λ( f2) for all f1, f2 ∈ L1(ωα,r),

we get that ∫
K

gΛ(xky) dk = gΛ(x)gΛ(y)

for all x, y ∈ G. Thus, from Proposition 2.3, we have gΛ = φλ for some λ ∈ C.
Therefore, the maximal ideal space of L1(ωα,r) is

Σωα,r =
{
λ ∈ C : sup

x∈G
|φλ(x)|/wα,r(x) < ∞

}
.

Then it follows that for f ∈ L1(ωα,r), its spherical Fourier transform

f̂ (λ) =
∫

G
f (x)φλ(x) dx

exists for λ ∈ Σωα,r . Moreover, f̂ is analytic on Σ◦ωα,r
and continuous on Σωα,r .

In the following lemma, we determine Σωα,r explicitly using the asymptotic estimate
in Equation (2-7) of φλ(at) and show that Σωα,r is independent of r. We recall here that
Sα = {λ ∈ C : |Imλ| ≤ α}.
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LEMMA 3.1. Suppose α > 0, then Σωα,r = Sα for any r ≥ 0.

PROOF. Since φλ(x) = φ−λ(x) and |φλ(x)| ≤ φiImλ(x) for all x ∈ G (see Equation (2-9)),
it follows that Sα ⊂ Σωα,r . Now to prove Sα = Σωα,r , let λ ∈ C with Imλ > α. Then for
x = k1atk2,

|φλ(x)|
φiα(x)(1 + x+)r =

|φλ(at)|
φiα(at)(1 + t)r �

e(Imλ−α)t

(1 + t)r ,

which goes to infinity as t → ∞. Therefore, λ � Σωα,r and since φλ = φ−λ, we conclude
Sα = Σωα,r . �

3.1. A dense subspace of L1(wα, r). We now construct a dense subset of L1(ωα,r),
which plays a crucial role towards proving Theorem 1.2. This collection is a suitable
scalar multiple of Φλ. For λ ∈ C+ := {λ ∈ C : Imλ > 0}, we define

bλ(at) :=
i

2λc(−λ)Φλ(at) for t > 0. (3-1)

We extend bλ to a K-biinvariant function on G\K, using the Cartan decomposition

bλ(k1atk2) = bλ(at) for all t > 0. (3-2)

Hence, bλ is also a solution of Equation (2-5) on G/K \ {eK}. Next, using the
asymptotic estimates of Φλ(at) (see Equation (2-6)) and φiα(at) (see Equation (2-7))
near t = ∞, we observe that if Imλ ≤ α, then the functions bλ do not belong to L1(ωα,r).
In the following lemma, we show for λ ∈ C+ with Imλ > α, bλ ∈ L1(ωα,r), and along
with this, the lemma also gives us a dense subspace of L1(ωα,r).

LEMMA 3.2. The functions {bλ : Imλ > α} span a dense subspace of L1(ωα,r).

We prove this lemma step by step. First, we show that for Imλ > α, bλ belongs to
L1(ωα,r). To show this, we borrow the estimates of bλ(at) from [21, Lemma 3.1] near
t = 0 and away from zero. Later in Lemma 3.5, we find the spherical transforms of bλ,
which are essential to prove that the collection {bλ : Imλ > α} spans a dense subspace
of L1(ωα,r).

LEMMA 3.3 [21, Lemma 3.1]. Let λ ∈ C+. Then bλ(at) satisfies the following estimates
near t = 0 and∞.
(a) There is a positive constant C such that for all t ∈ (0, 1/2],

|bλ(at)| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C(1 + |λ|)Nt−(m1+m2−1) if m1 + m2 > 1,

C log
1
t

if m1 + m2 = 1.

(b) There is a positive constant C and a natural number M such that for all t ∈ [1/2,∞],

|bλ(at)| ≤ C(1 + |λ|)Me−(Imλ+ρ)t.
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LEMMA 3.4. If Imλ > α, then bλ ∈ L1(G//K,ωα,r). Moreover, there exist n, N0 ∈ N
and a constant C > 0 (independent of λ) such that the following estimate holds:

||bλ||L1
ωα,r
≤ C

(1 + |λ|)N0

(Imλ − α)n+1 .

PROOF. Let λ ∈ C+ with Imλ > α and n = [r] + 1. Then using the estimates of bλ(at)
and Equation (2-8) of φα(at),

‖bλ‖L1
ωα,r
≤
∫ ∞

0
|bλ(at)|φiα(at)(1 + t)nΔ(t) dt

≤ C(1 + |λ|)max{N,M}
( ∫ 1/2

0
t φiα(at)(1 + t)ndt +

∫ ∞
1/2

e(α−Imλ)t(1 + t)n dt
)

≤ C(1 + |λ|)max{N,M}
(
1 +

1
(Imλ − α)n+1

)

≤ C(1 + |λ|)N0

(Imλ − α)n+1 . �

LEMMA 3.5. Let λ ∈ C+ with Imλ > α. Then we have

b̂λ(z) =
1

z2 − λ2 for all z ∈ Sα.

PROOF. Suppose λ ∈ C+ with Imλ > α. Then from [21, Lemma 3.4], we get b̂λ(ξ) =
1/(ξ2 − λ2) for all ξ ∈ R. From Lemma 3.4, we have bλ ∈ L1(ωα,r). Hence, b̂λ is a
well-defined continuous function on the strip Sα and holomorphic on S◦α. Therefore,
by analytic continuation, the lemma follows. �

PROOF OF LEMMA 3.2. We will show that span{bλ : Imλ > α} contains C∞c (G//K)
and since C∞c (G//K) is dense in L1(ωα,r), the lemma will follow. Let f ∈ C∞c (G//K),
then f̂ is entire (see Theorem 2.5). Applying Cauchy’s integral formula for f̂ ,

f̂ (w) =
1

2πi

∫
ζR

f̂ (z)
z − w

dz for all w ∈ Sα, (3-3)

where ζR is the contour consisting of a rectangle with vertices R + i(α + 1),
−R + i(α + 1), −R − i(α + 1), R − i(α + 1) (R is sufficiently large) and the positive
counterclockwise orientation. From Theorem 2.5, we get the integrals on the vertical
sides of ζR to go to 0, as R→ ∞. Therefore, Equation (3-3) gives

f̂ (w) =
1

2πi

∫
A

f̂ (z)
z − w

dz +
1

2πi

∫
B

f̂ (z)
z − w

dz for w ∈ Sα,

where A = R + i(α + 1) and B = R − i(α + 1). We know f̂ (z) is an even function, and
so by the change of variable z→ −z in the second integral, we get for all w ∈ Sα,
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f̂ (w) =
1

2πi

∫
A

2z f̂ (z)
z2 − w2 dz.

Now for z ∈ A, Imz > α, so (by Lemma 3.4) bz is in L1(ωα,r). Also, from Lemma 3.5,
we can write

f̂ (w) =
1

2πi

∫
A

2z f̂ (z)̂bz(w) dz. (3-4)

From the estimate of ‖bz‖ωα,r and the decay condition of f̂ , it follows that the L1(ωα,r)
integral

1
2πi

∫
A

2z f̂ (z)bz(·) dz

converges. Equation (3-4) shows that it must converge to f. Since the Riemann sums of
the integral are nothing but finite linear combinations of bλ, we conclude that f is in
the closed subspace spanned by {bλ : Imλ > α}. Hence, the lemma follows. �

We need to prove ‖bλ‖L1
ωα,r
→ 0 as λ→ ∞ along the positive imaginary axis. For

the r = 0 case, Dahlner [6] proved it by using ‖biξ‖L1 = b̂iξ(iα) for large ξ. However, in
general, for r > 0, this is not true.

LEMMA 3.6. We have ‖bλ‖L1
ωα,r
→ 0 as λ→ ∞ along the positive imaginary axis.

PROOF. Let us take λ = iξ, where ξ > 0 is very large. Then from Equation (3-1), we
have biξ(at) is positive, and so

‖biξ‖L1
ωα,r
=

∫ ∞
0

biξ(at)φiα(at)(1 + t)rΔ(t) dt

≤ C
∫ ∞

0
biξ(at)φ2iα(at)Δ(t) dt (using Proposition 2.4)

= C
1

ξ2 − 4α2 .

The lemma follows by sending ξ to infinity. �

3.2. Resolvent transform. Let L1
δ(ωα,r) be the unitization of L1(ωα,r), where δ is

the K-biinvariant distribution on G, defined by δ(φ) = φ(e) for all φ ∈ C∞c (G//K).
The maximal ideal space of L1

δ(ωα,r) is {Lz : z ∈ Sα ∪ {∞}}, where the complex
homomorphisms Lz on L1

δ(ωα,r) are defined by the following:

Lz( f ) = f̂ (z), z ∈ Sα, L∞( f ) =

⎧⎪⎪⎨⎪⎪⎩1 if f = δ

0 if f ∈ L1(ωα,r)
for all f ∈ L1

δ(ωα,r).

Let I denote the closed ideal from the hypothesis of Theorem 1.2. Then the spherical
transform of the functions in I does not have any common zero in Sα. Therefore, the
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maximal ideal space of the quotient algebra L1
δ(ωα,r)/I is the complex homomorphism

L̃∞ defined by

L̃∞( f ) = f̂ (∞) for all f ∈ L1
δ(ωα,r)/I.

It also follows that an element f + I ∈ L1
δ(ωα,r)/I is invertible if and only if f̂ (∞) � 0.

Now suppose λ0 is a fixed complex number with Imλ0 > α. So by Lemma 3.4,
bλ0 ∈ L1(ωα,r), and for λ ∈ C, the function λ→ δ̂ − (λ2 − λ2

0)b̂λ0 does not vanish at ∞.
Hence, δ − (λ2 − λ2

0)bλ0 + I is invertible in the quotient algebra L1
δ(ωα,r)/I for all λ ∈ C.

We put

Bλ := (δ − (λ2 − λ2
0)bλ0 + I)−1 ∗ (bλ0 + I). (3-5)

For each g ∈ L∞(G//K, 1/ωα,r) that annihilates the closed ideal I, we associate its
resolvent transform

R[g](λ) = 〈Bλ, g〉 for λ ∈ C.

3.3. Properties of R[g](λ). We first find the representative of Bλ in L1(G//K,ωα,r)
that gives the explicit expression of R[g](λ). Let λ ∈ C be such that 0 < Imλ < α and
f ∈ L1(ωα,r). Then we define

Tλ f (at) = bλ(at)
∫ ∞

t
f (as)φλ(as)Δ(s) ds − φλ(at)

∫ ∞
t

f (as)bλ(as)Δ(s) ds, t > 0,

(3-6)

and extend it to a K-biinvariant function on G \ K.
We first show that for a given f ∈ L1(ωα,r), Tλ f ∈ L1(ωα,r), and find a good

quantitative bound of ‖Tλ f ‖L1
ωα,r

(in the next lemma). Then (in Lemma 3.9), we find
its spherical Fourier transform. This is essential to finding the representative of Bλ in
terms of Tλ f for 0 < Imλ < α.

LEMMA 3.7. Let 0 < Imλ < α and f ∈ L1(ωα,r). Then, Tλ f ∈ L1(ωα,r). Moreover, if
λ � Bα(0),

||Tλ f ||L1
ωα,r
≤ C|| f ||L1

ωα,r
(1 + |λ|)Ld(λ, ∂Sα)−1

for some nonnegative integer L, where d(λ, ∂Sα) denotes the Euclidean distance of λ
from the boundary ∂Sα of the strip Sα and Bα(0) denotes the closed ball in C of radius
α centred at zero.

To find the estimate of ‖Tλ f ‖L1(ωα,r), we need the following property of spherical
functions.
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LEMMA 3.8. Suppose 0 < ν < α, then we have φiν(x) ≤ φiα(x) for all x ∈ G.

PROOF. By the Cartan decomposition, it is enough to show that φiν(at) ≤ φiα(at) for
all t > 0, when 0 < ν < α. For any two smooth functions f and g on (0,∞), we define

[ f , g](t) := ( f ′(t)g(t) − f (t)g′(t))Δ(t), t > 0.

An easy calculation shows that

[ f , g]′(t) = (L f · g − f · Lg)(t)Δ(t), (3-7)

where we recall L is the Laplace–Beltrami operator on G/K and

Δ(t) = (2 sinh t)m1+m2 (2 cosh t)m2 .

Now putting f = φiν and g = φiα in Equation (3-7),

[φiν, φiα]
′(at) = ((ν2 − ρ2)φiνφiα − φiνφiα(α

2 − ρ2))Δ(t)

= (ν2 − α2)φiνφiα Δ(t).

Hence, [φiν, φiα](at) ≤ 0 for all t > 0. So we have

(
φiν

φiα

)′
(at) =

(φiα(at)φ′iν(at) − φiν(at)φ′iα(at)

φ2
iα(at)

)
≤ 0.

Therefore, φiν(at) ≤ φiα(at) for all t > 0. �

PROOF OF LEMMA 3.7. We have

‖Tλ f ‖L1
ωα,r
=

∫ ∞
0
|Tλ f (at)|φiα(at)Δ(t)(1 + t)r dt.

Let

rλ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C(1 + |λ|)Nt(1−m1−m2) if m1 + m2 > 1,

C log
1
t

if m1 + m2 = 1.

We observe the following properties of rλ(t): :

(i) rλ is a decreasing function;
(ii)

∫ 1/2
0 rλ(t)Δ(t) dt ≤ C(1 + |λ|)N ;

(iii) |bλ(at)| ≤ rλ(t), t ∈ (0, 1/2].

We write ∫ ∞
0
|Tλ f (at)|φiα(at)Δ(t)(1 + t)r dt ≤ I1 + I2 + I3 + I4,
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where

I1 =

∫ 1/2

0
|bλ(at)|φiα(at)Δ(t)(1 + t)r

( ∫ ∞
t
| f (as)||φλ(as)|Δ(s) ds

)
dt,

I2 =

∫ 1/2

0
|φλ(at)|φiα(at)Δ(t)(1 + t)r

( ∫ ∞
t
| f (as)||bλ(as)|Δ(s) ds

)
dt,

I3 =

∫ ∞
1/2
|bλ(at)||φiα(at)Δ(t)(1 + t)r

( ∫ ∞
t
| f (as)||φλ(as)|Δ(s) ds

)
dt,

I4 =

∫ ∞
1/2
|φλ(at)|φiα(at)Δ(t)(1 + t)r

( ∫ ∞
t
| f (as)||bλ(as)|Δ(s) ds

)
dt.

Then,

I1 ≤ C
∫ 1/2

0
rλ(t)φiα(at)Δ(t)(1 + t)r

( ∫ ∞
0
| f (as)|φiα(as)Δ(s) ds

)
dt (using Lemma 3.8)

≤ C(1 + |λ|)N‖ f ‖L1
ωα,r

,

I2 ≤
∫ 1/2

0
φiImλ(at)φiα(at)Δ(t)(1 + t)r

( ∫ 1/2

t
| f (as)||bλ(as)|Δ(s) ds

)
dt

+

∫ 1/2

0
φiImλ(at)φiα(at)Δ(t)(1 + t)r

( ∫ ∞
1/2
| f (as)||bλ(as)|Δ(s) ds

)
dt.

≤ C
∫ 1/2

0
rλ(t)Δ(t) dt

∫ 1/2

0
| f (as)|φiα(as)Δ(s)(1 + s)rΔ(s) ds

+ C(1 + |λ|)M
∫ ∞

1/2
| f (as)|e(α−ρ)sΔ(s) ds

≤ C(1 + |λ|)max(M,N)
( ∫ 1/2

0
| f (as)|φiα(as)Δ(s)(1 + s)r ds

+

∫ ∞
1/2
| f (as)|φiα(as)Δ(s)(1 + s)r ds

)
(using Equation (2 − 7))

≤ C(1 + |λ|)max(M,N)‖ f ‖L1
ωα,r

.

Next, using the estimates of bλ(at) and φλ(at) (see Equation (2-7) and Lemma 3.3) and
changing the order of integration,

I3 ≤ C(1 + |λ|)M |c(−λ)||c(−α)|
∫ ∞

1/2
e(α−Imλ)t(1 + t)r

( ∫ ∞
t
| f (as)|e(Imλ−ρ)sΔ(s) ds

)
dt

≤ C(1 + |λ|)M |c(−λ)||c(−α)|
∫ ∞

1/2
| f (as)|e(α−Imλ)sΔ(s)

( ∫ s

0
e(α−Imλ)t(1 + t)rdt

)
ds

≤ C(1 + |λ|)M |c(−λ)||c(−α)|
∫ ∞

1/2
| f (as)|e(Imλ−ρ)s(1 + s)rΔ(s)

(e(α−Imλ)s − e(α−Imλ)1/2

α − Imλ

)
ds

≤ C(1 + |λ|)M |c(−λ)|‖ f ‖L1
ωα,r

d(λ, ∂Sα)−1.
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Simliarly, we can prove

I4 ≤ C(1 + |λ|)M |c(−λ)|‖ f ‖L1
ωα,r

d(λ, ∂Sα)−1.

Since

c(−λ) =
2ρ−iλΓ( m1+m2+1

2 )Γ(iλ)

Γ( ρ+iλ
2 )Γ( m1+2

4 + iλ
2 )
=

2ρ−iλΓ( m1+m2+1
2 )Γ(1 + iλ)

iλ Γ( ρ+iλ
2 )Γ( m1+2

4 + iλ
2 )

,

by the polynomial approximation of gamma functions,

|c(−λ)| ≤ C
|λ|(1 + |λ|)(m1+m2−2)/2 .

Now λ � Bα(0), so we can dominate |c(−λ)| by a polynomial. Finally, from the
estimates I1, I2, I3 and I4, the lemma follows. �

We will use the inverse spherical transform to show Tλ f is a representative of Bλ for
0 < Imλ < α. To apply an inverse spherical transform, we need the following lemma.

LEMMA 3.9. Let 0 < Imλ < α and f ∈ L1(G//K,ωα,r). Then,

T̂λ f (z) =
f̂ (λ) − f̂ (z)

z2 − λ2 for all z ∈ Sα \ {±λ}.

PROOF. Using the definition of Tλ f in Equation (3-6),

T̂λ f (z) =
∫ ∞

0
bλ(at)φz(at)

( ∫ ∞
t

f (as)φλ(as)Δ(s) ds
)
Δ(t) dt

−
∫ ∞

0
φλ(at)φz(at)

( ∫ ∞
t

f (as)bλ(as)Δ(s) ds
)
Δ(t) dt.

By changing the order of integration,

T̂λ f (z) =
∫ ∞

0
f (as)
(
φλ(as)

∫ s

0
bλ(at)φz(at)Δ(t) dt − bλ(as)

∫ s

0
φλ(at)φz(at)Δ(t) dt

)
Δ(s) ds.

Putting f = Φλ, g = φz in Equation (3-7), we get for any 0 < r < s,∫ s

r
Φλ(at)φz(at)Δ(t) dt =

1
z2 − λ2 ([Φλ, φz](as) − [Φλ, φz](ar)). (3-8)

Now sending r → 0 and using the asymptotic behaviour of Φλ(at) near t = 0, we get
(see [21, Lemma 8.1])

lim
r→0+

[Φλ, φz](ar) = 2iλc(−λ).

Consequently, Equation (3-8) becomes∫ s

0
bλ(at)φz(at)Δ(t) dt =

1
z2 − λ2 ([bλ, φz](as) + 1).
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Similarly, putting f = Φλ, g = φλ in Equation (3-7), we get [φλ,Φλ](·) is constant on
(0,∞). Next, using the asymptotic behaviour of Δ(t) andΦλ(at) near t = ∞, we get (see
[21, Lemma 8.1])

[φλ,Φλ](·) = lim
t→∞

[φλ,Φλ](at) = −2iλc(−λ).

Next, from the equations above, it follows that

I(s) := φλ(as)Δ(s)
∫ s

0
bλ(at)φz(at)Δ(t) dt − bλ(as)Δ(s)

∫ s

0
φλ(at)φz(at)Δ(t) dt

=
1

z2 − λ2 (φλ(as)Δ(s)([bλ, φz](as) + 1) − bλ(as)Δ(s)[φz, φλ](as))

=
1

z2 − λ2 (φλ(as) − φz(as))Δ(s) (here we use the fact [φλ, bλ](·) = 1).

Therefore,

T̂λ f (z) =
f̂ (λ) − f̂ (z)

z2 − λ2 for all z ∈ Sα \ {±λ}. �

We are now equipped with all the tools to find out the explicit formula of R[g]. The
relevancy of the functions bλ and Tλ f is made clear in the following lemma, where we
summarize the necessary properties of the resolvent transform.

LEMMA 3.10. Assume that g ∈ L∞(G//K, 1/ωα,r) annihilates the ideal I. Then:

(a) R[g](λ) is an even holomorphic function on C;
(b) for Imλ > α,

R[g](λ) = 〈bλ, g〉;

(c) for any function f ∈ I and 0 < Imλ < α,

R[g](λ) =
〈Tλ f , g〉

f̂ (λ)

provided λ � Z( f̂ ) := {z ∈ Sα : f̂ (z) = 0};
(d) for |Imλ| > α,

|R[g](λ)| ≤ C||g||L∞1/ωα,r

(1 + |λ|)N

d(λ, ∂Sα)n ;

(e) for |Imλ| < α,

| f̂ (λ)R[g](λ)| ≤ C|| f ||L1
ωα,r
||g||L∞1/ωα,r

(1 + |λ|)N

d(λ, ∂Sα)
,

where the constant C is independent of λ and f ∈ I.
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PROOF. (a) This follows from the definition of Bλ (see Equation (3-5)).
(b) Suppose λ0 be a fixed complex number with Imλ0 > α. We recall from Lemma

3.4 that for Imλ > α, we have bλ ∈ L1(ωα,r). Then from Lemma 3.5, for all z ∈ Sα,

(1 − (λ2 − λ2
0)̂bλ0 (z))b̂λ(z) = b̂λ0 (z), for all z ∈ Sα.

Hence, by the inverse spherical transform,

(δ − (λ2 − λ2
0)bλ0 (·)) ∗ bλ(·) = bλ0 (·)

as L1
δ(ωα,r) functions. Therefore, in the quotient algebra L1

δ(ωα,r)/I,

(δ − (λ2 − λ2
0)bλ0 + I) ∗ (bλ + I) = bλ0 + I. (3-9)

Since (δ − (λ2 − λ2
0)bλλ0

+ I) is invertible in L1
δ(ωα,r)/I, from the definition of Bλ (see

Equation (3-5)) and Equation (3-9), we get Bλ = bλ + I. Accordingly,

R[g](λ) = 〈bλ, g〉. (3-10)

(c) Let f ∈ I and λ ∈ C with 0 < Imλ < α, then by Lemma 3.7, Tλ f is in L1(ωα,r).
Now if λ is such that f̂ (λ) � 0, then, similarly as in the previous case, we have from
Lemma 3.9 and the inverse spherical transform,

(δ − (λ2 − λ2
0)bλ0 (·)) ∗

(Tλ f (·)
f̂ (λ)

)
= bλ0 (·) −

bλ0 (·) ∗ f (·)
f̂ (λ)

as L1
δ(ωα,r) functions. Since f ∈ I,

(δ − (λ2 − λ2
0)bλ0 + I) ∗

( Tλ f

f̂ (λ)
+ I
)
= bλ0 + I.

From the definition in Equation (3-5) of Bλ, we get Bλ = Tλ f / f̂ (λ) + I. Hence, from
the equation above and the fact that the spherical transforms of functions in I do not
have a common zero, we get the expression

R[g](λ) =
〈 Tλ f

f̂ (λ)
, g
〉

provided λ � Z( f̂ ) = {z ∈ Sα : f̂ (z) = 0}.
(d) From item (a), we have R[g] is an even function, so it is enough to consider the

case Imλ > α. Now for Imλ > α, we have from Equation (3-10) and Lemma 3.4,

|R[g](λ)| ≤ C‖g‖L∞1/ωα,r

(1 + |λ|)N

d(λ, ∂Sα)n for some C > 0.

(e) From the estimate of ‖Tλ f ‖L1
ωα,r

(Lemma 3.7), we get for 0 < Imλ < α, λ � Bα(0),

| f̂ (λ)R[g](λ)| ≤ C‖ f ‖L1
ωα,r
‖g‖L∞1/ωα,r

(1 + λ)L

d(λ, ∂Sα)
. (3-11)
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As f̂ (λ)R[g](λ) is an even function on Sα, we get the same estimate for 0 < |Imλ| <
α, λ � Bα(0). Now from continuity of R[g](λ) and using Hölder’s inequality for λ ∈
Bα(0),

| f̂ (λ)R[g](λ)| ≤ C‖ f ‖L1
ωα,r

,

where C is a constant independent of f and λ. Hence, using continuity of R[g](λ) and
f̂ (λ) again, we can find a constant C > 0 such that for all λ ∈ C with 0 ≤ Imλ < α,
Equation (3-11) holds. �

PROOF OF THEOREM 1.2. Since the ideal generated by { fβ : β ∈ Λ} is the same as
the ideal generated by the elements { fβ/‖ fβ‖L1

ωα,r
: β ∈ Λ} and δα±∞ ( f̂ ) = δα+∞ ( f̂ /‖ f ‖L1

ωα,r
),

we assume that the functions fβ are of unit L1(ωα,r) norm. Let g ∈ L∞(G//K, 1/ωα,r)
annihilate the closed ideal I generated by { fβ : β ∈ Λ}. We will show that g = 0. Then
by an application of the Hahn–Banach theorem, it will follow that I = L1(G//K,ωα,r).
From the hypothesis,

inf
β∈Λ
δα+∞ ( f̂β) = inf

β∈Λ
δα−∞ ( f̂β) = 0.

By Lemma 3.10, the entire function R[g] satisfies the following estimates:

|R[g](z)| ≤ C(1 + |z|)(d(z, ∂Sα))−n−1, z ∈ C\Sα,
| f̂β(z)R[g](z)| ≤ C(1 + |z|)(d(z, ∂Sα))−1, z ∈ S0

α,

for all β ∈ Λ, where C is a constant and we choose it to be greater than e and we
recall n = [r] + 1. Let M : (0,∞)→ (e,∞) be a continuously differentiable decreasing
function such that M(t) = C

tn+1 for 0 < t < 1, and
∫ ∞

1 log log M(t) dt < ∞. With this
definition of M,

|R[g](z)| ≤ (1 + |z|)M(d(z, ∂Sα)) z ∈ C\Sα,
| f̂β(z)R[g](z)| ≤ (1 + |z|)M(d(z, ∂Sα)) z ∈ S0

α, for all β ∈ Λ.

Therefore, applying Theorem 2.2, we get R[g](z) is a polynomial. Now from
Lemma 3.6, we get ‖bz‖L1

ωα,r
→ 0 as z goes to infinity along the positive imaginary

axis. However, Lemma 3.10 gives

|R[g](z)| ≤ ‖bz‖L1
ωα,r
‖g‖L∞1/ωα,r

for Imz > α,

so we get R[g](z)→ 0, when z→ ∞ along the positive imaginary axis. Therefore,
R[g] is the zero polynomial. Hence, 〈bλ, g〉 = 0 whenever Imλ > α, but the collection
{bλ : Imλ > α} spans a dense subset of L1(G//K,ωα,r). So g = 0, and the theorem is
proved. �
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4. Wiener Tauberian theorem for complex semisimple Lie groups

In this section, we prove an analogue of the Wiener Tauberian theorem for Lorentz
spaces Lp,1, 1 ≤ p < 2 of K-biinvariant functions on a noncompact, real-rank-one
complex semisimple Lie group G = SL(2,C). It is known that for a noncompact
complex semisimple Lie group α ∈ Σ+, m1 = 2 and m2 = 0 [16, Theorem 6.14]. As
in the real case, we identify ρ with 1. Throughout this section, p will always lie in
[1, 2). We also recall γp = (2/p − 1) and Sγp = {λ ∈ C : |Imλ| ≤ γp}.

We have the following integral formulae corresponding to the Cartan decomposition
(see [10, Section 3]):∫

G
f (g)dg =

∫
K

∫
R+

∫
K

f (k1atk2) Δ̃(t) dk1 dt dk2,

where Δ̃(t) = (et − e−t)2, t ∈ R.

4.1. Spherical functions. The spherical functions on G with respect to K have the
following formula (see [12, Equation (2.2)] and [16, page 432, Theorem 5.7]):

φλ(at) = ic(λ)
sin λt
sinh t

,

where

c(λ) =
2(1−iλ)Γ( 3

2 )Γ(iλ)

Γ(1 + iλ
2 )Γ( 1+iλ

2 )
=
Γ( 3

2 )Γ( iλ
2 )Γ( 1+iλ

2 )
√
π Γ(1 + iλ

2 )Γ( 1+iλ
2 )
=

1
iλ

.

The spherical transform f̂ of a function f ∈ Lp,1(G//K) is defined as

f̂ (λ) =
∫

G
f (x)φ−λ(x−1) dx for all λ ∈ Sγp .

As in the rank-one real semisimple Lie group, similar properties of spherical functions
and spherical Fourier transforms hold for the rank-one complex semisimple Lie group.
We refer the reader to [10] for further details.

4.2. A dense subspace of Lp,1(G//K). Now, to prove Theorem 1.3, we follow a
similar strategy as in Theorem 1.2. First, we construct a dense subspace of Lp,1(G//K).
We define for λ ∈ C+,

bλ(at) =
ieiλt

2λc(−λ)J(t)
=

eiλt

2J(t)
for all t > 0,

where J(t) = (et − e−t). We extend bλ(·) as a K-biinvariant function in G/K \ {eK}
using the Cartan decomposition of G.

LEMMA 4.1. The functions {bλ : Imλ > γp} span a dense subspace of Lp,1(G//K).
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To prove the lemma above, we first show that for Imλ > γp, bλ ∈ Lp,1(G//K). After
that, we show that the spherical transform of bλ is b̂λ(z) = 1/(z2 − λ2) for all z ∈ Sγp ,
and then the proof of the lemma above follows exactly as in Lemma 3.2.

LEMMA 4.2. Let 1 ≤ p < 2 and λ ∈ C+ with Imλ > γp, then bλ ∈ Lp,1(G//K). More-
over, there exists a constant C > 0 (independent of λ) such that the following estimate
holds:

‖bλ‖p,1 ≤ C
1 + |λ|

Imλ − γp
. (4-1)

PROOF. Suppose λ ∈ C+. Then using an asymptotic estimate of J(t), we get

|bλ(at)| ≤ C( f (t) + g(t)), (4-2)

where

f (t) = χ(0,1](t)t−1 and g(t) = χ[1,∞)(t)e−(Imλ+1)t for t ≥ 0.

We extend f and g as K biinvariant functions in G similarly as in Equation (3-2). The
proof will be completed if we show that ‖ f ‖p,1 + ‖g‖p,1 is dominated by the right-hand
side of Equation (4-1). We have, for α > 0,

d f (α) = m{t ∈ [0,∞] : | f (t)| > α} = m{t ∈ (0, 1] : t−1 > α} = m
{
t ∈ (0, 1] : t <

1
α−1

}
,

where m is the Haar measure on G in the Cartan decomposition. We observe that for
α < 1, d f (α) is constant. For α > 1, we have

d f (α) =
∫ α−1

0
Δ̃(t) dt =

∫ α−1

0
(et − e−t)2 dt �

∫ α−1

0
t2 dt � α−3.

Now,

‖ f ‖p,1 = p
( ∫ ∞

0
d f (α)1/pdα

)
≤ p
(
C +
∫ ∞

1
α−3/pdα

)
= C (since p < 2). (4-3)

For the function g,

dg(α) = m{t ∈ [1/2,∞) : e−(Imλ+1)t > α} = m
{
t ∈ [1/2,∞) : t <

1
(Imλ + 1)

log
1
α

}
.

Therefore, dg(α) = 0 whenever α > e−(Imλ+1)/2 and for the range 0 < α < e−(Imλ+1)/2,

dg(α) �
∫ 1/(Imλ+1) log 1/α

1/2
e2t dt ≤ 1

α2/(Imλ+1)
.

Then,

‖g‖p,1 = p
( ∫ ∞

0
dg(α)1/pdα

)
≤ p
( ∫ 1

0
α−2/p(Imλ+1)dα

)
=

1
1 − 2

p(Imλ+1)

. (4-4)
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The integral in Equation (4-4) converges since 2/(Imλ + 1)p < 1 for Imλ > γp. Next,
from Equations (4-3) and (4-4),

‖bλ‖p,1 ≤ C +
1

1 − 2
p(Imλ+1)

≤ C
1 + |λ|

Imλ − γp
.

This completes the proof of the lemma. �

LEMMA 4.3. For λ ∈ C+ with Imλ > γp,

b̂λ(z) =
1

z2 − λ2 , for all z ∈ Sγp .

PROOF. Suppose z ∈ Sγp , then,

b̂λ(z) =
1
2z

∫ ∞
0

eiλt sin(zt)
J(t) sinh t

(et − e−t)2 dt

=
1

2iz

∫ ∞
0

(ei(λ+z)t − ei(λ−z)t) dt

=
1
−2z

2z
(λ2 − z2)

=
1

(z2 − λ2)
. �

From the pointwise estimate in Equation (4-2) of bλ(at), we observe that if Im(λ) is
sufficiently large, then bλ ∈ Lp,1(G//K) for any small p. In particular, if Imλ > γp + 1,
then b̂λ exists at the point i and b̂λ(i) = 1/−(λ2 + 1). Using this along with the estimate
of bλ(at), we show that for all p ∈ [1, 2), ‖bλ‖p,1 → 0 whenever λ→ ∞ along the
positive imaginary axis.

LEMMA 4.4. We have ‖bλ‖p,1 → 0 as λ→ ∞ along the positive imaginary axis.

PROOF. We are going to show for λ = ζ + iξ, ‖bλ‖p,1 → 0 as ξ → ∞, for any fixed
ζ ∈ R. Suppose λ = ζ + iξ and ξ is a large positive real number and q ∈ [1, 2). Then,
biξ(at) is positive and for a fixed ζ, |bλ(at)| ≤ Cbiξ(at) for all t > 0. Hence, for large
ξ > 0,

||biξ ||1 =
∫
R+

biξ(at)Δ̃(t) dt = b̂iξ(i) =
1
ξ2 − 1

goes to zero as ξ → ∞. Next, we show that for any q ∈ [1, 2),

lim
ξ→∞
‖biξ‖q = 0. (4-5)

We have

‖biξ‖qq ≤ C
∫ 1

0

(1
t

)q
Δ̃(t) dt + C

∫ ∞
1

e−(ξ+1)qt+2t dt

≤ C + Ce1−(ξ+1)q/2.
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Let 1 < p < q, then there exists θ ∈ (0, 1) such that 1/p = (1 − θ) + θ/p. By Hölder’s
inequality,

lim
ξ→∞
‖biξ‖p ≤ lim

ξ→∞
‖biξ‖1−θ1 lim

ξ→∞
‖biξ‖θq = 0

as limξ→∞ ‖biξ‖1 = 0 (see [21, Lemma 3.5]). Since p, q are arbitrary, we get Equation
(4-5). Now for p1 < p < p2, we have from Lemma 2.1,

‖biξ‖p,1 ≤ C(‖biξ‖p1 + ‖biξ‖p2 ).

This implies ‖bλ‖p,1 → 0 as λ→ ∞ through any vertical line. �

4.3. Resolvent transform. As before, here also we define a resolvent transform
associated to each g ∈ Lp′,∞(G//K) that annihilates the closed ideal I generated by
the functions { fβ : β ∈ Λ} from the hypothesis of Theorem 1.3. Let Lp,1

δ (G//K) be the
unitization of Lp,1(G//K) and δ. The maximal ideal space of Lp,1

δ (G//K) is {Lz : z ∈
Sγp ∪∞}, where Lz are complex homomorphisms on Lp,1

δ (G//K) defined similarly as
in Equation (3-2). We have that the collection { f̂β : β ∈ Λ} does not have any common
zero in Sγp . So by Banach algebra theory, we get that the maximal ideal space of
Lp,1
δ (G//K)/I is the complex homomorphism L̃∞, defined by

L̃∞( f + I) = f̂ (∞) for all f ∈ Lp,1
δ (G//K)/I.

For each g ∈ Lp′,∞(G//K) that annihilates the closed ideal I, we associate its resolvent
transform

R[g](λ) = 〈bλ, g〉, Imλ > γp.

Now suppose λ0 is a fixed complex number with Imλ0 > γp. Then, using an analogous
argument as in Equation (3-5), we define the resolvent transform

R[g](λ) = 〈Bλ, g〉 λ ∈ C,

which is analytic on the entire complex plane, where

Bλ = (δ − (λ2 − λ2
0)bλ0 + I)−1 ∗ (bλ0 + I).

Our next objective is to find an explicit formula for R[g](λ) by acquiring represen-
tatives of Bλ in Lp,1(G//K)/I. We will show, for Imλ > γp, a representative of Bλ is
bλ, which is in Lp,1

δ (G//K). Before that, we find a representative of Bλ in Lp,1
δ (G//K)/I

for 0 < Imλ < γp. Suppose λ ∈ C with 0 < Imλ < γp and f ∈ Lp,1(G//K). Then for all
t > 0, we define

Tλ f (at) = bλ(at)
∫ ∞

t
f (as)φλ(as)Δ̃(s) ds − φλ(at)

∫ ∞
t

f (as)bλ(as)Δ̃(s) ds, (4-6)

and extend it as a K biinvariant function on G. Next, using the estimate of bλ(at), we
find a quantitative estimate of ‖Tλ f ‖p,1 in the following lemma.
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LEMMA 4.5. For λ ∈ C+ with 0 < Imλ < γp, we have Tλ f ∈ Lp,1(G//K) and moreover
for λ � Bγp (0), its Lp,1(G//K) norm satisfies ‖Tλ f ‖p,1 ≤ C(1 + |λ|)/d(λ, ∂Sγp ).

PROOF. Suppose h ∈ Lp′,∞(G//K) with ‖h‖p′,∞ ≤ 1, then from Equation (4-6),∣∣∣∣∣
∫

G
Tλ f (x)h(x) dx

∣∣∣∣∣ =
∣∣∣∣∣
∫ ∞

0
Tλ f (at)h(at)Δ̃(t) dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ ∞

0

(
bλ(at)

∫ ∞
t

f (as)φλ(as)Δ̃(s) ds

− φλ(at)
∫ ∞

t
f (as)bλ(as)Δ̃(s) ds

)
h(t)Δ̃(t) dt

∣∣∣∣∣.
Now we divide the integral into four parts to use the estimates of bλ(at):∣∣∣∣∣

∫
G

Tλ f (x)h(x) dx
∣∣∣∣∣ ≤ I1 + I2 + I3 + I4,

where

I1 =

∫ 1

0
|bλ(at)||h(at)|

( ∫ ∞
t
| f (as)||φλ(as)|Δ̃(s) ds

)
Δ̃(t) dt,

I2 =

∫ 1

0
|φλ(at)||h(at)|

( ∫ ∞
t
| f (as)||bλ(as)|Δ̃(s) ds

)
Δ̃(t) dt,

I3 =

∫ ∞
1
|bλ(at)||h(at)|

( ∫ ∞
t
| f (as)||φλ(as)|Δ̃(s) ds

)
Δ̃(t) dt

and

I4 =

∫ ∞
1
|φλ(at)||h(at)|

( ∫ ∞
t
| f (as)||bλ(as)|Δ̃(s) ds

)
Δ̃(t) dt.

Then, using Hölder’s inequality and our estimates of bλ,

I1 ≤
∫ 1

0
|bλ(at)||h(at)|

( ∫ ∞
t
| f (as)||φλ(as)|Δ̃(s) ds

)
Δ̃(t) dt

≤ C‖ f ‖p,1‖φλ‖p′,∞‖h‖p′,∞

I2 ≤
∫ 1

0
|φλ(at)||h(at)|

( ∫ ∞
t
| f (as)||bλ(as)|Δ̃(s) ds

)
Δ̃(t) dt

≤ C
∫ 1/2

0
|φλ(at)||h(at)|‖ f ‖p,1(C + ‖χ[1,∞)(s)e−(Imλ+1)s‖p′,∞) dt

≤ C‖ f ‖p,1‖h‖p′,∞.

Since λ is inside the strip Sγp , that is, 0 < Imλ < γp, by a similar calculation as in
Equation (4-2), we can show ‖φλ‖p′,∞ and ‖χ[1,∞)(s)bλ(as)‖p′,∞ is bounded by a constant
independent of λ.
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Before we estimate I3 and I4, we need to find an Lp,1-norm estimate of the following
K biinvariant function on G, defined by

g(t) = e(Imλ−1)tχ[1,s](t), where s ≥ 1 is fixed.

Then the distribution function is

dg(α) = m
{
t ∈ [1, s] : t <

1
(1 − Imλ)

log
1
α

}
.

Recall m is the Haar measure on G in the Cartan decomposition. Now we observe,
unless 0 < α < e(Imλ−1), dg(α) = 0. Furthermore, when 0 < α < e(Imλ−1)s,

dg(α) �
∫ s

1
e2t dt =

e2s − e2

2

and for e(Imλ−1)s < α < e(Imλ−1), we get

dg(α) �
∫ (log 1/α)/(1−Imλ)

1
e2t dt =

1
2α2/(1−Imλ)

− e2

2
.

Therefore,

‖g‖p,1 = p
∫ ∞

0
dg(α)1/pdα = p

∫ e(Imλ−1)s

0
dg(α)1/pdα + p

∫ e(Imλ−1)

e(Imλ−1)s
dg(α)1/pdα

≤ Ce(Imλ+2/p−1)s +
eImλ−1+2/p − e(Imλ−1+2/p)s

1 − 2
p(−Imλ)

≤ C(1 + |λ|) e(Imλ+2/p−1)s

( 2
p − 1)1 + Imλ

≤ C(1 + |λ|) e(2/p−1+Imλ)s

( 2
p − 1) − Imλ

.

Similarly, if we take g̃(t) = e−(Imλ+1)tχ[1,s](t), for a fixed s ≥ 1,

‖g̃‖p,1 ≤ C(1 + |λ|) e(2/p−1−Imλ)s

( 2
p − 1) − Imλ

. (4-7)

Now, using the estimates of bλ, φλ and changing the order of integration,

I3 ≤
C
|λ|

∫ ∞
1

e−(Imλ+1)t|h(t)|
( ∫ ∞

t
| f (as)|e(Imλ−1)sΔ̃(s) ds

)
Δ̃(t) dt

≤ C
|λ|

∫ ∞
1
| f (as)|e(Imλ−1)s

( ∫ s

1
e−(Imλ+1)t |h(t)|Δ̃(t) dt

)
Δ̃(s) ds

≤ C
|λ| (1 + |λ|)

∫ ∞
1
| f (as)|e(Imλ−1)s e(2/p−1−Imλ)s

( 2
p − 1) − Imλ

‖h‖p′,∞Δ̃(s) ds (using Equation (4-7))
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≤ C(1 + |λ|)|
|λ|( 2

p − 1 − Imλ)

∫ ∞
1
| f (as)|e−2/p′s‖h‖p′,∞Δ̃(s) ds

≤ C(1 + |λ|)
|λ| d(λ, ∂Sγp )−1‖ f ‖p,1‖h‖p′,∞.

Similarly, we can prove

I4 ≤
C(1 + |λ|)
|λ| d(λ, ∂Sγp )−1‖ f ‖p,1‖h‖p′,∞.

Since λ � Bγp (0), 1/|λ| ≤ C, and so adding the estimates of I1, I2, I3 and I4, the lemma
follows. �

Now that we have Tλ f ∈ Lp,1(G//K) for 0 < Imλ < γp, next we need the spherical
transform of Tλ f to prove that Tλ f is a representative of Bλ in Lp,1(G//K). We find
the spherical transform of Tλ f , using the same calculation in Lemma 3.9 to prove the
following lemma.

LEMMA 4.6. Suppose 0 < Imλ < γp and f ∈ Lp,1(G//K). Then,

T̂λ f (z) =
f̂ (λ) − f̂ (z)

z2 − λ2 for all z ∈ Sγp \ {±λ}.

PROOF OF THEOREM 1.3. We have gathered all the details to find the explicit
formula of the resolvent transform for the outside and inside of the strip Sγp , as
in Lemma 3.10. Using the spherical Fourier transform of bλ and its Lp,1 norm
estimates, we can show that the associated resolvent transform is the zero polyno-
mial for each g ∈ Lp′,∞(G//K) that annihilates the ideal I. This gives a proof of
Theorem 1.3. �

REMARK 4.7. We could not prove the Wiener Tauberian theorem for Lp,1(G//K),
1 ≤ p < 2, for a real-rank-one semisimple Lie group G (other than SL(2,R)), because
of the following reason. It is known that for λ ∈ C+, bλ(at) is asymptotic to t−(m1+m2−1)

when m1 + m2 > 1. By a direct calculation, it follows that {bλ : Imλ > γp} does
not belong to Lp,1(G//K) unless p < (m1 + m2 + 1)/(m1 + m2 − 1). So one cannot
define the resolvent transform as in Section 4.3 for all p ∈ [1, 2). Even for p <
(m1 + m2 + 1)/(m1 + m2 − 1), we are unable to prove ‖bλ‖p,1 goes to zero as λ→ ∞,
which was crucially used to show that R[g] is the zero polynomial.
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